
Towards A Unified Approach for
Cross-Platform Software Development

Jeffery A. Stuart, Sergiu M. Dascalu, Frederick C. Harris Jr.

Department of Computer Science and Engineering

University of Nevada, Reno - Reno, Nevada, 89557 USA
{stuart, dascalus, fredh}@cse.unr.edu

Abstract. Cross-platform software development
is a complex and challenging activity.
Frequently, developers have to create portions of
code that use platform-specific data types and
functions. This has led to two largely adopted
practices: either making extensive use of the
preprocessor, or splitting the software package
into several branches, one for each target
platform. Both practices have their drawbacks.
To tackle the issues of cross-platform
development, this paper proposes two program-
ming solutions referred to as ‘cores’ and
‘routers’. By using them, the need for advanced
preprocessing and separate development
branches is virtually eliminated. The conceptual
solutions are described and examples of
application are presented in the paper.

Keywords: Cross-platform development, cores, routers

1 Introduction

Cross-platform software development is an
intricate and demanding activity [1], [2], [3], [4],
[5], [6], [7]. Very often, the developers have to
create parts of code that require platform-specific
data types and functions. This requirement has
led to two largely adopted practices: either
making extensive use of the preprocessor, or
dividing the software package into several
segments (branches), each corresponding to a
target platform [8]. The former practice
frequently leads to unreadable code, making later
modifications difficult and error-prone. The
latter approach can lead to lack of organization
and code not being shared across branches. The
authors have experienced the above when
working on various software projects [9], [10],
[11].

Starting from these observations, this paper
examines several cross-platform software
packages and identifies common traits between
the packages. Then, using fundamental object-
oriented programming techniques, two design
and implementation solutions referred to as cores
and routers are used to address the issues of

cross-platform software development in C++. A
core provides the underlying data types and
operations necessary for platform-specific code
whereas a router provides only the needed
operations (more precisely, a router is used when
platform-independent data types can adequately
represent the state of an object). By using cores
and routers, the need for advanced preprocessing
and/or separate development branches is
practically eliminated. The code produced is
much more readable, while the absence of
separate platform-dependent development
branches allows for more efficient code sharing.

Based on cores and routers, two simple yet
effective (and rather symmetrical) development
solutions, a more consistent (“unified”) approach
for cross-platform software development in C++
is suggested. Although the idea of the proposed
approach might seem obvious at the first sight,
as far as we know it has not yet been applied – at
least not on a larger scale, for example in popular
packages for cross-platform software develop-
ment such as [12], [13], and [14]. The proposed
core and router solutions are illustrated in the
paper through several examples. Details about
the intended meaning of the specific terms used
(cores and routers) are also provided.

 The remainder of this paper is organized as
follows: Section 2 presents background
information on current cross-platform software
development practices, design patterns, and
related issues, Section 3 introduces the concepts
of cores and routers intended to help solve these
issues, Section 4 gives an example of a core-
based development solution, Section 5 presents
an example of a router-based solution, Section 6
outlines several directions of future work, and
Section 7 concludes the paper with a summary of
the paper’s contributions.

2 Cross-Platform Software Develop-

ment: Practices and Related Issues

Currently, there are two common practices
(approaches, methods, or styles) used for cross-

platform API development. The first approach
involves the use of separate segments (branches)
of code, each written for a specific target. For
example, [15] supports four operating systems
(Windows, Vanilla Linux, Irix, and Irix 64), with
a total of five compilers (Visual Studio 6 with
Intel Compiler, Visual Studio 7, g++ 3.2 and
above, SGI CC, and SGI 64 bit CC). The second
approach is characterized by extensive use of
preprocessor commands, which leads to several
shortcomings, as outlined below.

 In the first approach, although the packaged
code is generally readable and the code well-
structured, the possibility of sharing code across
platforms is minimal, which is not a desirable
feature. Furthermore, the numerous (and usually
large) branches of code are hard to manage from
a development point of view. Examples of API
packages representative for this approach are
[12], [13] and [14].

 In the second approach, the files are sprinkled
with preprocessor statements, which makes the
code hard to read, error-prone, difficult to test on
all platforms, and hard to maintain. Examples of
software packages that rely on this approach are
[16], [17], and [18]. As a matter of fact, the
POSIX Threads package employs both methods,
but we consider it a stronger fit for the "separate
branches” category [14].

 Starting from the above observations and
driven by practical software development needs,
we looked into the possibility of writing cross-
platform code in a way that addresses the
seemingly hard to satisfy (at the same time)
properties: readability and structure (on the one
hand) and code sharing (on the other hand). In
other words, the question we tried to answer is
“how could the readability of the code be
improved and the code sharing maximized while
keeping the software organized?” The solution
we suggest is based on two simple, yet efficient
development solutions, referred to as cores and
routers. These are in fact two design constructs
aimed at C++ implementation. From the
experience gained in writing code for a general-
purpose C++ API and from using it in actual
software development projects [9] we argue that
the resulting programs are easier to read and
understand while at the same time the amount of
code common for the platforms considered is
maximized. The simplicity of the solutions (they
are indeed meant to be easy to implement) and
their rather symmetrical structure (which aids

quicker learning and memorization), allows a
more consistent, smoother and “unified” way of
writing cross-platform C++ code. The concepts
of cores and routers are introduced next while
examples of their use are given later in the paper.

3 Cores and Routers

 A core is a generic code development
solution that can be represented using the UML
notation [19] as shown in Figure 1. In this figure
a class (ClassA) intended for cross-platform
development relies on the services of the abstract
class ClassACore which, in turn, has specialized
platform-dependent implementations in the
subclasses Platform1ClassACore, Platform2-
ClassACore, etc. Thus, a clean separation of
platform-independent services from platform-
dependent implementations is achieved.
Because, generally speaking, most of the base
(foundation) code for all cross-platform software
is to be included in cores, we decided to use this
name to highlight their pragmatic significance.

Fig. 1 UML diagram of the generic core solution

 Note also that, in practical terms, our
proposed generic core solution consists of a
wrapper (principal) class, an abstract core class
(for platform-independent services), and a set of
concrete core classes (which implement the
services provided in platform-dependent ways).
An example of using the core solution is
presented in Section 4 of the paper.

 The other component of our proposed
approach for cross-platform software
development is the router. A router is a generic
code development solution, shown in Figure 2
using the UML notation. In Figure 2, ClassB
intended for cross-platform software
development relies on the services of the
concrete class ClassBRouter which, in turn, is
associated with the platform-dependent
implementation classes Platform1ClassBRouter,
Platform2ClassBRouter, etc. In contrast to the
core solution, which reliess on aggregation and
inheritance relationships between its component

classes, the router solution is based on depen-
dency (“use”) relationships between classes.

Fig. 2 UML diagram of the generic
router solution

 Note also that, in practical terms, our
proposed generic router solution consists of a
wrapper (principal) class, a (main) router class
and a set of (base) router classes (which
implement services in platform-dependent ways).
Regarding the terminology used, the name router
was chosen because its design emphasizes the
“routing” of required services towards
appropriate implementations (from the wrapper
and the base routers to the main router).

 Cores and routers borrow concepts from the
Bridge and Factory design patterns [22]. Cores
use the Factory design pattern to instantiate
implementation classes. Both cores and routers
rely on the Bridge design pattern to relay
platform-dependent requests to platform-specific
implementations. Nevertheless, both cores and
routers are new design solutions on their own.

 Technically speaking, the main router class
could be eliminated from the design presented in
Figure 2 by using several macros, but this would
negatively (and significantly) affect the
consistency of the programming style and the
convenience of the existing regular source code
structure (similar across the entire project in
terms of associations among *.h and *.cpp files).
Also, as shown later in the paper (Section 5),
actual base router classes may not always be
necessary.

 An example of using the router solution is
provided in Section 4 of the paper. To
summarize the key concepts introduced, the rules
for using cores and routers are the following:

• A core solution should be used when both

(some of) the member variables and (some of)

the operations of a class are platform-
dependent;

• A router solution should be used when all the
member variables of a class are platform-
independent but (some of) the class operations
are platform-dependent.

4 Core Example

 A simple yet illustrative example for using
cores is a Thread class. Threads are essential
elements to practically every operating system,
but there is no standard thread package so far
(although the POSIX committee has tried to
initiate the creation of one). Most Unix platforms
have their own threading library, virtually all
flavors of Linux use POSIX threads (pthreads),
and Microsoft Windows currently uses Win32
threads. All of these threads use platform-
specific data types, for example POSIX threads
use pthread_t, Win32 threads use HANDLE,
Solaris Unix threads use thread_t, and so forth.

 The expected functions for a Thread class are
outlined as follows. First, a constructor and a
destructor are needed. A function to start the
execution of the thread should be available, so
we include in this class a function called start.
One might wish to wait for a thread to finish, so
a waitFor function will be needed. One might
also wish to relinquish the remaining time slice
of a thread to the operating system, so a yield
function is necessary. Of course, a thread is used
to execute code, so an abstract function called
run will be available for a user-defined class to
override. Obviously, more functionality is
expected of a thread, but the above functionality
is sufficient to demonstrate the application of the
proposed core concept.

 Shown in Figure 3 is a previous
implementation of the Thread class using the
preprocessor to detect what platform is being
used. Practically every other line is a
preprocessor statement, and makes the reading of
the code quite challenging. This is where the use
of a core comes in. As explained in Section 3, a
wrapper class, an abstract core class, and
implemented core classes are needed. The
implementation for the Thread wrapper class is
shown in Figure 4. As it can be noticed, the
Thread class in the core solution is merely an
empty shell, relying on its core class for virtually
all functionality. Also, one could notice that the
only member variable is typically a core, and the
Thread class is no exception.

The code for the abstract ThreadCore class
is shown in Figure 5. The platform-independent
functionality has been implemented but, as it can
be seen, all of the platform specific code is
purposefully left out so child classes can
implement the necessary functionality in a
platform-specific manner. Next, shown in Figure
6 is the concrete class Win32ThreadCore, which
implements all the remaining (platform-specific)
code necessary to use a thread. Figure 7 shows
the concrete class PosixThreadCore. Similar to
the class Win32ThreadCore, this class
implements all the platform-specific code
necessary to use a thread.

 While it may seem that more work is needed
to use the core method than to employ the
method exemplified in Figure 2, one must
consider things from a larger perspective. For
example, any support for new platforms requires
the modification of the Thread implementation
file. This can become complicated when
advanced users and developers make fine-tuned
adjustments to their specific platform and then
want to add support for a new platform. They
cannot simply use the most up-to-date file
provided by the Thread class maintainer, they
must acquire the new Thread implementation
and then manually merge the file with the
changes they made. On the other hand, if one
decides to use cores, any new platform support
requires the modification of at most one file: the
Makefile. If the users decide to make fine-tuned
adjustments to a specific platform implemen-
tation, they do not need to worry about having
those changes accidentally erased or overwritten
when they obtain source code for a new
platform, nor do they have to worry about
performing code merges when implementation
updates become available.

 At design level, the entire core solution for
Thread is represented in Figure 8 using the UML
notation. From this figure, it can be noticed that
this is a particular application of the generic core
design shown in Figure 1.

5 Router Example

 The intuitive use of routers can be grasped
from a File class. Practically every operating
system uses files and allows files to be
adequately represented using a standard string.

#ifdef _POSIX
 #include <pthread.h>
 #include <sched.h>
#elif defined(_WIN32)
 #include <windows.h>
#else
 #error Couldn't detect correct OS
#endif
// Class representing an operating system
// execution thread
class Thread
{
 protected:
 #ifdef _POSIX
 pthread_t pthreadObject;
 #elif defined(_WIN32)
 DWORD threadID;
 HANDLE threadHandle;
 #endif
 public:
 inline Thread() { }
 inline virtual ~Thread() { }
 // even though the code is the same, the
 // parameters aren’t, so we must have
 // different implementations of this
 // function
 #ifdef _POSIX
 void * threadStart(void * p)
 { ((Thread*)p)->run(); }
 #elif defined(_WIN32)
 DWORD WINAPI threadStart(void * p)
 { ((Thread*)p)->run(); }
 #endif

 // This function will halt until the passed
 // in thread finishes its execution
 inline static void waitFor(Thread * thread)
 {
 #ifdef _POSIX
 pthread_join(thread->pthreadObject,
 NULL);
 #elif defined(_WIN32)
 WaitForSingleObject(
 thread->threadHandle,
 INFINITY,
 TRUE);
 #endif
 }
 // This function will make the current
 // thread attempt to give back the
 // remaining time
 // slice to the operating system
 inline static void yield() {
 #ifdef _POSIX
 sched_yield();
 #elif defined(_WIN32)
 SwitchToThread();
 #endif
 }
 // this function will start the thread
 inline void start() {
 #ifdef _POSIX
 pthread_create(&pthreadObject, NULL,
 threadStart, NULL);
 #elif defined(_WIN32)
 threadHandle =
 CreateThread(NULL, 0,
 threadStart, thread, 0,
 &threadID);
 #endif
 }
 // One must implement this function in
 // order to use the thread class. Whenever
 // the “start” function of a thread is
 // called, this function is executed. The
 // thread will cease execution shortly
 // after this function finishes
 virtual void run() = 0;
};

Fig. 3 Non-core implementation of Thread

class Thread
{
 protected:
 ThreadCore * core;
 public:
 // Constructor and destructor
 inline Thread()
 { core = ThreadCore::createCore(); }
 inline virtual ~Thread()
 { ThreadCore::deleteCore(core); }

 // Allow access to our
 // “ThreadCore” if wanted
 inline ThreadCore * getCore()
 { return core; }
 // The following functions all rely on the
 // thread core to perform their tasks
 inline static void waitFor(Thread * thread)
 { ThreadCore::waitFor(thread); }
 inline static void yield()
 {ThreadCore::yield(); }
 inline void start()
 { core->start(this); }
 // One must implement this function in
 // order to use the thread class. Whenever
 // the “start” function of a thread is
 // called, this function is executed. The
 // thread will cease execution shortly
 // after this function finishes.
 virtual void run() = 0;
};

Fig. 4 Thread wrapper implementation
in the core solution

// Forward declare the thread class. We don’t
// actually do anything with it in this file so
// we don’t need to #include <Thread.h>
class Thread;

// Abstract core class for Thread
class ThreadCore
{
public:
 // Provide a platform independent way for
 // a thread core to be created
 static ThreadCore * createCore();
 // A “safe-delete” for thread cores. More
 // functionality should be
 // added such as error-checking to ensure
 // that the core being deleted
 // is not alive or holding any
 // mutexes/semaphores/monitors etc.
 inline static void deleteCore(ThreadCore *
core) {
 if (core) delete core;
 }
 // Constructor and destructor, don't
 // need to do anything
 inline ThreadCore() { }
 inline virtual ~ThreadCore() { }

 // The following functions are all
 // platform dependent in their
 // operations, so make any
 // platform-specific instance implement these
 // functions.
 static void yield();
 static void waitFor(Thread * thread);
 virtual void start(Thread * thread) = 0;
};

Fig. 5 ThreadCore implementation

However, the common operations one might
expect from a File class are not implemented
using the same functions on every platform. For
example, to determine all the files in a directory

#include <ThreadCore.h>
// Wrapper class for a operating-system thread.

// Check to make sure that the user wants
// to compile for win32 systems
#ifdef USE_WIN32THREADCORE

#include <ThreadCore.h>
#include <windows.h>
// Win32 impl. of the ThreadCore class
class Win32ThreadCore : ThreadCore
{
 protected:
 DWORD threadID; // Win32 thread id
 HANDLE threadHandle; // Win32 thread handle
 // Start the thread running. Error
 // checking should be added.
 static DWORD threadStart(void * win32Param)
 {
 ((Thread*)win32Param)->run();
 return 0;
 }
 public:
 // Empty constructor and destructor
 inline Win32ThreadCore() { }
 inline virtual ~Win32ThreadCore() { }

 // Function to start the thread running
 virtual void start(Thread * thread) {
 threadHandle =
 CreateThread(NULL, 0,
 threadStart,
 thread, 0, &threadID);
 }
};
// Simple implementations, but since we do
// not want a lot
// of preprocessor statements, we simply
// implement these
// functions in this file.
ThreadCore * ThreadCore::createCore() {
 return new Win32ThreadCore;
}
void ThreadCore::waitFor(Thread * thread) {
 Win32ThreadCore * core =
(Win32ThreadCore*)thread->core;
 WaitForSingleObjectEx(core->threadHandle,
 INFINITY, TRUE);
}
void ThreadCore::yield() { SwitchToThread(); }

#endif

Fig. 6 Win32ThreadCore implementation

on a POSIX file system, one would use the
opendir, readdir, and closedir function calls.
But on Win32 file system, one would use the
FindFirstFile, FindNextFile, and FindClose
function calls.

A useful File class would contain several
operations, but for the sake of brevity, we limit
the scope of this example to a constructor, a
destructor, an exists function which determines
if the given file exists in the file system, and an
isDirectory function which determines if the
given file represents a directory in the file
system. Figure 9 shows how a File class can be
written using the preprocessor to detect the
correct build platform. Figure 10 presents the
implementation of a File class which uses
the router technique discussed in Section 3.

// Make sure the user wants to compile
// for a POSIX compliant system
#ifdef USE_POSIXTHREADCORE

#include <ThreadCore.h>
#include <pthread.h>
#include <sched.h>

// Posix implementation of the ThreadCore class
class PosixThreadCore : ThreadCore
{
 protected:
 pthread_t posixThread;
 static void * threadStart(void *
 pthreadParam) {
 Thread * thread = (Thread*)pthreadParam;
 thread->run();
 return 0;
 }
 public:
 // empty constructor and destructor
 inline PosixThreadCore() { }
 inline virtual ~PosixThreadCore() { }

 // start the thread
 virtual void start(Thread * thread) {
 pthread_create(&posixThread, NULL,
 threadStart, thread);
 }
};
// Simple implementations, but since we do not
// want a lot of preprocessor
// statements everywhere, we implement them in
// this file. Implementing these
// functions in this file also helps to ensure
// that no more than one
// threadcore implementation is linked

ThreadCore * ThreadCore::createCore() {
 return new PosixThreadCore;
}
void ThreadCore::waitFor(Thread * thread) {
 PosixThreadCore * core =
((PosixThreadCore*)thread)->core;
 pthread_join(core->posixThread, NULL);
}
void ThreadCore::yield() {
 sched_yield();
}

#endif

Fig. 7 PosixThreadCore implementation

As it can be noticed, all the operations are passed
directly to the class FileRouter.

 The declaration of the class FileRouter is
shown in Figure 11. As was explained in Section
3, router classes represent an optimization over
core classes as they do not require any virtual
functions or pointer lookups. Router classes also
do not require any platform-dependent member
variables.

 The PosixFileRouter class implementation is
shown in Figure 12. Just like in the Core
example, one could implement a file router using
Win32 concurrently with the POSIX file router.

Fig. 8: UML diagram of cross-platform core
solution for Thread

#include <string>
#ifdef _POSIX
 #include <unistd.h>
 #include <dirent.h>
 #include <sys/stat.h>
#elif defined(_WIN32)
 #include <windows.h>
 #include <sys/stat.h>
#else
 #error Couldn't detect correct OS
#endif
using namespace std;
// File class, similar to java.io.File, though
// currently lacking any
// significant functionality
class File
{
 protected:
 string path; // the path to the file
 public:
 inline File(const string & filePath)
 : path(filePath) { }
 inline virtual ~File() { }
 // This function simply checks to ensure
 // that a “File” is actually a directory
 // (true would mean that the file exists
 // and is a directory
 inline bool isDirectory() const {
 #ifdef _POSIX // if posix, then use stat
 struct stat sbuf;
 if (stat(path.c_str(), &sbuf) == -1)
 return false;
 return (sbuf.st_mode & _S_IFDIR) != 0;
 #elif defined(_WIN32) // else use stati64
 struct _stati64 sbuf;
 if (_stati64(path.c_str(), &sbuf) == -1)
 return false;
 return (sbuf.st_mode & _S_IFDIR) != 0;
 #endif
 }
 // this function simply checks to make sure
 // that a file exists
 inline bool exists() const {
 #ifdef _POSIX // if on posix, use stat
 struct stat sbuf;
 return stat(path.c_str(), &sbuf) != -1;
 #elif defined(_WIN32) // else, use Win32
 return GetFileAttributes(path.c_str())
 != INVALID_FILE_ATTRIBUTES;
 #endif
 }
};

Fig. 9 Non-router implementation of File

Just as with core classes, it may appear to be less
work to do when using the method shown in
Figure 9 (than when using a router), but the same
consequences indicated in Section 4 in relation
with cores could be observed for routers when a

larger perspective is considered. From a design
level perspective, the entire router solution for
File is shown in UML notation in Figure 13.
From this figure it can be noticed that this is a
particular application of the generic router design
shown in Figure 2.

#include <string>
#include <FileRouter.h>

// Platform-independent wrapper for the
// FileRouter class
class File
{
 protected:
 std::string path;
 public:
 // Simply pass off all operations
 // to the FileRouter class
 inline File(const std::string & filePath)
 : path(filePath) { }
 inline ~File() { }
 inline bool exists() const
 { return FileRouter::exists(path); }
 inline bool isDirectory() const
 { return FileRouter::isDirectory(path); }
};

Fig. 10 File implementation in router solution

#include <string>

// Class to handle all File operations
// in a platform-dependent manner
class FileRouter
{
 public:
 static bool exists(
 const std::string & path);
 static bool isDirectory(
 const std::string & path);
};

Fig. 11 FileRouter implementation

6 Future Work

 Several possibilities exist for future work on
this topic. First and foremost, we would like to
find an elegant way to rid the code of pointer
lookups. Using separate development branches
or making heavy use of the preprocessor can lead
to better performance and, in some cases, this
performance is crucial. From a compiler and
optimization standpoint, so far inheritance has
been dealt with rather inefficiently. Inheritance
adds sometimes unnecessary overhead, as
pointer lookups can be expensive. However,
when only a single subclass of an abstract class
is implemented (as is the typical case with
cores), it seems a compiler should know to
optimize the code by "merging" the inherited
class into the abstract class, therefore eliminating
the overhead of virtual functions and such [20],
[21]. Currently, no compiler exists (that we

// Check to make sure that the user
// wants a Posix compatible implementation
#ifdef USE_POSIXFILEROUTER

#include <FileRouter.h>
#include <sys/stat.h>

// Notice that we don’t need to define a
// PosixFileRouter class. For more complex
// operations, a new Router class might be
// desirable, but none of the functions we
// implement in this case really call for it.

// check to see if a file (path) is a directory
bool FileRouter::isDirectory(
 const std::string & path)
{ struct _stat sbuf;
 if (stat(path.c_str(), &sbuf) == -1)
 return false;
 return (sbuf.st_mode & S_IFDIR) != 0;
}

// check to see if a file (path) exists
bool FileRouter::exists(
 const std::string & path)
{ struct stat sbuf;
 return stat(path.c_str(), &sbuf) != -1;
}
#endif

Fig. 12 PosixFileRouter implementation

Fig. 13 UML diagram of cross-platform

router solution for File

of) that can do this, so writing this optimization
is one potential direction of future work. Another
direction of further work, which we have already
taken, is the development a general use C++
library that makes use of the solutions proposed
and demonstrates their utility. Yet perhaps the
most interesting direction of future work is in the
construction of a programming environment
conducive to the development of cross-platform
code. Research has been done at UNR on a
concept known as stratified programming [10]
where, in essence, code is organized into strata
and substrata, and the developer, based on his or
her objectives in a given context, can choose to
hide all strata beneath a certain threshold. This
concept could possibly be expanded to cross-
platform source code development such that
instead of hiding and showing strata, one would
hide and show platform-specific code.

7 Conclusions

 Object oriented programming (C++) has
become popular, but old habits from the days of
imperative programming (C) still have a strong
influence on implementation styles. Several
libraries that we have studied have similarities
with the method we proposed. In particular, QT
[12] and ZThreads [16] use inheritance for
platform specific code, but in contrast to our
approach they tend to:

• Use multiple levels of inheritance, when one

generally suffices;
• Provide only one implementation of the

inherited class, and specifically reference it in
various places;

• Separate code development and releases into
platform-specific branches; and

• Use a void* (which becomes a pointer to a
structure) for member variables instead of
having the variables stored in the inherited
class.

The concepts of cores and routers presented

in this paper and the software development
method they promote are aimed at creating
higher-quality cross-platform code. Simplicity
and efficiency are desirable qualities in
programming that we believe can be achieved
with the development solutions proposed. While
improved code readability, code sharing, and
program structure can certainly benefit from
these solutions, our future work needs to focus
on code optimization and larger-scale application
of the proposed approach.

References

[1] Waugh, D. and Phillips, W.J. (1995) “Cross-

Platform Help Products: the Andyne Solution”,
Procs. of the IEEE Professional Communication
Conference, 86-88.

[2] Franz, M. (1997) “Dynamic Linking of Software
Components”, IEEE Computer, 30 (3), March
1997, 74-81.

[3] Brooke, T.C. (2002) “Development of a
Distributed, Cross-Platform Simulator”,
Proceedings of ACM SIGADA 2002, 12-21.

[4] Nishimura, H., Timossi, C., and McDonald, J.L.
(2003) “Cross-Platform SCA Component Using
C++ Builder and Kylix”, Procs. of the Particle
Accelerator Conference (PAC 2003), 2385-2386.

[5] Banerjee, L.C., DeFanti, T., Mehrotra, S. (2004)
“Realistic Cross-Platform Haptic Applications
Using Freely Available Libraries”, Procs. of the

12th IEEE Intl. Symp. on Haptic Interfaces for
Virtual Env. and Teleoperator Systems, 282-289.

[6] Hayes, I.J. (2004) “Towards Platform-
Independent Real-Time Systems”, Proceedings of
the 2004 Australian Software Engineering Conf.
(ASWEC’04), 1-9.

[7] Li, S., Xu, J, and Deng, L. (2004) “Periodic
Partial Validation: Cost-Effective Source Code
Validation Process in Cross-Platform Software
Development Environment”, Proceedings of the
IEEE Pacific Rim Intl. Symposium on
Dependable Computing, 401-406.

[8] Cusumano, M.A. and Yoffie, D.B (1999) “What
Netscape Learned from Cross-Platform Software
Development”, ACM Comm., 42 (10), 72-78.

[9] Jusayan, J. (2004). “SPINDLE: The Stratified
Programming INtegrated DeveLopment Environ-
ment”, Master Thesis, CSE Dept., UNR, USA.

[10] Dascalu, S.M., Pasculescu, A., Woolever, J.,
Fritzinger, E., and Sharan, V. (2003) “Stratified
Programming Integrated Development
Environment (SPIDER)”, Proceedings of the 12th
Intl. Conf. on Intelligent and Adaptive Systems
and Software Engineering, 227-232.

[11] Westphal B, Harris, F., Dascalu, S., (2004).
“Snippets: Support for Drag-and-Drop
Programming in the Redwood Environment”,
Journal of Universal Computer Science, 10 (7),
2004, 859-871.

[12] QT (2005). Trolltech: Cross-Platform C++ GUI
Development and Embedded Systems Solutions.
“Qt Application Framework” Accessed Jan. 28,
2005 at www.trolltech.com

[13] GTK+ (2005) GTK+: The GIMP Toolkit.
Accessed Jan. 28, 2005 at http://www.gtk.org

[14] POSIX Threads (2005) “POSIX Threads Links.”
Accessed April 2005 at www.humanfactor.com

[15] OpenSG (2005) OpenSG Home. Accessed
March, 2005 at www.opensg.org

[16] ZThreads (2005) From Netinformations
Computer Guide: Crahen, E. “ZThreads”.
Accessed March, 2005 at zthread.sourceforge.net

[17] MsgConnect (2005) Eldos Corporation.
“MSGConnect: There is a World to Connect”.
Accessed March, 2005 at msgconnect.com

[18] HawkNL ™ (2005) Hawk Software. “HawkNL
(Hawk Network Library)”. Accessed March,
2005 at www.hawksoft.com/hawknl

[19] UML (2005) OMG’s “UML Resource Page”.
Accessed March 2005, at www.omg.org/uml

[20] Shultz, U. P., (2000) “Partial Evaluation for
Class-Based Object-Oriented Languages”,
Proceedings of the 2nd Symposium on Programs
as Data Objects, 173-197.

[21] Gal, A., Wolfgang, S., and Spinczyk, O. (2001)
“On Minimal Overhead Operating Systems and
Aspect-Oriented Programming”, Proceedings of
the 4th ECOOP Workshop on Object-Orientation.

[22] Gamma, E., Helm, R., Johnson, R., and Vlissides,
J., Design Patterns, Addison-Wesley, 1994.

