
Thraxion: Three-Dimensional Action Simulator

Justin Gerthoffer, Jon Studebaker, David Colborne
Jeff Stuart, Frederick C. Harris, Jr.

Department of Computer Science and Engineering
University of Nevada, Reno

1664 N. Virginia St.
Reno, NV 89557, USA

{gerthoff, jstudeba, colborne, stuart, fredh} @cse.unr.edu

Abstract: The Thraxion program detailed in this
paper is a user interactive 3D action simulator
that models the behavior of objects in motion.
Using a physics engine and collision detection,
Thraxion is able to model the behavior of objects
of varying mass, size, composition, and texture
colliding against each other. The user is able to
create objects, edit the force directions and
magnitudes action upon the objects, and may then
begin a simulation based on these parameters.
The user may then save the initial conditions of
the simulation, load different initial conditions,
or create a new scenario. Because Thraxion is
based on OpenGL and the Qt user interface
libraries, it has multiple platform support and is
being actively developed on Linux and Mac OS X.

Keywords: collision detection, bounding sphere,
three-dimensional simulation

1. Introduction

Thraxion is a software project designed to
allow the user to easily design a three dimensional
scene that can be simulated and rendered in real
time. A rudimentary physics engine, already built
by the authors, will be the basis for the physics
controlling the graphics on the screen. Ease of
use and making the existing engine more accurate
are two of the major goals of this project.

The software will allow the building of scenes
to display what would happen under a set of
initial conditions set by the user. The
environment will allow for spheres colliding with
solid objects, distance constraints between objects
and, in the future, solid object collision. It will

allow for the saving and loading of three
dimensional scenes for running at later times.
The users will be able to choose pre-built objects
and create almost any environment they wish with
them.

Almost anyone should be able to benefit from
the program since ease of use is a major goal.
Target audiences include younger students who
might wish to see what they have learned about
basic Newtonian physics in action, as well as
programmers looking for an easy-to-use three
dimensional collision simulator for a graphics
engine.

The program will be novel in that it is easy to
use, deals only with fundamental collision
objects, is fast, and will make it easy to create and
manage complex three dimensional simulations.
It will be perfect for quick demonstrations in 3D
involving basic physics.

By modeling Thraxion using UML notation,
such as explained in [5], the project has been
better understood and the goals have been simpler
to extrapolate based on the existing functionality.
Planning of Thraxion has also proven to be
simpler and more consistent by following UML
and basic UP guidelines.

This paper, in its remaining part, is organized
as follows: Section 2 presents the main
functional and non-functional requirements,
Section 3 includes details on use cases, Section 4
describes the architectural design of Thraxion,
Section 5 describes the detailed design of
Thraxion, Section 6 provides the current state and

future work of the project, and Section 7 provides
the conclusion to the report.

2. Requirements Specification

Following standard software engineering
guidelines, the main functional and non-
functional requirements of Thraxion are presented
below.

2.1 Functional Requirements

The most important functional requirements of
Thraxion are:

1. The user shall be able to write, open and
save scenes for demonstration purposes.

2. The user shall be able to add text comments
to scenes.

3. The user shall be able to switch between
various graphical modes, including
wireframe mode and solid mode.

4. The user will have at least four views in the
graphical user interface, including an
isometric view and three plane-sliced views.

5. The user will be able to create scenes using a
graphical user interface for the designer.

6. The user will have a set of pre-defined
objects to build scenes with.

7. The user may switch between a scripted
scenario editing mode and a purely graphical
scenario editing mode.

8. The user may be able to move items around
interactively during scenes.

2.2 Non-Functional Requirements

The most important non-functional
requirements of Thraxion are:

1. The program shall run on most common
Linux distributions.

2. The program shall be built using Qt 3.3.
3. The program shall require less than 128

megabytes of random access memory for
proper functioning.

4. The program shall run all scenes with at least
a 25% speed increase upon completion
compared to the original speed of the
program at the beginning of this project.

5. The program shall implement mouse and

keyboard user interaction.
6. The program shall run 5 limbs with one solid

at a rate equal to or greater than 30 frames
per second using a Pentium 4 running at 2
GHz with 512 MB of RAM running
Slackware 10.

7. The program will run on Mac OS 10.3
without using X11.

8. The program's source will compile without
editing the Makefile on Linux.

9. The program will use a scripting language
for scene editing instead of manual
compilation of scene files.

10. The program may run on Windows XP.
11. The program may use a graphical user

interface for scene editing, instead of
requiring user knowledge of a scripting
language.

12. The program may use a tree-based collision
detection system to optimize the code.

3. Use Case Modeling

As part of the formal modeling process laid out
in [5], the functionality of Thraxion has been
defined using use cases and scenarios. The entire
functionality of Thraxion is captured in the use
case diagram shown in Section 3.1 at a high level
of abstraction; this was done to help identify the
mechanisms through which the user would
interact with Thraxion. The use cases are
compared to the requirements listed in Section 2
using the Requirements Traceability Matrix in
Section 3.1.

3.1Detailed Use Cases

Presented below are Use Cases for Thraxion. A
Use Case Diagram is presented in Figure 1.

UC1. Install Qt – Qt is the GUI front end for
Thraxion. Depending on the system,
installing Qt can be relatively easy or an
extremely engaging and time-consuming
task.

UC2. Build Source – Includes acquiring and
building the source using qmake or an
edited Makefile. Also includes certain
platform-specific issues.

UC3. Create Ropes – Create ropes, around
which particles and objects may be

grouped for certain effects (a necklace, for
example).

UC4. Create Sphere – Creates a sphere, which is
essentially a large particle.

UC5. Create Solid – Create a solid, which is
composed of many particles.

UC6. Create Stationary Object – Create a
stationary object, or an object with infinite
mass, such that it does not move when
objects or forces strike it.

UC7. Create Limbs – Creates an inflexible rope
around which particles may be grouped
around for certain effects (rigid body
motion, for example).

UC8. Create Forces – Creates a vector force
upon an object that can interact with a
force (non-stationary objects).

UC9. Save Scene – Save a pre-created scene.
UC10. Open Scene – Load a saved scene.
UC11. Start Scene – Begin a created scene.
UC12. Stop Scene – Stop a running scene.
UC13. Edit Forces – Edit existing forces

interacting with an object.
UC14. Zoom In – Zoom in on a scene, for a better

view.

Figure 1: Use Case Diagram for Thraxion

UC15. Zoom Out – Zoom out on a scene, for a
better view.

UC16. 3.2 Requirements Traceability Matrix

The Requirements Traceability Matrix detailed
below shows how the use cases match up with the
requirements listed in Section 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
9
10
11
12

Use Cases

No
n-

Fu
nc

tio
na

l
Fu

nc
tio

na
l

Re
qu

ire
m

en
ts

Figure 2: Requirements Traceability Matrix

4. Architectural Design

The layered architecture diagram is presented
in Figure 3, and is a hierarchical generalization of
the layers of the Thraxion program. A brief
description of each subsystem is as follows:

C++ Libraries: All of Thraxion is implemented
using C++; consequently, Thraxion makes heavy
use of a number of C++ libraries.

OpenGL: The graphics rendering in Thraxion
are handled through OpenGL[1].

Qt: The GUI and display for Thraxion are
handled through Qt libraries and the Qt
framework[2].

Collision Detection & Reaction: Collision
detection and reaction to each collision is

USER

INSTALLER

UC1 - INSTALL QT

UC2 – BUILD SOURCE

UC3 – CREATE ROPES

UC4 – CREATE SPHERE

UC5 – CREATE SOLID

 UC6 – CREATE
 STATIONARY OBJECT

UC7 – CREATE LIMBS

UC8 – CREATE FORCES

UC9 – SAVE SCENE

UC10 – OPEN SCENE

UC11 – START SCENE

UC12 – STOP SCENE

UC13 – EDIT FORCES

UC14 – ZOOM IN

UC15 – ZOOM OUT

currently handled through an all-to-all bounded
spheres-based method. However, alternative
approaches, such as [3] and [4] are being
considered to increase the efficiency and
capabilities of Thraxion.

Effects, Lights & Textures: Controls the look of
objects, using OpenGL properties.

Particle System & Objects: Identifies the
location of each object and the number and
properties of each particle composing each object.

Playback Tab: Controls the pace and sequence
of playback of a scene by interacting with the
Canvas Manager interface, which manages the
display of the results of collisions, effects, and the
particle system.

Designer Tab: Used to switch between playback
and designer mode; can edit the properties being
managed by the Canvas Manager interface.

Main Window: Displays all pertinent
information for the user.

Help System: Built-in series of documents
designed to aid the user as they interface with
Thraxion.

GUI: The entire interface system through which
the user interacts with Thraxion; includes the
Main Window and the Help System.

5. Detailed Design

The system activity chart for Thraxion, per the
layout recommended in [5], is included as Figure
6.

The class diagram for Thraxion, laid out
according to the specifications laid out in [5], is
included in Figure 7, which lists all the classes in
Thraxion as well as most of the major functions.
Due to size constraints, certain trivial variables
and functions have been omitted, as have Qt- and
OpenGL-specific inherited functions that some
classes implement. However, such classes are
marked as having inherited from the appropriate
Qt and OpenGL class where possible

6. Current Status and Future Work

Thraxion is currently fully functional on many
major Linux distributions and currently exhibits
approximately 25% improvement in speed as
measured by frames per second compared to the
original program on which Thraxion is based.
The Macintosh distribution can be run using X11
and an X11-based Qt installation; work is
continuing on allowing Thraxion to behave like a
native Macintosh application to provide greater
speed and lower overhead. A help system has
been implemented, as has a graphical user
interface, detailed in 6.1. Future work includes
allowing Thraxion scenario files to be scripted, so
that they do not need to be compiled before run,
making the help system more comprehensive,
further optimizing the code through the use of
tree-based structures, such as those in [3] and [4],
and lifting the current object quantity limitations
once the collision detection code can handle it.

6.1 Screen Shots

Figure 4 shows the Designer Window in its
current form. The Designer Window is the main
interface used by the user to create new scenes.
Figure 5 shows the Main Demonstration scene, in
which the user may test the scenes created in the
Designer Window or other scenes generated by
other users. Figure 5 is a scene composed of a
series of spheres and some solids organized
around a rope. This helps illustrate the rope
concept, as well as display how various objects
interact with each other in Thraxion. The screen
shots were created with the March 15, 2005
version of Thraxion; future releases may have
changes to the interface.

7. Conclusion

The Thraxion action simulation software whose
specification has been presented in this paper is
an innovative, low cost and low overhead solution
where users can experiment and interact with a
basic physics and graphics engine. The focus of
Thraxion has been on creating a multi-platform
3D simulation engine that is rich in functionality
but low on total overhead in terms of memory and
speed.

Figure 3: Thraxion Layered Architectural Diagram

Figure 4: Designer Window

 Figure 5: Main Demonstration scene

C++
Libraries OpenGL QT

Collision
Detection

and Reaction

Particle
System and

Objects

Effects:
Lights,

Textures

MainWindow

Designer
Tab

Playback
Tab

GUI

<<Subsystem>>

<<Subsystem>> <<Subsystem>>

<<Subsystem>> <<Subsystem>> <<Subsystem>>

<<Subsystem>>

<<Subsystem>><<Subsystem>>

<<Subsystem>>

HelpSystem

<<Subsystem>>

Play
Manager

Draw
Manager

Help
Manager

Canvas
Manager

{
{
{

{

{

P
re

se
n t

a t
io

n

D
o m

ai
n

S
e r

vi
ce

sP
r o

g r
a m

 L
o g

i c
U

til
i ty

Tab
Manager

<<Subsystem>>

Figure 6: Thraxion State Diagram – Partial

The possibilities for enhancing our work are
endless and could involve applications such as
game design, computer animation, or even
educational applications. For game design,
Thraxion may serve as a basic collision detection
engine that could be useful for simulating the
effect of object collisions on background objects.
Computer animation may benefit from having
Thraxion handle the basic collisions and
interactions between simple objects, leaving the
complicated collisions and interactions to more
complex programs that incur greater overhead.
For educational applications, Thraxion could
serve as an easy-to-use demonstration tool of
basic Newtonian physics on multiple objects for
the high school or early college level. Thraxion
could also serve an educational purpose as a
simple, working, non-theoretical example of how
to implement a low-cost, low-overhead 3D
collision engine. Consequently, further

refinements in code and collision detection
algorithms used would result in a stronger
application for any of these domains.

8. References

[1] Angel, Edward, OpenGL - A Primer,
Addison-Wesley, 2nd Ed., 2005

[2] Dalheimer, Matthias Kalle, Programming
with Qt, O'Reilly, 2nd Ed., 2002

[3] Zachmann, Gabriel, "Minimal Hierarchical
Collision Detection," VRST'02, November
11-13, 2002

[4] Otaduy, Miguel A; Lin, Ming C., "CLODs:
Dual Hierarchies for Multiresolution
Collision Detection," Eurographics
Symposium on Geometry Processing (2003)

[5] J. Arlow and I. Neustadt, UML and the
Unified Process: Practical Object-Oriented
Analysis & Design, Addison-Wesley, 2002.

Figure 7: Thraxion Class Diagram

Vector

Point

Particle

Particle()
Particle(tocopy:*Particle)
Particle(pos:Vector, pos_old:Vector, a:Vector, m:double)
Particle(pos:Vector, pos_old:Vector, a:Vector, m:double, r:double, v:bool)
operator=(tocopy:Particle):bool
operator==(tocompare:Particle):bool
assign(pos:Vector, pos_old:Vector, a:Vector, m:double)
assign(pos:Vector, pos_old:Vector, a:Vector, m:double, r:double, v:bool)

position:Point
position_old:Point
acceleration:Vector
mass:double
radius:double
visible:bool
texture:int
material:int

Triangle

+particle1:*Particle
+particle2:*Particle
+particle3:*Particle

*

1

11

2 1

Limb

particle1:*Particle
particle2:*Particle

*

1

GLCanvas:QGLWidget

getWireframe():bool
getDrawConstraints():bool
GLCanvas(parent:*QWidget)
timerUpdate()
timerDisplay()
changeSpeed(value:int)
changeGravityRatio(value:int)

matStruct

BRASS:int = 0
SILVER:int = 1
RED_PLASTIC:int = 2
GREEN_PLASTIC:int = 3
BLUE_PLASTIC:int = 4
CYAN_PLASTIC:int = 5
MAGENTA_PLASTIC:int = 6
YELLOW_PLASTIC:int = 7
WHITE_SHINEY:int = 8
WHITE_SHINEY_T:int = 9
BLACK_PLASTIC:int = 10
ambient[4]:float
diffuse[4]:float
specular[4]:float
shininess[1]:float

NUM_PARTICLES:int = 10000
NUM_ITERATIONS:int = 20
NUM_PCONSTRAINTS:int = 10000
NUM_TRIANGLES:int = 10000
NUM_LIMBS:int = 100
GRAVITY:double = -100
FRICTION:double = .999
-particle[NUM_PARTICLES]:Particle
-triangle[NUM_TRIANGLES]:Triangle
-limb[NUM_LIMBS]:Limb
-pconstraint[NUM_PCONSTRAINTS]:PConstraint

ParticleSystem

setParticleCollision(pc:bool)
-accumulateForces()
-createCollisionSpheres(point1:Vector, point2:Vector, point3:Vector, m:int)
writeScene(filename:*char):bool

*

11

*

PConstraint

+particle1:int
+particle2:int
+restlength:doubl
e

1

1

1

*

1

* MainWindow:QMainWindow

-uncheckAllScenes()
-updatePb()
-getComment(filename:*char):
QString
-loadScene(filename:*char):bool

1

1

QMainWindow

<<displays>>

1

*

Converter:GLCanvas

Converter(*QWidget)
scene()
convertScene()

Preview:GLCanvas, QFilePreview

Preview(parent:*QWidget)
~Preview()
previewUrl(u:&QUrl)

QFilePreview

QGLWidget

camera

x:GLdouble
y:GLdouble
z:GLdouble

<<instantiates>>

