
DiRT – Dust in Real-time:
The Specification Process

Marcos Bagby, Ryan Romero, Brett Sulprizio, Hiroko Uda

Joseph Jaquish, and Frederick C. Harris, Jr.

Department of Computer Science and Engineering
University of Nevada, Reno

Reno, NV, 89557, USA
{mbagby, rromero, sbrett, uda, jaquish, fredh}@cse.unr.edu

Abstract Dust in Real-time (DiRT) is a 3D dust
visualization program and interactive computer
benchmarking tool designed to model real world dust
dynamics in a virtual environment, in real-time. The
interactive benchmarking tool allows users to track
and gauge the performance of their system’s ability
to render the dust by issuing real-time system and
environment related reports. The system reports
update, in accordance with the user’s quality and
realism settings. Similar to a video game, users will
be able to “play” during the simulation by way of a
simple vehicle simulator. This paper presents details
of DiRT’s UML requirements specification, software
architecture specifics, high and low-level design
details, user interface principles and snapshots.
Keywords: Dust, real-time computation,
virtual environment, benchmarking,
requirements specification, software
architecture.

1. Introduction

Dust can be defined as small, dry
particles of matter that are hardly noticeable
unless present in large quantities. Dust-
storms and dust-devils are small examples of
atmospheric agitation of the terrain in which
the soil is disturbed and drawn up into a dust
cloud. Dust during this behavior can be quite
harmful, even incapacitating to people or
equipment. Understanding the behavior and
effects of dust has significant military
applications, thus the modeling and
visualization of dust can be beneficial. The
modeling of dust for use in simulations may
help modern combat experts plan for or pre-

empt the affects of dust caused by vehicles
or the atmosphere. A better understanding of
the combat environment will lead to better
planning and more effective strategy.

 Typically the visualization of dust (or
some environmental phenomenon) involves
the use of large particle engines and
complex physics equations which control
those particles. Most computers cannot
render dust intensive environments using
this method in real-time. An environment
rendered in real-time implies that a user can
navigate through the environment and each
image is rendered very quickly. This gives
the user the flexibility to travel wherever
need be and it helps make the simulation as
realistic as possible. But to get an accurate
picture of a dust cloud (i.e.: accurate
according to real world physics), the
computation is very time consuming. A user
would not be able to navigate through an
environment without long pauses between
the rendering of each image. The common
method used to visualize realistic physics is
to render each image and store it, then once
all of the images have been generated, create
a video from these. Though realistic, the
user has no ability to navigate through the
environment. Thus, our objective is to find
a method which will realistically render dust
behavior without any resource intensive
particle engine.

DiRT is a 3D dust visualization program
which includes interactive benchmarking
capabilities. The system is designed to
model dust as realistically as possible using
as few system resources as possible. The
program will utilize real-time lighting and
shadows to show the affects of light through
a dust cloud as well as dust modeling by
way of diffuse reflection, volumetric fog,
and an optimized particle engine. Changes
in dust activity and density will be directly
related to the soil type and environmental
conditions. Multiple camera views will be
available to witness the dust from a user
chosen position.

The authors intend to port the dust
visualization algorithm to a CAVE (Cave
Assisted Virtual Environment). A CAVE is
a 3D virtual environment. When a person
looks at the CAVE projection screens with
3D glasses on, everything appears to be
three dimensional. When surrounded by
enough screens, one gets the perception of
being immersed in that environment. Thus a
CAVE is referred to as an immersive virtual
environment. Running our algorithm in a
CAVE will allow users to experience the
behavior of dust more realistically than a
single two dimensional screen.

Natural dust storms and dust activity
caused by man-made machines are
extremely intricate inertial systems in which
the most minute detail can be responsible for
the greatest change in behavior. Friction and
gravity are two significant forces at work,
but other aspects such as particle size,
weight, material composition, not to
mention barometric pressure, humidity and
precipitation are all factors that affect dust
and its behaviors. These aspects must be
taken into consideration but with varying
degrees of priority per the computer’s
resource usage.

The remainder of this paper is structured
as follows: Section 2 describes the
functional and nonfunctional software
requirements for the DiRT system. Section 3
presents the use case diagram of DiRT.
Section 4 describes the software’s high-level
architecture. Section 5 provides details of its
medium and low-level design. Section 6
reports on DiRT’s current status and points
to future work. Finally, Section 7 contains
the authors’ closing remarks.

2. Requirements Specification

Using the notations presented in [2], the
requirements for DiRT, structured as
functional and non-functional requirements,
are specified in the next two subsections.

2.1 Functional Requirements

Table I contains functional requirements
with priority levels 1-3 indicated in square
brackets (1 being the most important).

2.2 Non-Functional Requirements

Table II contains a list of the non-
functional requirements that the dust
modeling program shall fulfill or hope to
fulfill.

3. Use Case Modeling

To better understand DiRT’s
functionality, the system has been divided
into use cases. Section 3.1 presents the use
case diagram, shown in Figure 1, which
shows interaction between the user and
DiRT. Section 3.2 gives the detailed use
cases, and Section 3.2 details the
Requirements Traceability Matrix shown in
Figure 2.

R01 [1] DiRT shall use volumetric fog
 extensions.

R02 [1] DiRT shall simulate dust dissipation.

R03 [1] DiRT simulates wind patterns.

R04 [3] DiRT shall check to see if current
 computer hardware can run the
 simulation.
R05 [2] DiRT shall display the current

 frame rate.
R06 [1] DiRT shall allow the user to

 start the simulation.
R07 [1] DiRT shall allow the user to

 stop the simulation at any time.
R08 [1] DiRT shall display the methods of dust

 simulation.
R09 [3] DiRT shall allow the user to change the

 terrain.
R10 [1] DiRT shall allow the user to

 change the point of view.
R11 [3] DiRT shall enable the user to customize

 the lighting.
R12 [1] DiRT shall support a free form camera.

R13 [1] DiRT shall support a first person pilot
 camera view.
R14 [3] DiRT shall allow the user to

 load terrain maps.
R15 [2] DiRT enables the user to change the

 screen resolution.
R16 [2] DiRT shall enable the user to switch
 from pilot view to free camera
 perspective.
R17 [1] DiRT shall use the keyboard to

 control vehicle movement.
R18 [1] DiRT shall enable the pilot to

 fly/drive the vehicle.
R19 [2] DiRT shall enable the user to change
 the model used for the vehicle.
R20 [3] DiRT shall enable the user to toggle
 the terrain to on, off, wire-frame,
 smooth, and smooth + wire-frame.
R21 [3] DiRT shall enable the user to change
 the speed of the simulation (slow
 down or speed up).

Table I. DiRT Functional Requirements

T01 DiRT will be able to run all dust
 methods in real-time.
T02 DiRT will ask a user to choose a
 displaying method from the three:
 1. Volumetric fog dust
 2. Diffuse reflection dust.
 3. Particle system.
T03 DiRT shall be implemented with
 OpenGL and Qt.

T04 DiRT shall be a cross-platform
 application.
T05 DiRT shall be written in C++.

Table II. DiRT Non-Functional
Requirements

3.1 Use Case Diagram

The use case diagram displayed in
Figure 1 shows the interaction between a
user and the DiRT program. The program
will be useable from the instant all the
textures and maps finish loading into
memory. The user will be able to drive their
vehicle in the free drive/flight mode. During
this mode the player may customize the dust
methods, video resolution, simulation speed,
model type, and terrain.

3.2 Detailed Use Cases

To help further understand DiRT’s

functionality, detailed use cases are
presented below.

UC01: EnableFogDust (Enable Volumetric
Fog Dust) – Enables the user to simulate
dust using the volumetric fog method.

UC02: EnableRefractionDust –Enables the
user to simulate the dust using the light
refraction method.

Figure 1. Use Case Diagram for DiRT

UC03: EnableParticleDust –Enables the
user to simulate the dust using the particle
dust method.

UC04: ChangeDraft –Allows the user to
increase or decrease the amount of force of
air currents.

UC05: DrivebyMouse –Allows the user to
control the movement of the model by use of
the mouse.

UC06: DrivebyKeyboard –Allows the user
to control the movement of the model by use
of the keyboard.

UC07: ControlCamera –Allows the user to
see the simulation from different points of
view by enabling camera movement.

EnableFogDust

EnableParticleDust

ToggleTerrain

DriveByKeyboard

DriveByMouse

ControlCamera

ChangePerspective

ChangeHeightMap

ChangeTerrainMap

EnableRefractionDust
UC08: ChangeCameraPerspective –Allows
the user to change the camera perspective
from pilot view to free camera view, and
back again.

UC09: ToggleTerrain –Allows the user to
choose between having and not having a
terrain to run the simulation in.

3.3 Requirements Traceability Matrix

A partial requirements traceability
matrix is shown in Figure 2 which depicts
the mapping between the use cases and the
functional requirements of the DiRT system.
The complete requirements traceability
matrix can be found in [11].

4. Architectural Design

The system architecture is divided into
different subsystems as shown in Figure 3.
Subsystem descriptions are below.

 Use Case
 01 02 03 04 05 06 07 08

R06 X
R07 X
R08 X
R09 X
R10 X
R11
R12 X
R13 X
R14 X
R15 X
R16 X
R17 X

Figure 2. Requirements Traceability Matrix

for DiRT (partial)

GUI The Graphical User Interface (GUI)
subsystem contains all the Qt classes
including Qt’s OpenGL classes. The classes
include GUI buttons, mouse and keyboard
control schemes. It is also responsible for
displaying system runtime information such
as frame rate and memory usage.

Simulation The Simulation subsystem
contains the main “game” engine that
controls the free flight/drive aspect of the
simulation, along with the simulation
lighting and dust physics, and has complete
control of the scene cameras. It is also the
back end through which the GUI interfaces
with the other subsystems.

Terrain The Terrain subsystem contains
classes that are responsible for loading and
drawing the particularly large terrain height
maps as well as texturing.

Model The Model subsystem contains
classes for loading and drawing the different
vehicle models during simulation. It also
contains the classes which control the model
movement in response to user input
commands.

Dust Methods The Dust Methods
subsystem controls the 3 dust rendering
engines. The fog engine morphs the fog
volumes. The reflection engine sets the
correct lighting over a similar volume. The
particle engine controls a particle system
which acts over the areas affected by the
model.

5. Detailed Design

The structure of DiRT was done using
an object oriented approach. As such, charts
categorizing the particular program units as
well as activity are given in subsections 5.1
and 5.2 respectively.

Figure 3. DiRT System Architecture

5.1 Class Diagram

A class diagram of DiRT showing the
modularization of the program into object
classes is presented in Figure 5. The diagram
also includes details of operations,
attributes, relationships, multiplicity
constraints, and visibility for each class.
Complete class and method descriptions can
be found in [7]

5.2 System Activity Chart

In order to completely cover the design
of DiRT, various diagrams were created as
part of its software model, including activity
charts. A sample activity chart of DiRT is
presented in Figure 4.

6. Current Status and Future Work

The specification and design phases of
the DiRT project have been completed.
While some of the architectural components
described in these documents may need
slight modifications as the software is
refined and completed, we have started
implementation with a thoroughly and

7. Conclusions critically reviewed concept. From the
implementation work done so far, it became
evident to us that the framework created is
solid for driving the work ahead.

The DiRT simulation whose

specification has been presented in this
paper is an innovative method of allowing
generally resource intensive computing
techniques to be substituted by less intensive
methods yet still delivering similar results.

The focus of DiRT is the creation of a

way for dust or wind-blow dirt or sand to be
modeled and displayed visually in real-time.

References

[1] Angel Edward., (2003) Interactive Computer

Graphics: A Top-Down Approach Using
OpenGL. Pearson Education.

[2] Blinn, James F., (July 1982) Light

Reflection Functions for the Simulation of
Clouds and Dusty Surfaces. Jet Propulsion
Laboratory, California Institute of
 Technology.

[3] Chen, Jim X., et. al. (1999). Real-Time

Simulation of Dust Behavior Generated by a
Fast Traveling Vehicle. ACM Transactions
on Modeling and Computer Simulation,
 Vol. 9, No. 2, 81-104. (Reference Paper)

[4] Lewis, Robert R. (February, 1998). Light-

Driven Global Illumination with a Wavelet
Representation of Light Transport.
University of British Colombia.

[5] Martin, Allen., Particle Systems

http://www.cs.wpi.edu/~matt/courses/cs563/
talks/psys.html

Figure 4. Activity Chart DiRT

[6] Fernando, Randima. (2004) GPU Gems.
Pearson Education.

Displays the system operations during
runtime.

 [7] DiRT Project, accessed March 19, 2005 at
 http://www.cs.unr.edu/~mbagby

http://www.cs.wpi.edu/%7Ematt/courses/cs563/talks/psys.html
http://www.cs.wpi.edu/%7Ematt/courses/cs563/talks/psys.html
http://www.cs.unr.edu/%7Embagby

Qt Libraries

Class Qdialog

Class QSlider

Class QCheckBox

Class Line

Class QRadioButton

Class VBox

Class QLabel
Class QLCDNumber

1 1 1 1

1 1 1

2

1
3

3

1

1

1
1

1

1

1

GLFractal

-glFogCoordfEXT :
PFNGLFOGCOORDFEXTPROC
-g_nWallTex : GLuint
-object : GLuint
-xRot : GLfloat
-yRot : GLfloat
-zRot : GLfloat
-scale : GLfloat
-eyex : int
-eyey : int
-eyez : int
-fogdense : double
-hMap : HeightMap*
-displayListTex : GLint
-displayListColor : GLint
-displayListMesh : GLint
-camera : double[16]
-tex :Glint[1]
-glContext : QGLContext*
-scrollVal : double
-stereo : bool
-stereoEye : bool
-tx, -ty, -tz : double
-rx, -ry, -rz : double
-x : int[2]
-y : int[2]
-RADIUS : double
-voldegree : float
-radiuslen : float
-alpha : double
-beta : double
-gamma : double
-eyeX, -eyeY, -eyeZ: GLdouble
-eye : GLdouble[4]
-at : GLdouble[4]
-up : GLdouble[4]

+setHeightMap(heightMap : HeightMap*) : void
+setTextureFile(path : char*) : void
#initializeGL() : void
#paintGL() : void
#resizeGL(w : int, h : int) : void
#OnDisplay() : void
#LoadTexture (filename : char*, eWrap : GLenum,

uint) : void
#keyPressEvent(e : QKeyEvent*) : void
#drawGLQuad(x : float, y : float, z : float) : void
#drawDustVol(theta : float, radius : float) : void
#DisplayTerrain() : void
#drawBox() : void
#isTolerableRowDiff(row : int, coll : int, col2 : int)

#isTolerableColumnDiff(col : int, row1 : int, row2 :

#setHeightMap(heightMap : HeightMap*) : void
#renderRowTex(row : int) : void
#renderRowColor(row : int) : void
#renderMesh() : void
#renderSmoothedMesh(showColors : bool) : void

1

HeightMap

#width : int
#height : int
#xCorner : double
#yCorner : double
#cellSize : double
#min : double
#max : double
#noVal : double
#data : double*

-swapInPlace(buffer : void*, size : int) : void*
-loadAscii(fileName : char*) : HeightMap*
-loadBinary(filename : char*) : HeightMap*
+getWidth() : int
+getHeight() : int
+getXCorner() : double
+getYCorner() : double
+getCellSize() : double
+getInvalidFlag() : double
+getMinimum() : double
+getMaximum() : double
+getTrueMinimum() : double
+getTrueMaximum() : double
+getEntry(row : int, col : int) : double&
+getRow(row : int) : double*
+getData() : double*

1

N

Figure 5. DiRT Class Diagram (partial)

