

V-FIRE: Virtual Fire in Realistic Environments

Frederick C. Harris, Michael A. Penick, Grant M. Kelly,
Juan C. Quiroz, Sergiu M. Dascalu, Brian T. Westphal

Department of Computer Science and Engineering

University of Nevada, Reno
1664 N. Virginia St.

Reno, NV 89557, USA
{fredh, penick, gkelly, quiroz, dascalus, westphal}cse.unr.edu

Abstract V-FIRE is a 3D fire simulation and
visualization software tool that allows users to
harness and observe fire evolution and fire-related
processes in a controlled virtual environment. This
paper presents details of the tool’s requirements
specification, software architecture, medium and
low-level design, and prototype user interface. As
the tool is currently in its development stage, a re-
port on the project’s current status is also included.
In addition, a discussion of development challenges
and pointers to future work are provided.

Keywords virtual environment, fire simulation,
requirements specification, software design, proto-
type user interface.

1 Introduction

Fire is a phenomenon that humans have
studied for ages. Yet its dynamics and
properties are not fully understood [1]. Fire
modeling is a task that has not been achieved
to great precision. Most importantly, the only
way scientists have been able to study
wildfires is by collecting data from actual fire
disasters. Yet, this poses many problems.
Firstly, a wildfire is a dangerous phenomenon.
Due to the fact that fires create their own
weather systems, being anywhere near a fire is
unsafe. Furthermore, when a wildfire breaks
out, it causes a large amount of damage, both
to the environment and the community. Thus,
the idea of having a fire burning freely just for
observation purposes is preposterous.
Consequently, the demand for tools which can
aid in the studying of fires has increased due to
technological advances, especially in computer
graphics and modeling. The increasing number

of firefighter casualties and the staggering
costs of damages due to wildfires [2, 3] show
the need for a tool and remedy for this malady.

As such, computer modeling of fires is an
effective alternative for scientists to
experiment and study the patterns of wildfires.
Mathematical models of fires exist, but they do
not correctly reflect the true behavior of fire.
Fire is such a dynamic system, that a true
model representation of it is hard to create.
There are many factors that need to be taken
into consideration. Most models rely on
simplifications and assumptions in order to
make the system solvable [1, 4, 5].
Furthermore, the results of such models are
data, possibly graphs. The visualization of the
model is even more difficult. The behavior of
a wildfire can change drastically by a slight
variation of the atmospheric pressure or of the
speed or direction of the wind.

V-FIRE is a 3D fire simulation and visuali-
zation tool. V-FIRE is intended to allow users
to harness and observe a fire within a
controlled environment. The system has been
designed to model a wildfire as realistic as
possible with the use of marketable graphics,
an efficient physics model, and a
mathematically based spreading algorithm. In
addition, users will also be able to visualize the
interaction of fire with other objects such as
smoke, vegetation, and buildings. Moreover, as
an empirical tool, V-FIRE is also intended to
provide the user with the ability of multiple
view points for the main camera, such as aerial
and full immersion [6].

The long term goal of V-FIRE is to create real-
time, marketable-quality graphics for fire
visualization in a Cave Automatic Virtual
Environment (CAVE). A CAVE provides a
full-immersion experience for its users [7].
Thus, the integration of V-FIRE with a CAVE
would create a full 3D simulation in which
users would be able to physically interact with
a wildfire environment.

Wildfires are complex and dynamic phenom-
ena. As such, the fire simulation with computer
graphics poses a great challenge. A fire has a
chaotic nature. Consequently, the modeling of
fire with computer graphics must introduce a
random factor into the algorithms used. Also,
the transition from 2D graphics to 3D graphics
is a challenging endeavor that needs to be
researched further.

The remainder of this paper is structured as
follows: Section 2 describes the functional and
nonfunctional software requirements for the V-
FIRE system, Section 3 presents the use case
diagram and the use cases of V-FIRE, Section
4 describes the tool’s high-level architecture,
Section 5 provides details of its medium and
low-level design, Section 6 reports on V-
FIRE’s current status and points to future
work, and Section 7 contains several closing
remarks.

2 Requirements Specification

V-FIRE is currently in its implementation
stage. Its requirements specification and design
phases have been completed, including
creation of a low-fidelity user interface
prototype [8]. Throughout the tools’
development we have used the UML notation
[9] to create software models and followed
modeling techniques and guidelines from [10].
The functional and non-functional require-
ments for the V-FIRE system are provided in
the next subsections. The requirements define
the “reference points” for the remainder of the
system’s development.

2.1 Functional Requirements

Table I contains functional requirements with
priority levels indicated in square brackets.

Table I. V-FIRE Functional Requirements

R01 [1] V-FIRE shall display 3D fire in
the simulation window.

R02 [1] V-FIRE shall display 3D smoke in
the simulation window.

R03 [1] V-FIRE shall display 3D
vegetation in the simulation
window.

R04 [1] V-FIRE shall display 3D buildings
in the simulation window.

R05 [1] V-FIRE shall display interaction
between fire, smoke, vegetation,
and buildings.

R06 [1] V-FIRE shall allow the user to
start the simulation.

R07 [1] V-FIRE shall allow the user to
stop the simulation at any time.

R08 [1] V-FIRE shall allow the user to
change the vegetation density of
the terrain.

R09 [1] V-FIRE shall allow the user to
change the number of buildings on
the terrain.

R10 [1] V-FIRE shall allow the user to
change the point of view.

R11 [1] V-FIRE shall allow the user to
view instructions on using the
system.

R12 [2] V-FIRE shall support various
point of view presets, including
but not limited to: three-quarter
view, birds-eye, and ground-level.

R13 [2] V-FIRE shall support a flying
camera.

R14 [2] V-FIRE shall allow the user to
load terrain maps.

R15 [2] V-FIRE shall allow the user to
save terrain maps.

R16 [2] V-FIRE shall allow the user to
initiate a fire by clicking on the
map.

R17 [2] V-FIRE shall allow the user to
pause the simulation.

R18 [2] V-FIRE shall allow the user to
fast-forward the simulation.

R19 [2] V-FIRE shall allow the user to
rewind the simulation.

R20 [3] V-FIRE shall simulate a fire based
on a set of input data.

At the beginning of the project an initial fully
operational version was set to be completed by
the end of April 2005. Given this deadline,
level 1 priority requirements were defined as
“will be met”, level 2 priority requirements as
“will most likely be met”, and level 3 priority
requirements as “will most likely not be met”
(however, they will be considered for the next
release of the system, planned for Fall 2005).

2.2 Non-Functional Requirements

Table II contains the main non-functional
requirements of the V-FIRE software tool.

Table II. V-FIRE Functional Requirements

T01 V-FIRE shall render in real-time.
T02 V-FIRE shall be a cross-platform

application.
T03 V-FIRE shall be implemented with Qt,

OpenGL, and OpenSG.
T04 V-FIRE shall be multi-threaded

environment compatible.
T05 V-FIRE shall have marketable-quality

graphics.
T06 V-FIRE shall maintain a simple user

interface.
T07 V-FIRE shall use particle based fire and

smoke.
T08 V-FIRE shall use dynamic

“combustible” models.

3 Use Case Modeling

To gain further insight into V-FIRE’s
functionality the system’ behavior has been
“broken up” into use cases. The diagram
shown in Fig. 1 outlines the controls that allow
the user to interact with the system, as well as
the larger scale functionality of the backend.
As shown in subsection 3.2, a direct mapping
between the system’s use cases and its
functional requirements was also established.

3.1 Use Case Diagram

The use case diagram shown in Figure 1
outlines the system’s functionality and the
roles actors play in the V-FIRE system.

Figure 1 V-FIRE Use Case Diagram

In order to further clarify the functionality,
detailed descriptions of each use case are
presented next.

UC01 StartSimulation The user selects the
start location of the fire. The user then pushes
the start button to run the simulation at the
specified start location.

UC02 StopSimulation The user stops a running
simulation of the fire by pushing the stop
button. The simulation is paused and can be
restarted from the current time frame.

UC03 FastFowardSimulation The user fast
forwards the simulation of the fire by pushing
the fast forward button. The simulation can be
returned to regular speed by pushing the play
button. The user can also stop the simulation
while fast forwarding.

UC04 RewindSimulation The user rewinds the
simulation of the fire by pushing the rewind
button. The simulation can be returned regular
speed by pushing the play button. The user can
also stop the simulation while rewinding.

UC05 ChangePointOfView The user can
specify the point of view of the camera by
selecting one of the presets from the “View”
menu. The user has the option for a free flying
camera controlled by the keyboard and mouse.

UC06 OpenMap The user can load a
preexisting map by selecting the “Open Map”
option from the “File” menu. The user selects
the map to load by selecting from a file
selection dialog.

UC07 SaveMap The user can save a loaded
map by selecting the “SaveMap” option from
the “File” menu. The user can also select to
rename the map by selecting the “Save As ...”
option from the “File” menu.

UC08 EditMap The user can edit the currently
loaded map by selecting the “Edit Map” option
from the “Edit” menu. The editing changes are
saved by pushing the “OK” button.

UC09 ViewHelp The user can view
instructions on how to use the system. The
instructions can be accessed by selecting the
“Tutorial” option from the “Help” menu.

UC10 DisplayMap A map is loaded by default
when the user runs V-FIRE. A default number
of trees and buildings are included on the
default map.

UC11 UpdateSimulation V-FIRE displays
to the user the interaction of fire, smoke,
vegetation, and buildings. The texture of
the buildings and vegetation are updated
according to damage done by fire. Smoke
plumes are displayed proportionately to the
fire size.

3.2 Requirements Traceability Matrix

A partial (due to space limitations) require-
ments traceability matrix is shown in Figure 2,
depicting the mapping between the use cases

and the functional requirements of the V-FIRE
system. The complete requirements traceability
matrix can be found at [11].

 Use Case

 UC01 UC02 UC03 UC04 UC05 UC06 UC07 UC08

R06 X

R07 X

R08 X

R09 X

R10 X

R11

R12 X

R13 X

R14 X

R15 X

R16 X

R
e
q
u
i
r
e
m
e
n
t

R17 X

Figure 2 Requirements Traceability Matrix for

V-FIRE (partial)

4 Architectural Design

The system architecture is composed of several
subsystems, as shown in Figure 3. Descriptions
of subsystems are as follows:

GUI The GUI subsystem contains the classes
that interface with Qt, OpenSG, and control
user interaction with the system. This sub-
system also connects the viewable front-end
and the simulation back-end.

Simulation The Simulation subsystem contains
the backend that controls the simulation.
Through a generic interface, a programmer can
control the simulation with little knowledge of
the other subsystems’ implementations. This
subsystem is also responsible for the
placement and overall density of models on the
terrain.

Terrain The Terrain subsystem contains
classes that describe the topographic features
of the visible terrain and provide methods to
load a terrain map from a file.

Figure 3 V-FIRE System Architecture

Model The Model subsystem contains classes
that describe the visible state of 3D models
used in the simulation. Such models include
vegetation and inhabitable structures. This
subsystem is responsible for the loading of
models from files and maintaining a model’s
visible state throughout its life of combustion.

Fire and Smoke The Fire and Smoke
subsystem contains classes that describe the
visible fire and smoke used in the simulation.
The state of this subsystem is controlled by
logic in the simulation subsystem.

Material The Material subsystem contains
classes that describe the properties and states
of burnable materials in the simulation.

5 Detailed Design

The structure of V-FIRE was designed using
an object-oriented approach. The organization
of V-FIRE into program units and a sample
activity chart are given, respectively, in
subsections 5.1 and 5.2.

5.1 Class Diagram

A class diagram of V-FIRE, showing the
modularization of the system into object
classes is presented in Figure 5. The diagram
also includes details of operations, attributes,
relationships, multiplicity constraints, and
visibility for each class. Complete class and
method descriptions can be found at [11].

5.2 System Activity Chart

In order to thoroughly cover the design of V-
FIRE, various diagrams were created as part of
its software model, including activity charts,
state charts, and flow charts. A sample activity
chart of V-FIRE is presented in Figure 4.

Figure 4 Activity Chart of V-FIRE (shows
operations of the system before a fire

simulation is started)

6 Current Status and Future Work

The specification, design, and initial
implementation phases of the V-FIRE project
have been completed. We have laid the
groundwork for the visual components of the
project, which are functional in the initial
prototype. From the implementation work
done so far, it became evident to us that the
framework created is solid for driving the work
ahead.

Figure 5. V-FIRE Class Diagram

There are a number of areas of work, however,
that are outside the scope of the first phase of
this project. V-FIRE is designed to support
models and visualizations of fire. The models
currently being used, such as those described
in [2, 4, 5, 12] do not take all the complexities
of fire-environment interaction into account.
More advanced models will be created and
implemented for future releases of V-FIRE.
As processing capabilities increase, more
detailed models will be able to run in real-time.
Parallel processing techniques can also be used
to increase the amount of complexity that can
be handled.

As more advanced graphics hardware and
rendering techniques and tools become

available, they will be incorporated into the
system. Tools such as programmable pixel
shaders [13], which require the latest graphics
hardware, can be used to create more realistic
lighting and shadow effects generated by fire
and smoke. New graphics engines, such as the
Unreal 3 Engine [14], should also be consid-
ered as possible platforms for future work.

Lastly, as V-FIRE is used in research
environments and integrated with other tools, it
is likely that requests for different types of
system interactions will be made. A
comprehensive physics engine could be added
to aid in creating realism within the
environment. This would be especially
important in applications such as firefighter or
evacuation training software.

7 Conclusions

V-FIRE is an application designed to help
researchers visualize models of fire in realistic
environments. The system provides a safe
context for learning how wildfires, accidental
fires, and arson affect objects in the real world.
Although this system will eventually be used
for fully immersive 3D modeling and event re-
creation, its current implementation with single
monitor support provides the structure on top
of which the software can continue to evolve.
To offer some insight into the “look and feel”
of the environment, Figure 6 shows a
screenshot of the V-FIRE application’s main
window and Figure 7 presents a configuration
editor for environment parameters.

Figure 6 V-FIRE Main Interface

The specification and design processes under-
taken by the project team have helped to create
a flexible architecture that can be expanded
without retooling the core elements of the
system. Specifically, each subsystem is
encapsulated to support more advanced fire
modeling and visualizations in future work.
Having a flexible and well-encapsulated
architecture for this type of research is essen-
tial, as technical advances that can be applied
to fire modeling and visualization are frequent.

References

[1] Drysdale, D., An Introduction to Fire
Dynamics, Wiley & Sons, 2001.

[2] McCormick, P.S. & J.P. Anrens. Visuali-
zation of Wildfire Simulations. IEEE
Computer Graphics and Applications, vol.
18, no. 2, 1998, pp. 17-19.

Figure 7 Environment editing and options

[3] Takeuchi, S. & S. Yamada. Monitoring of

Forest Fire Damage by Using JERS-1 InSar,
Procs. 2002 IEEE Geosience and Remote
Sensing Symposium, vol. 6, pp. 3290-3292.

[4] Nguyen, D.Q., Fedwik, R., & H.W. Jansen.
Physically Based Modeling and Animation
of Fire. Proceedings of the 29th ACM Intl.
Conference on Computer Graphics and
Interactive Techniques, 2002, pp. 721-728.

[5] Wei, X., Li, W., Mueller, K. & A. Kaufman.
Simulating Fire with Texture Splats.
Proceedings of the 2002 ACM Conference
on Visualization, pp. 227-235.

[6] Randima, F. GPU Gems: Programming
Techniques, Tips, and Trips for Real-Time
Graphics. Addison-Wesley, 2004.

[7] Creagh, H., CAVE Automatic Virtual
Environments, Proc. of the 2003 IEEE Conf.
on Electrical Insulation and El. Manufact-
uring & Coil W. Technology, pp. 499-504.

[8] Preece, J., Rogers, Y., & H. Sharp.
Interaction Design: Beyond Human-
Computer Interaction, Wiley & Sons, 2002.

[9] OMG’s UML Resource Page, accessed
March 19, 2005 at http://www.omg.org/uml

[10] Arlow, J. & I. Neustadt. UML and the
Unified Process: Practical Object-Oriented
Analysis & Design, Addison-Wesley, 2002.

[11] V-FIRE Project, accessed March 19, 2005 at
http://www.cse.unr.edu/~gkelly/v-fire

[12] Ahrens, J., McCormick, P., Bossert, J.,
Reisner, J., & J. Winterkamp. Case Study:
Wildfire Visualization. Proceedings of IEEE
Visualization’97, pp. 451-454.

[13] nVIDIA website, Pixel Shaders, accessed
March 18, 2005 at http://www.nvidia.com
/object/ feature_pixelshader.html

[14] Epic Games, acc. March, 18, 2005 at www.
epicgames.com/UnrealEngineNews.html

