A Framework for Reuse and Parallelization

of Large-Scale Scientific Simulation Code

Manolo E. Sherrill®, Roberto C. Mancini?, Frederick C. Harris Jr.?, Sergiu M. Dascalu®

*Department of Physics
®Department of Computer Science and Engineering
University of Nevada, Reno NV 89557

Abstract

Software design in the scientific community often
fails due to the nature and life span of the code
being developed. In this work a software frame-
work is proposed for large scale scientific compu-
tations. This architecture is applied to simula-
tions of laser ablation, in particular Li and Ag.
This architecture also allows expansion to paral-
lel computation without any additional work.

Keywords: laser ablation, software framework

1 Introduction

Several difficulties affect code development in
scientific programming. The often short lived
nature and highly changing aspect of most scien-
tific programs produce a dilemma, for the devel-
oper. Small programs are crafted in a temporary
manner to test algorithms and methods to solve
specific computational problems. In cases where
a code’s “lifetime” exceeds expectations, it be-
comes very difficult to incorporate it into larger
simulation programs due to variable name con-
flicts, poor organization, non-robust implemen-
tation and a lack of consistent style. In regards
to a pre-existing simulation program, additional
complications arise when new projects are under-
taken that require large modifications to the ex-
ecution topology. It is impractical in most cases
to place various options into a program in an-
ticipation of future project requirements. Older
simulation programs have the added difficulty of
being overburdened with obsolete or unnecessary
functionality for the project at hand and thereby
complicating the adaptation procedure. Unfor-

tunately, the removal of un-needed routines leads
to a high probability of introducing errors into
the program.

Our work has focused on scientific simulations
of laser ablation. This field of physics fits the de-
scription just provided with pieces of code that
have been written once and used, and modified
over and over again, for years. Like any scientific
field the simulations have to change as the real
world knowledge increases. This knowledge will
increase as experimentalists look to confirm or
study data presented by the simulations. There-
fore, the code has the potential to be used over
and over again and be modified many times at
unknown frequencies. We found in our simula-
tions that the standard sequential development
models did not fit or work effectively in this field
and we developed a new framework that we pro-
pose.

This paper, in its remaining parts, is organized
as follows: Section 2 presents a background into
the laser ablation simulations that precipitated
the architecture. Section 3 describes the frame-
work design that is the foundation for this work.
Section 4 gives some results. Section 5 follows
with conclusions and future work.

2 Laser Ablation

Laser ablation refers to the process of ablat-
ing material from a solid or liquid target, with a
low intensity laser ranging from 1x107 W /cm?
to 1x10'9 W/cm?. Typically, a pulsed laser is
used to irradiate the target. It deposits the bulk
of its energy in the skin depth region of the tar-

get where this volume of material is heated and
then undergoes melting, evaporation, and pos-
sibly plasma formation. The material in the
gaseous state then forms a plume that expands
away from the target’s surface with normal to
the surface velocities of a few 10 ym/nsec. When
a series of ablation events are performed, where
the duration of the irradiation of the target is al-
lowed to stay constant (that is the full width at
half maximum (FWHM) of the temporal pulse
shape is fixed) while the fluence is allowed to in-
crease, a transition between evaporative plume
to plasma plume formation can be observed [10].

Laser ablation is commonly used in both ex-
perimental physics as ion sources, and in indus-
try for the generation of thin films. In fact,
laser ablation has proven to be the most con-
sistent method of producing high quality thin
films, in particular, for stoichiometrically com-
plex material. This technique has been used
in the manufacturing of electronic and optical
films, super-conductors, ferroelectrics, piezoelec-
tric and photoelectric materials as well as tribo-
logical coatings such as diamond like thin films
[2]. In the last 4 years, more exotic systems
have entered this application arena. Pico- and
femto-second lasers have found their place in the
thin film synthesis and annealing. A further ex-
otic ablation process is matrix-assisted laser des-
orption ionization (MALDI), used to place large
biomolecules, such as proteins, in a free envi-
ronment for use in mass-spectroscopy and other
studies [9].

From the early to mid 1960’s, after the avail-
ability of the first ruby lasers, a substantial effort
toward the understanding of laser matter inter-
action from both the theoretical and the experi-
mental perspective was under way. Solid, liquid,
and gas target interactions were all investigated.
These investigations lead researchers to think of
possible applications; and by 1965, the laser was
successfully shown to be a useful tool in produc-
ing thin films on a substrate [13]. For the gener-
ation of thin films, laser driven ablation waned.

Laser ablation acquired new interest during
the late 1980’s for a series of work done on the
synthesis, in particular, of high quality stoichio-
metrically complex high temperature supercon-
ductor (YBayCu3zO7_) [4] through the use of
pulsed laser deposition. Pulse laser deposition

(PLD) produced a greater congruent ablation
than other deposition techniques. The shorter
pulse durations allowed for the thermalization of
a shallower volume of target material. This pre-
serves the stoichiometric properties during the
transfer of the material to the substrate where
the thin film is grown. With the accessibility of
higher frequency lasers (Nd: YAG 1.06 ym), the
target volume accessed directly by the laser en-
ergy was also reduced. This added to a greater
congruent ablation, as well as a reduced effect of
subsurface heating - the main cause of splashing:
the ejection of molten globules from the surface
of the target. By 1992, Saenger, K. [2] reported
over 180 thin films synthesized with PLD. These
materials included metals, inorganic and organic
compounds as well as polymer films; and in the
last few years, PLD has been used in the devel-
opment of nano-materials such as the synthesis
of carbon nanotubes.

Though there has been a large body of exper-
imental work dedicated to the characterization
of ablation plumes produced under various ex-
perimental parameters and targets, little atten-
tion had been paid toward a fundamental un-
derstanding of simple systems. This is primarily
the outcome of the ablation communities’ desire
to have information on specific systems for the
synthesis of particular materials. It is also rec-
ognized that the complexity of even the simplest
systems can elude theoretical characterization;
due in part, to the myriad of possible plume con-
stituents such as atoms, atomic and molecular
ions, clusters, and micron size particles, whose
abundances may change with a small change in
laser fluence.

Work that has attempted to describe ablation
physics, in general, has resided either in the de-
tailed modeling of laser target interactions [5] or
the modeling of the expanded plume through gas
dynamic simulations [16]or hybrid models [17].
Interestingly, detailed study of the plasma, in the
region between the target and a few millimeters
from the target has not been undertaken [7]; al-
though it is this region of the plasma that defines
the level populations and the ionization abun-
dances of the plasma far away and later in time
(in the absence of background gases).

Our work focuses on the modeling and analy-
sis of a laser ablation plume for the region from

tens of microns to a few millimeters away from
the target surface and early in time (20-100 nsec
after the end of the laser pulse). This work at-
tempts to provide detailed quantitative informa-
tion of laser ablation in this spatial and temporal
regime for a modest stoichometrically complex
target.

3 Framework Development

During the development of the multi-element
and multi-spatial zone spectroscopic model, tim-
ings recorded for several execution trials indi-
cated that our initial program written in a se-
quential form required an unacceptable amount
of time to execute. Due to this fact a paral-
lel implementation of the simulation code was
pursued. For various technical reasons the pro-
gram became too cumbersome to confidently
perform modifications to include new physical
effects even though good programming practices
were employed. This condition is unfortunately
not uncommon when dealing with complex sim-
ulation programs [3]. The solution would lead in
a new direction of software development for this
project.

This section discusses the specific difficulties
in dealing with complex simulation codes and
draws from work done by the system develop-
ers community to describe a new methodology
for constructing and implementing research sim-
ulation programs. As an example, this method is
applied in the new spectroscopic code developed
for this work. However, the underlining ideas
are general and can be applied to other research
codes as well.

3.1 Paradigm

For several years operating system developers
have dealt with similar problems as those faced
by computational physicists in regard to engi-
neering software. From their work two predom-
inant paradigms for operating system architec-
tures or kernel architectures have emerged. The
traditional monolithic kernels (typical of most
UNIX operating systems and similar in form to
most physics codes) are characterized as a collec-
tion of procedures typically compiled separately
and linked into a single large executable code.

They are often implemented in a small number of
layers. Protection, however, from the corruption
of data (encapsulation) by other layers or proce-
dures is non-existent. Interestingly, monolithic
operating systems have noted examples were the
complexity of the program grew to such an ex-
tent that the modifications needed to remove
bugs led to the introduction of new bugs and
to the eventual abandonment of the operating
system [15].

The other kernel architecture is exemplified
by the design of the microkernel. Here only a
very small set of functions are included in the
kernel. The remaining functionality needed by
the operating system is included (i.e. mem-
ory management, file system services, etc.) as
separate modules and are run as separate pro-
cesses as needed. Interprocess communication
between modules occurs through message pass-
ing. Though modules can communicate with
each other, often for many operations the micro-
kernel acts predominately as a centralized point
of connection and communication[6].

To clarify the meaning of a modular implemen-
tation we must describe the qualities of a mod-
ule [8]. A module is allowed to depend only on
the interfaces of other modules and not on their
implementations. This quality immediately pre-
cludes the use of global variables between mod-
ules. Modules are designed to encompass a large
element of functionality such as a memory sub-
system. A purely modular implementation al-
lows modules to interconnect freely with each
other. This is in contrast to a layered model
were connectivity is limited to elements “above”
an “below” a given element [6].

Though operating systems based on a micro-
kernel design are usually slower than the mono-
lithic ones due to increased overhead of mes-
sage passing they do possess many advantages
that may be enlisted in dealing with software
engineering problems found in simulation codes.
The microkernel structure forces system develop-
ers to employ functional components in a mod-
ularized manner since they are ran as separate
processes. This will be one of the most im-
portant qualities exploited for this new method.
Communication between processes only occurs
through well-defined and clean software inter-
faces - requiring all transferring variables to be

listed at the interface. This makes it easy to
maintain, develop and replace modules without
affecting the rest of the system. Moreover, mes-
sage passing facilitates the creation of software
where tasks can be distributed among several
computers to lower overall execution times. One
other positive feature of microkernel operating
systems is their tendency to use random access
memory (RAM) more efficiently than monolithic
ones, since they have the capability to create
or destroy processes (functionality) as the need
arises. This is in contrast to the monolithic im-
plementation where executable instructions and
data of various functions remain in memory -
even after they are needed - until execution is
completed [1].

3.2 Implementation Overview

Though the low level message passing primi-
tive used in the microkernel design is not appro-
priate for scientific applications, the technique
provides motivation for exploring the use of par-
allel message passing (PMP) libraries as a means
of implementing a microkernel like strategy. In
using a PMP libraries, application modules like
the microkernel case run as separate processes
and in turn separate memory address spaces -
each processes is controlled and protected by
the operating system. Pathological modules that
access memory outside of their specified spaces
cannot corrupt variables in other modules. This
quality thereby reduces the time needed for di-
agnosing problems. Furthermore, in using PMP
libraries, the execution of processes is no longer
limited to one machine. Inherently, two desirable
conditions have been obtained - true modularity
and parallel capability.

At this point the most drastic deviation from
the microkernel design is made - the elimina-
tion of the central program from which mod-
ules are typically mounted (the microkernel it-
self). The removal of this hub like structure al-
leviated two technical difficulties: First was the
need for adding variables and complexity to the
central program simply to transport data from
one module to another and secondly, in regard
to a parallel implementation, to prevent a net-
work bottleneck from occurring at the computer
node that contained the central program. This

modification facilitated a more peer style imple-
mentation where modules are connected to each
other like Tinker-Toys and the program topol-
ogy resembles the natural interconnections of the
subject being modeled.

With the removal of a centralized data trans-
ferring module went a convenient process con-
trol center - recall that the microkernel added
and removed processes as needed to improve ef-
ficiency. To retain this feature a new hierarchi-
cal program structure was needed - an ordered
multi-layer model was chosen where a process
communicates only directly with members of its
own layer or adjacent layers [11]. Processes are
spawned by the next higher-order parental layer.
The removal of a process is signaled typically by
its parent, or more rarely, by a module within its
own layer.

In this structure constraints on the intercon-
nectivity of a given module have led to an imple-
mentation that has characteristics of both mod-
ular and layered schemes. Though the imple-
mentation is far from ideal in regards to either
scheme an important benefit has been gained:
the employment of layers prevents overly com-
plex program topologies that may have otherwise
occurred in a purely modular design. As in any
layered model, signals and to a lesser extent data
must be passed through to target modules resid-
ing deeper within the structure. Though this
relaying of information from layer to layer may
seem contrary to the original removal of the mi-
crokernel, it is noted that within each layer many
modules are usually involved in the transporting
of information and with modules deployed across
many computer nodes the probability of a bot-
tleneck is severely reduced.

As mentioned earlier PMP libraries are used
to communicate between processes. Specifically,
the Parallel Virtual Machine (PVM) libraries
developed at Oak Ridge National Laboratories
were used. To implement the layered structure
of modules a new set of libraries referred to as
the Workbench libraries was developed on top
of the PVM libraries to assist in common tasks
used in spawning and communicating between
layer processes. The use of the Workbench li-
braries circumvents the main problem of using
PMP libraries directly - often, coding becomes
tedious and programs become too cumbersome,

in particular for a multi-layered program, when
PMP libraries function calls are used directly in
source code, thereby destroying the original in-
tention for this development.

The Workbench library acts as a set of utilities
built on the virtual machine presented by PVM
much like UNIX utilities are built on top of the
virtual machine presented by the UNIX kernel.
These utilities transport data between modules
without the requirement of specifying data type
and in regards to arrays reduces significantly the
number of function calls to initialize a transfer.
Furthermore these libraries maintain data struc-
tures for accessing processes, tasks and processes
locations (computer node). In addition, func-
tionality has been added to send information di-
rectly to layers for file I/O, thereby reducing the
amount of data that must be relayed through
higher order layers.

4 Framework Instantiation

The techniques of the development scheme
described in the previous section were applied
to the spectroscopic model discussed in Section
2 (and in more detail in [12]), in particular, to
the highest density case - occurring early in time
and close to the target surface. Included in this
model is the capability of calculating a gradi-
ent in the direction along the line-of-sight of the
spectrometer. The existence of this gradient was
discussed in Chapter 2 of [12], in regards to the
experimentally observed self-reversal feature in
the Li: 3d-2p lineshape. To accommodate a
gradient, the theoretical plasma is divided into
zones - each containing the same abundances of
each species but each described by a unique tem-
perature and atom number density.

For this plasma environment, optical depths
are large, thereby requiring a separate calcula-
tion for the radiation transported through the
different zones. The radiation from one zone
does not, in this plasma, affect the population
of another. From this assumption the atomic ki-
netics of each zone is left uncoupled and can be
calculated independently. From these qualities a
three layer model can effectively be constructed.

It should be re-emphasized here before go-
ing any further that the modular framework is

simply a framework. Except for the amount of
data transferred between processes and for the
the topology of the implementation, the modules
are independent from the physics codes embed-
ded into them. Or in other words the modular
framework constitutes a software network that
the physics codes communicate through.

The Framework that has been developed is ba-
sically a set of library routines that allow us to
write simple programs to handle all of the com-
munication between legacy code modules. These
routines allow us to separate the computation
from the communication (since the legacy code
does not know anything about communication).
This separation allows the code developers to
separate sequential physics routines and there-
fore parallelize on a coarse grained level.

This communication is illustrated in the fig-
ures of this paper via lines connecting trian-
gles. The triangles and diamonds represent the
communication interface that is provided by the
Workshop libraries. The circles inside of the
triangles represent the legacy simulation code
sometimes in Fortran and sometimes in C. Trian-
gles pointing to the right have the capability to
spawn processes and have typically spawned the
processes they communicate to the right with.

In our implementation, the lowest layer mod-
ules (Layer IV) contain a set of single element
kinetic models (SEKM) represented by the cir-
cles that compute the populations of each ele-
ment found in a particular zone of the plasma.
The next higher layer of modules, the parental
layer (Layer III) of the lowest layers, contains
the self-consistency routines (SC) that check the
multi-element kinetic calculation for completion
(see Figure 1).

Once a self-consistent solution is obtained, the
SC layer then signals the SEKM for emissiv-
ity and opacity data that is then relayed to the
next higher layer - the radiation transport layer
(Layer II). Here, data from each zone is accumu-
lated and used to generate the synthetic spectra
for one complete plasma. It is also here where ex-
perimental lineouts and the theoretically created
spectra are compared (see Figure 2). Layers II-
IV represent the synthetic spectral object (SSO).

The comparison of the experimental data to
synthetic spectra is done in an automated man-

Layer I1I Layer IV

Ag
O u
Q@ =

SC

Self-Consistent Single Element

Module Atomic Kinetic
Models
Figure 1: Single plasma zone multi-element

atomic kinetic object [Layers III and IV] are
shown.

ner by the use of a search engine. The search
engine typically generates a large number of
temperature and density profiles for which the
physics model must produce a quantitative com-
parison between theoretical and experimental
spectra. The temperature and density profile
generated by the search engine is stored in a
parallel queue (PQ). Initially, PQ spawns sev-
eral synthetic spectral objects that load atomic
and spectral data and then wait ready to gener-
ate synthetic spectra from the profiles dispensed
from the PQ. The number of SSOs generated de-
pends upon the computer architecture that the
simulation is run on but can be as large as al-
lowed by the number of CPUs, See Figure 3. The
search engine, in search for the best synthetic to
experimental spectral fit, generates thousands of
profiles. Once the search is complete, PQ sends
termination signals to each SSO. In each SSO a
signal is relayed to the deepest layer where ter-
mination first begins. Termination continues to
propagate up until all the SSOs are destroyed.

5 Conclusions and Future

Work

In this paper we have presented the moti-
vation for a change in software architecture for

Layer I1 Layer III Layer IV
Radiation . Single Element
1f- 8
Transport Se M(;(Elslles;ent Atomic Kinetic
Module Models

Figure 2: Synthetic spectral object involving five
plasma zones [Layers II, IIT and IV] are shown.

maintenance and increased performance of sim-
ulation codes. This need resulted in the devel-
opment of a new library, called Framework, that
allows for protection and encapsulation of exist-
ing legacy code as well as allowing parallelization
of that sequential code.

Framework is beneficial for simulations for a
variety of reasons [14]. First when the experi-
mentalists discover data that requires a modifica-
tion to our code we do not have to recompile ev-
erything. Because the modules are wrapped into
separate executables (and processes) we only
have to recompile and relink that module when
changing specific components of the model. Sec-
ond, the physics components can be tested and
modified individually before adding them to a
larger simulation. Third, it allows us to change
the topology quite easily and allows parallel pro-
cessing. Fourth it helps keep the legacy simula-
tion codes separate, thereby providing some pro-

tection from the use of code written by someone
else.

In the future we are looking at applying this
architecture to a variety of other physics codes
that our research group uses. This will allow
us to effectively re-use the original legacy code.
The separation into separate processes will allow
easier modification and maintenance of the code
and will allow us to utilize the parallel architec-
ture to increase the performance of the original
code.

Synthetic Spectral
Object

Parallel
Queue

Search
Engine

Layer Il

Layer Il

Layer IV

Figure 3: Diagram showing the communica-
tion of the parallel queue with three concurrent
plasma spectral models (synthetic spectral ob-
jects). Layers I-IV are shown. The plasma exe-
cutables remain in memory processing jobs until

the parallel queue (PQ) is empty.

References

[1] D. P. Bovet and M. Cesati. Understanding the
Linux Kernel. O’Reilly, 2001.

[2] D. B. Chrisey and G. K. Hubler. Pulsed Laser
Deposition of Thin Films. Wiley-Interscience,
1994.

[3] J. Cooling. Software Engineering for Real-Time
Systems. Addison-Wesley, 2003.

[4] D. Dijkkamp and et al. Appl. Phys. Lett.,
51:619-621, 1087.

[5] P. Lorazo, L. J. Lewis, and M. Meunier.
Simulation of picosecond pulsed laser ablation
of silicon: The molecular-dynamics thermal-
annealing model. Proc. SPIE, 4276:57-61, 2001.

[6] S. A.Maxwell. Linuxz Core Kernel Commentary.
Coriolis, 2001.

[7] J. C. Miller and R. F. Haglund, editors. Laser
Ablation and Desorption, pages 255-289. Aca-
demic Press, 1998.

[8] R. Pressman. Software Engineering: A Prac-
titioner’s Approach. McGraw-Hill, 6* edition,
2004.

[9] A. A. Puretzky, Geohegan D. B., G. B. Hurst,

and M. V. Buchanan. Imaging of vapor plumes

produced by matrix assisted laser desorption:

A plume sharpening effect. Phys. Rev. Lett.,

83:444-447, 1999.

L. J. Radziemski and D. A. Cremers, editors.

Laser-Induced Plasmas and Applications, pages

1-67. Marcel Dekker, 1989.

J.A. Rolia and K.C. Sevcik. The method of lay-

ers. IEEE Tran. on Soft. Engr., 21(8):689-700,

1995.

Manolo E. Sherrill. Spectroscopic Modeling

and Characterization of a Laser-ablated Li-Ag

Plasma Plume. PhD thesis, University of

Nevada, Reno, May 2003.

H. M. Smith and A. F. Turner. J. Appl. Opt.,

4:147-148, 1965.

I. Sommerville. Software Engineering. Addison-

Wesley, 7¢" edition, 2004.

A. S. Tanenbaum and A. S. Woodhull. Operat-

ing Systems Design and Implementation. Pren-

tice Hall, 1997.

R. F. Wood, K. R. Chen, J. N. Leboeuf, A. A.

Puretzky, and D. B. Geohegan. Dynamics of

plume propagation and splitting during pulsed-

laser ablation. Phys. Rev. Lett., 79(8):1571-

1574, 1997.

R. F. Wood, J. N. Leboeuf, K. R. Chen, Geo-

hegan D. B., and A. A. Puretzky. Dynamics of

plume propagation, splitting, and nanoparticle
formation during pulsed-laser ablation. Applied

Surface Science., 127-129:151-158, 1998.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

