
SAI-BOTS: Scripted Artificial Intelligent Basic Online Tank Simulator

William E. Brandstetter, Michael P. Dye, Jesse D. Phillips, Jason C. Porterfield,
Frederick C. Harris Jr., Brian T. Westphal

Department of Computer Science and Engineering

University of Nevada, Reno
1664 N. Virginia St.

Reno, NV 89557, USA
{brandste, mdye, jdp, fredh, westphal}@cse.unr.edu

Abstract This paper presents details of the
specification, design and functionality of the
Scripted Artificial Intelligent Basic Online
Tank Simulator (SAI-BOTS), an interactive
virtual environment that allows users to
script tanks to fight each other. SAI-BOTS
provides a 3D environment and allows the
user to play with other people and learn
basic programming and AI Scripting. The
users can navigate through the 3D world
using a first-person view, third-person view,
or its “Blind Mode.” As this project is in its
development phase, the current status and
future work are included.

Keywords: 3D modeling, Lua, software
specification, real-time interaction, artificial
intelligence, scripting, graphics.

1 Introduction

The Scripted Artificially Intelligent Basic

Online Tank Simulator (SAIBOTS) is a
networked tank game that emphasizes game-
play through both predefined and custom
scripts. The program is intended to teach
students the basics of artificial intelligence
through an interactive gaming environment.
This environment can include computer
controlled tanks based on either predefined
or custom scripts as well as other players
connected through a network. The player is
allowed to manually control a tank in a
series of games including a free-for-all
death-match style game, and a squad-based
elimination game.

The focus of the program is its ability to
use and generate custom scripts to dictate
the behavior of computer controlled tanks.
Players are able to create and customize
scripts that control the behavior of tanks
through a tank API. This API will allow the
player to dictate the behavior of the tank.
This includes but is not limited to, the tanks
speed, offensive and defensive postures,
aggressiveness and general combat tactics
such as the use of higher ground or cover.
The user can generate custom scripts
describing actions to be taken during combat
and when in need of health.

The free-for-all mode is setup as a

tutorial that allows the player to create,
change, and apply scripts to all the tanks and
monitor the results both as an impartial
observer and by facing tanks in combat. In
squad-based combat the player will have the
ability to command the tanks under his
control by setting scripts for each tank. This
includes defending as well as attacking a
target.

An in-game editor allows one to

customize and create scripts on the fly and
apply scripts to tanks. This allows players
to immediately see the results of newly
created scripts and change them accordingly.
In order to flatten the learning curve for
scripting, users will be able to see how their
tanks work against a series of sensors. In
one mode, a user will be able to see a 3D
world with their tank in it. They can

visually see what is happening in real-time
and play as if it were a normal game.

In another mode, the user can completely

eliminate the 3D world and only display the
tanks sensors (position, velocity, collision,
health, radar, etc). This helps one get a feel
for how a script controls a tank only
“seeing” sensors. Once a user feels
comfortable controlling the tank only by its
sensors, one will be able to start writing
scripts with Lua to control tanks.

The remainder of this paper is structured

as follows: Section 2 describes the
functional and non-functional software
requirements for SAI-BOTS, Section 3
presents the use case diagram and a sample
of use cases of SAI-BOTS, Section 4
describes SAI-BOTS’ high-level
architecture, Section 6 reports on SAI-
BOTS’ current status and points to future
work, and Section 7 contains closing
remarks.

2 Requirements Specification

Using the notations presented in [3], the

requirements for SAI-BOTS, structured as
functional and non-functional requirements,
are specified in the next two subsections.

2.1 Functional Requirements

The main functional requirements of SAI-

BOTS are the following:
1. SAI-BOTS shall provide 3D graphics
with being able to look completely around.
2. SAI-BOTS shall provide a real-time
scripting environment allowing players to
script while playing the game.
3. SAI-BOTS shall provide different game
modes including a tutorial and free-for-all
deathmatch.

4. SAI-BOTS shall provide the ability for
the user to play over a network with other
people.
5. SAI-BOTS shall provide a GUI.
6. SAI-BOTS shall provide real-time terrain
deformations and textures updated for
damage

2.2 Non-Functional Requirements

The most important non-functional

requirements for SAI-BOTS are the
following:
1. SAI-BOTS shall run on Windows
machines.
2. SAI-BOTS shall be written in C++
3. SAI-BOTS scripts shall be written in Lua.
4. SAI-BOTS shall limit scripting to Tank
API calls.
5. SAI-BOTS shall limit the number of tanks
to eight per team.

3 Use Case Modeling

As part of the formal modeling process,

the functionality of SAI-BOTS has been
defined using use cases and scenarios. The
entire functionality of SAI-BOTS is
captured with a high level of abstraction in
the use case diagram shown in Figure 1.

Several parts of the use case diagram that

describe SAI-BOTS functionality are
presented in separate use case diagrams
shown in Figures 2 and 3. Examples of
specific ways of using the software are
provided as use case scenarios in Figures 4,
5, and 6.

3.1 Use Case Diagram

The use case diagram displayed in Figure

1 shows the interaction between a player and
SAI-BOTS as well as a server admin and
SAI-BOTS.

 Figure 1. Use Case Diagram for SAI-BOTS

Because of space limitations and the large

number of use cases in our diagram, only
two detailed use cases and three examples of
use case scenarios are presented in this
paper. Figure 2 shows the “Single Player
Game” use case, where the player chooses to
learn how to play the game and script his/her
tanks. Figure 3 depicts the “Multiplayer
Game” use case, in which the player chooses
to connect to a game on another server or
host a server through the client.

Use Case: Single Player Game
Use Case ID: UC04
Actor: Player
Preconditions:
1. Client game chosen (UC03)
Flow of Events:
1. Select game type (UC05)
2. Choose or generate tank names (UC06)
3. Play game (UC07)

Figure 2. “Single Player Game” Use Case

For the “Single Player game” use case

shown in Figure 2, multiple scenarios are
possible. For illustration purposes, Figure 4
presents the primary scenario and Figure 5

shows one of the many possible secondary
scenarios of this use case.

Use Case: Multiplayer Game
Use Case ID: UC08
Actor: Player
Preconditions:
1. Client Game chosen (UC03)
Flow of Events:
1. Set up game for multiplayer action
 1.1 Choose to host server (UC09)
 1.2 Choose to join existing server (UC10)

Figure 3. “Multiplayer Game” Use Case

For the “Multiplayer Game” use case

shown in Figure 3. Figure 6 shows one of
the many possible secondary scenarios of
this use case.

3.2 Requirements Traceability Matrix

Using the format presented in [3], the

Requirements Traceability Matrix shown in
Figure 7 depicts the mapping between the use
cases and the functional requirements of SAI-
BOTS.

Use Case: Single Player Game
Primary Scenario: Tutorial
Use Case ID: UC04
Actor: Player
Preconditions:
1. Client game chosen (UC03)
Primary Scenario:
1. The use case begins when the Player
selects “Single Player Game”
2. Choose Tutorial
3. Choose easy level of difficulty
4. Set number of tanks in command of to 1
5. Set number of tanks against to 1

Figure 4. Primary Scenario of the “Single

Player Game” Use Case

Use Case: Single Player Game
Secondary Scenario: “Deathmatch”
Use Case ID: UC04
Actor: Player
Preconditions:
1. Client game chosen (UC03)
Secondary Scenario:
1. The use case begins when the Player
selects “Single Player Game”
2. Choose “Deathmatch”
3. Set Round Limit to 5 minutes
4. Set Kill Limit to 10 kills
5. Set Number of Rounds to 3 rounds
6. Set Game Options

Figure 5. Secondary Scenario of the

“Single Player Game” Use Case

4 Architectural Design

The system architecture is made up of
several subsystems which communicate
through a central subsystem, as shown in
Figure 8. Each subsystem is composed of a
library, serving as an interface, and a DLL,
serving as an implementation of the
interface. In this way, updating a particular
subsystem's DLL will not interfere with the

rest of the system. The five subsystems are
the scene subsystem, input subsystem,
network subsystem, physics subsystem, and
audio subsystem.

Figure 6. Secondary Scenario of the

“Multiplayer Game” Use Case

 Use Cases

U
C

01

U
C

02

U
C

03

U
C

04

U
C

05

U
C

06

U
C

07

 F01 X X X
 F02 X
 F03 X X X
 F04 X
 F05 X X
 F06 X
 F07 X

Figure 7. Requirements Traceability Matrix

(Partial)

5 Detailed Design

The structure of SAI-BOTS was designed
using an object-oriented approach. The
organizations of SAI-BOTS into a class
diagram and system activity chart are given
in subsections 5.1 and 5.2, respectively.

Use Case: Multiplayer Game
Secondary Scenario: Host Server
Use Case ID: UC08
Actor: Player
Preconditions:
1. Client game chosen (UC03)
Secondary Scenario:
1. The use case begins when the Player
selects “Multiplayer Game”
2. Host Server
3. Choose “Deathmatch”
4. Set Round Limit to 5 minutes
5. Set Kill Limit to 10 kills
6. Set Number of Rounds to 3 rounds
7. Set Server Options

Figure 8. SAI-BOTS system architecture

5.1 Class Diagram

A class diagram of SAI-BOTS, showing
the modularization of the system into object
classes is presented in Figure 9. The diagram
also includes details of relationships,
multiplicity constraints, and visibility for
each class. Complete class and method
descriptions can be found at [8].

5.2 System Activity Chart

In order to thoroughly cover the design of
SAI-BOTS, various diagrams were created
as part of its software model, including
system activity charts, state charts, and flow
charts. A system activity chart of SAI-BOTS
is presented in Figure 10.

6 Current Status and Future Work

The specification and design phases for
SAI-BOTS have already been completed.
The main part of the game engine has
already been completed and allows us to
render 3DS models on a terrain. There are
four other components currently under
development: the AI interface, audio
subsystem, network subsystem, and physics
and particle engine.

The Audio subsystem uses OpenAL and
gives realistic sound to the game. The
networking subsystem allows for multiple
players to play each other over a local area
network. Finally, the physics and particle

Figure 9. SAI-BOTS class diagram

 Figure 10. SAI-BOTS system activity chart

engine allows for the tanks to drive across
the terrain, collide with trees, fire weapons,
be hit, and destroy the terrain. Along with
the work that is already completed and
currently under development, there are many
things we want to add to SAI-BOTS in the
future.

Improvements to SAI-BOTS include:
more game modes such as Capture-the-Flag,
King of the Hill, and a Squad-based mode.
In Addition, different vehicles and power-
ups such as planes, shields, and new
weapons are planned as future work.

7 Conclusion

SAI-BOTS will be a useful artificial
intelligence learning tool. The application is
presented in the form of an interactive game,
letting the user learn artificial intelligence
concepts and techniques in an entertaining
way. Combining this “easy and fun”
philosophy with an expandable and diverse
set of game-play modes allows the user to
learn and program to a wide variety of
situations. By combining a comprehensive
and complete vehicle API with a powerful
scripting language Lua, able to interface
with the applications native to C++, the user
will be able to control virtually all aspects of
vehicle operation. These operations include
but are not limited to: vehicle movement and
rotation as well as individual object
movement and rotation (where allowed by
the specific vehicle). By allowing real-time

script modifications users can instantly see
the results of a script. SAI-BOTS is a
powerful and adaptive learning tool for
learning artificial intelligence in an
entertaining and interactive way.

References

[1] Zerbst and Düvel, 3D Game Engine

Programming, Muska & Lipman/Premier,
2004.

[2] Ierusalimschy, Programming In Lua, R.
Ierusalimschy, 2003

[3] Arlow and Neustadt, UML and the Unified
Process: Practicle Object-Oriented Analysis
& Design, Addison-Wesley, 2002.

[4] Enginuity, accessed on January 31st,
2005 at http://www.gamedev.net

[5] An Introduction to Lua, accessed
February 15th, 2005 at

 http://www.gamedev.net
[6] Real-Time Dynamic Level of Detail

Terrain Rendering with ROAM,
accessed January 31st, 2005 at
http://www.gamasutra.com/features/200
00403/turner_01.htm

[7] ROAM Implementation Optimizations,
accessed January 31st, 2005 at

 http://www.flipcode.com
[8] SAI-BOT Project, accessed February

28th, 2005 at http://www.cse.unr.edu/~jdp
[9] Karel J. Robot, accessed March 31st, 2005 at

http://csis.pace.edu/~bergin/KarelJava2ed/K
arel++JavaEdition.html

http://www.gamedev.net/
http://www.gamedev.net/
http://www.gamasutra.com/features/20000403/turner_01.htm
http://www.gamasutra.com/features/20000403/turner_01.htm
http://www.flipcode.com/
http://www.cse.unr.edu/%7Ejdp
http://csis.pace.edu/%7Ebergin/KarelJava2ed/Karel++JavaEdition.html
http://csis.pace.edu/%7Ebergin/KarelJava2ed/Karel++JavaEdition.html

	Abstract This paper presents details of the specification, design and functionality of the Scripted Artificial Intelligent Basic Online Tank Simulator (SAI-BOTS), an interactive virtual environment that allows users to script tanks to fight each other. SAI-BOTS provides a 3D environment and allows the user to play with other people and learn basic programming and AI Scripting. The users can navigate through the 3D world using a first-person view, third-person view, or its “Blind Mode.” As this project is in its development phase, the current status and future work are included.
	1 Introduction

