

Design Aspects of the Redwood Programming Environment

Brian T. Westphal, Frederick C. Harris, Jr., Sergiu M. Dascalu

Department of Computer Science and Engineering
University of Nevada, Reno

Reno, NV, 89557 USA
{westphal, fredh, dascalus}@cse.unr.edu

Abstract — Redwood is a development environment that
supports drag-and-drop manipulation of programming
constructs and visual representation of program structure.
Redwood’s architecture and functionality are based on the
concept of snippet, defined loosely as a program
component that encapsulates both a coding solution and its
visual presentation. In addition, snippets support creation
of unrestricted code libraries, thus fostering open-source
development. This paper presents the motivation for
Redwood, briefly overviews its functionality and mode of
operation, and then focuses on the concepts underlying its
design. Two essential parts of this design are the Snippet
Display syntax (SDS) and the Snipplet Language (SL),
created by the authors and presented in the paper.
Implementation details, examples of use, and several
directions of future work are also included in the paper.

Index Terms — Development environment, Redwood,
snippet, visual programming.

1 INTRODUCTION
The Redwood programming environment, whose main
design elements are presented in this paper, is a project
initiated in Spring 2003 at the University of Nevada, Reno.
At that time, those involved in this project set forth a
number of objectives for the environment, among them
enhanced support for hierarchical program design,
visualization and direct (via drag-and-drop) manipulation
of programming constructs and components, algorithmic
independence, inclusion of multiple programming
languages, and open source software development [1, 2, 3].

An operational version, Redwood Beta 1, was made
available in early 2004. Redwood Beta 1 demonstrated
many of the key technologies necessary to implement a
usable drag-and-drop programming environment. That
release also led to formulations of new ideas and
realizations that certain aspects have to be modified in
order to create a truly functional development product. Beta
1 introduced the concepts of snippets, design trees, and
disclosure dots [1]. Snippets provide a means by which
generic programming constructs could be described.

Design trees describe, in part, the relationships between the
program components that make up a program. Lastly,
disclosure dots, inspired from disclosure triangles in Mac
OS X [4], work with snippets and design trees to allow
visualization of source code at various levels of abstraction.

One of the most important lessons learned in
developing the first release of Redwood, is that screen real
estate is a precious resource for programmers [5, 6]. For
Beta 2, the entire snippets engine had to be rethought and
rewritten to better address this. Another lesson that became
apparent while developing complicated programs using
Redwood Beta 1 was that static templates are not sufficient
for describing generic programming constructs. With the
Beta 2 release, made publicly available in May 2005, one
can create very powerful, dynamic templates.

This paper presents recent results related to Redwood’s
latest version. Notably, although the authors remained
truthful to the key concepts that define Redwood’s
development (snippets, design tree, disclosure dots, and
drag-and-drop programming) they have radically re-
designed the environment, which in terms of interface is
currently refined to its most essential and elegant version to
date. In terms of snippet manipulation and presentation, the
new version is also significantly more powerful. The
experience gained in undertaking Redwood’s recent
overhaul is reported here, through the presentation of the
environment’s new “look”, details on the two “internal
notations” created to build the latest version of Redwood
(the Syntax Display Language and the Snipplet Language),
and examples of use.

The remainder of this paper is organized as follows:
Section 2 describes the motivation for creating Redwood
and presents an overview of the environment, Section 3
outlines the principal architectural solutions used to build
the environment, Section 4 provides details about the
Snippet Display Syntax, Section 5 focuses on the Snipplet
Language, Section 6 uses the sigma summation example to
illustrate how programs are developed in Redwood, Section
7 briefly compares Redwood with related projects, and
Section 8 concludes the paper with pointers to future work
and a summary of the environment’s significance.

2 REDWOOD: RATIONALE AND OVERVIEW
From its very beginning, the Redwood programming
environment (whose main browser is shown in Figure 1)
has been intended as a tool that provides support for the
large community of open source software developers.
Another main idea behind Redwood’s design has been to
provide a user interface that is easy to learn, easy to use,
quick to operate, and highly reliable. These two major
objectives of Redwood’s design have both been aimed at
increasing the developers’ efficiency as well as at
enhancing their satisfaction when creating programs with
this environment.

Redwood’s distinguishing characteristics, particularly
its support for graphical representation and direct
manipulation of various program constructs and
components, allows software creation in a visual workspace
that is more intuitive and effective than that of a regular
plain text code editor. In Redwood, developers can easily
select program components (snippets) by clicking on their
names in a tools panel (snippet chooser) and then drag-and-
drop them to that place in the program’s layout (program’s
structure) deemed to be the best for satisfying the
program’s requirements. Notably, the collection of snippets
used for building programs in Redwood could grow
constantly, as Redwood’s library could be updated
regularly via the Internet. Shown in Figure 1 are the snippet
chooser plug-in panel (on the left-hand side of Redwood’s
main browser) and the editing panel (on the right-hand side
of the browser).

Fig. 1. Redwood’s main browser

These are the core tools in Redwood for, respectively,

selecting and organizing snippets. Note that the program
shown in the editing panel of Figure 1 is included to
illustrate the manipulation of various snippets. A more
meaningful program in terms of algorithmic content is
presented in Section 6 of the paper.

Writing and manipulating source code is often
ineffective if it involves dealing with a large number of
abstractions. With open source software (OSS) part of this

problem is alleviated, as developers have access to a
significant amount of code already written [7, 8, 9].
Therefore, they can avoid rewriting large portions of code
and focus instead on the innovative aspects of their
software. Unfortunately, software available as open source
has its own drawbacks, for example it can be difficult to
locate, poorly documented, not sufficiently supported, and
not stable enough [8, 10, 11]. The Redwood environment
attempts to solve some of these problems, as its architecture
and functionality is intended not only for efficient program
construction but also for effective manipulation of snippets,
which are well-suited entities for supporting open source
software development.

The snippets technology of Redwood, detailed later in
the paper, is designed for promoting the reusability of code.
Snippets give developers the power to encapsulate ideas,
not just classes or functions, and to visualize program
syntax in meaningful ways. For example, with a snippet
one can use images or drawings to represent design
concepts for which one might implement the code later. In
addition, a future release of Redwood will be configurable
so that software documentation can be enforced. These
features of Redwood could help solve problems with open
source development and programming in general.
Developers do not have to rewrite time and again
essentially the same code, as it could be made available
through the environment’s interface, both locally or
remotely. In many software projects, customization of
existing snippets could represent the only programming
effort needed.

3 INTERNAL DESIGN SUPPORT
Snippets, the key elements of Redwood’s design
philosophy, can be described loosely as software
components that encapsulate a coding solution (program
logic) and its associated graphical representation (data for
on-screen visualization). Snippets have been the subject of
a previous publication, to which we refer the interested
reader [2]. We mention only that a snippet, which can be as
simple as an assignment statement or as complex as a very
intricate algorithm, has an internal structure that consists of
two parts: a display section and a template section.

A snippet’s display and template sections are described
using the specially created Snippet Display Syntax (SDS)
and Snipplet Language (SL, or simply Snipplet),
respectively. The display section of a snippet defines the
portions of the snippet that are visible to the user and the
template section specifies the mapping from the visualized
snippet to the programming language output (generated
code). As detailed later in the paper, display representations
are currently described using static XML while template
sections are described using dynamic Snipplet scripts.

The SDS was designed to be a general-purpose
interface description that is both easy to write and simple to
parse. The SDS came about as part of a supporting
technology designed by the authors for Redwood, the
interface builder (now encapsulated as the

com.bleugris.xml package [12]). The SDS is a convenient
way to build interfaces without writing Java code, which
can be tedious. This syntax allows one to place into the
interface description any Java AWT or Swing components,
including custom components, snippets, and snippet
editors. The interface builder allows one to load interfaces
dynamically from files.

The SL was devised for generating source code. As
such, its design needed to revolve around parsing and string
handling. In addition, scripts needed to have dynamic
access to the elements of the design tree. The language was
built primarily with two other scripting languages in mind,
PERL [13] and JavaScript [14]. These languages are
commonly used for generating HTML and JavaScript code
for web pages. Still, they are not fully geared towards
source code generation. In particular, code in both
languages tends to become unstructured quickly, if not
carefully managed. For source code generation, dealing
with “languages inside of languages”, this was something
that had to be avoided. Like PERL and JavaScript, the SL
makes use of variant types and has several built-in
functions specifically designed for parsing. However,
unlike PERL and JavaScript, SL’s set is kept to a
minimum, removing insecure features such as file I/O. The
SDS and the SL are detailed, respectively, in the next two
sections of the paper.

4 SNIPPET DISPLAY SYNTAX
A snippet is defined, using XML, in two sections. The first
one, the display section, is immediately apparent to the user
of the snippet (through visualization). The second one, the
template section, is only noticeable when the user builds a
program containing a snippet. This section discusses SDS,
the syntax used for defining the display section of a
snippet.

Within SDS, snippet display tags contain table-based
layout of snippet editors. Using a table-based layout allows
one to create non-linear or two-dimensional layouts. The
structure of the table layouts is similar to HTML-style
tables. That is, tables are organized into rows, and rows are
organized into columns – they are “row major”. Each cell
can span one or more rows and columns and can be given
width and height attributes. In addition, each cell can be
given alignment parameters in both the horizontal and
vertical directions.

Snippet editors are the foundation of snippet displays.
Each snippet must contain at least one snippet editor.
Snippet editors are special Java Swing components that
extend the SnippetEditor class. Several snippet editors are
included in Redwood. Each has various parameters that
may be set. For example, the LineEditor snippet editor is
commonly used to display a single line of text. The
Editable parameter can be set to false so that the editor is
used as a display only, and not as an input. The Text
parameter is used to set the message of the editor. The
complete description of SDL has been included in an
internal report at [3] and is available upon request.

5 SNIPPLET LANGUAGE
The Snipplet Language (SL, or just Snipplet) was created
specifically to support source code generation. For
inspiration, ideas from two languages commonly used for
code generation, PERL and JavaScript, were used. The
PERL or Practical Extraction and Report Language [13] is
often used for CGI programming [15]. CGI allows one to
dynamically create web pages, through generation of code
such as HTML, JavaScript, and CSS. The JavaScript
language, a derivative of Java, is often used to generate
HTML and JavaScript code on the client-side [14]. Both
languages have features and syntax that lend nicely to
source code generation. In addition, several original ideas
have been incorporated into the Snipplet language design.

Similar to JavaScript, variables in Snipplet are of
variant type, meaning they can switch between types. The
standard data types include integers, real numbers, strings,
arrays (including multi-dimensional), and associative arrays
(or hash tables). In addition to these, it is also possible to
access snippets, giving scripts direct access to the design
trees of programs.

While examining the features that a source code
generation language should have, several significant factors
come to mind. Most importantly, the syntax should be
direct and simple, able to “stay out of the developer’s way.”
Because one is working with two levels of syntax – the
syntax for the language being used (Snipplet) and the
syntax for the language being generated – it should be easy
to distinguish between the two levels. At the same time,
the language should be powerful enough and flexible
enough to simplify the often-complex demands involved in
source code generation.

Another important factor in designing a language for
generating code is to provide a tendency for self-organizing
syntax. That is, Snipplet code should not become confusing
to examine due to lack of organizational formatting or
overly compressed syntax. PERL programs often suffer
from use of rather esoteric functions. Even though one can
look up the meanings of various shortcut functions,
inclusion of these in a language designed specifically for
source code generation would be a mistake. Examples
include the familiar “s///” function in PERL, which is a
function for replacing substrings. Although compressed
syntax can be convenient for the programmer, more
straightforward naming conventions let programmers less
experienced with the language or program interpret and
modify code more easily. In fact, in Snipplet’s case, even
though the language is quite powerful, the grammar and the
list of functions that a developer needs to know to work
with it are relatively short.

The grammar for the Snipplet Language is shown,
broken down into levels, in Figures 2 through 7. Level 0,
shown in Figure 2, is the start symbol for the grammar. As
one reaches higher levels in the grammar, productions are
more specific.

1 template ::= block WS

Fig. 2. SL Grammar: Level 0, the start symbol

2 block ::= statement*
3 WS ::= (‘\s+’ | ‘//.*’ | ‘/*([\u0000-\u0029\u002B-

\u9999]|*[\u0000-\u002E\u0030-\u9999])**/’)*

Fig. 3. SL Grammar: Level 1, basic template components

4 statement ::= WS (break | declaration | return |

expression) WS ';' | WS (functionDeclaration | if |
loop) WS

Fig. 4. SL Grammar: Level 2, statement types

5 break ::= 'break'
6 declaration ::= 'var' SP identifier (WS '=' WS

(arrayInitializer | expression))?
7 expression ::= binaryArithmeticLevel5

8 //Sub-expressions
9 binaryArithmeticLevel5 ::= binaryArithmeticLevel4

binaryArithmeticLevel5a?
10 binaryArithmeticLevel5a ::= WS '\|\|' WS

binaryArithmeticLevel4 binaryArithmeticLevel5a?
11 binaryArithmeticLevel4 ::= binaryArithmeticLevel3

binaryArithmeticLevel4a?
12 binaryArithmeticLevel4a ::= WS '&&' WS

binaryArithmeticLevel3 binaryArithmeticLevel4a?
13 binaryArithmeticLevel3 ::= binaryArithmeticLevel2

binaryArithmeticLevel3a?
14 binaryArithmeticLevel3a ::= WS '!=|<|<=|==|>=|>' WS

binaryArithmeticLevel2 binaryArithmeticLevel3a?
15 binaryArithmeticLevel2 ::= binaryArithmeticLevel1

binaryArithmeticLevel2a?
16 binaryArithmeticLevel2a ::= WS '\+|\-' WS

binaryArithmeticLevel1 binaryArithmeticLevel2a?
17 binaryArithmeticLevel1 ::= binaryArithmeticLevel0

binaryArithmeticLevel1a?
18 binaryArithmeticLevel1a ::= WS '*|/|%' WS

binaryArithmeticLevel0 binaryArithmeticLevel1a?
19 binaryArithmeticLevel0 ::= mainExpressionPart
20 //End sub-expressions

21 return ::= 'return' SP expression
22 functionDeclaration ::= 'sub' SP identifier WS '\{' WS

block WS '\}'
23 if ::= ifPart (WS elseIfPart)* (WS elsePart)?
24 loop ::= dowhileLoop | foreachLoop | forLoop |

whileLoop

Fig. 5. SL Grammar: Level 3, statement specifications

25 identifier ::= arrayIdentifier | scalarIdentifier |

hashIdentifier
26 arrayInitializer ::= '\{' WS (expression (WS ',' WS

expression)* WS)? '\}'
27 typeCast ::= '\(' WS ('string' | 'real' | 'integer') WS

'\)'
28 mainExpressionPart ::= (typeCast WS)? (assignment |

doubleValue | functionCall | identifier | longValue |
parentheses | string | unaryArithmetic |
snippetEditorFunctionCall)

29 ifPart ::= 'if' WS condition WS '\{' WS block WS '\}'
30 elseIfPart ::= 'elseif' WS condition WS '\{' WS block

WS '\}'
31 elsePart ::= 'else' WS '\{' WS block WS '\}'
32 dowhileLoop ::= 'do' WS '\{' WS block WS '\}' WS

'while' WS condition
33 foreachLoop ::= 'foreach' SP identifier WS '\(' WS

expression WS '\)' WS '\{' WS block WS '\}'
34 forLoop ::= 'for' WS '\(' (expression | declaration) WS

';' WS expression WS ';' WS expression WS '\)' WS '\{'
WS block WS '\}'

35 SP ::= ('\s+' | '//.*' | '/*([\u0000-\u0029\u002B-
\u9999]|*[\u0000-\u002E\u0030-\u9999])**/')+

36 whileLoop ::= 'while' WS condition WS '\{' WS block WS
'\}'

Fig. 6. SL Grammar: Level 4, primary support for statements

6 WRITING PROGRAMS IN REDWOOD
To use an existing snippet, one may simply drag a snippet,
listed by name in the snippet chooser tool, and drop it into

37 arrayIdentifier ::= scalarIdentifier ('\[' expression?
'\]')+

38 assignment ::= identifier WS ('=' | '\+=' | '\-=' |
'*=' | '/=' | '%=') WS expression

39 doubleValue ::= '(\+|\-)?[0-9]+\.[0-9]+'
40 functionCall ::= identifier WS '\(' WS parameters? WS

'\)'
41 hashIdentifier ::= scalarIdentifier '\{' expression?

'\}'
42 longValue ::= '(\+|\-)?[0-9]+'
43 parentheses ::= '\(' expression '\)'
44 scalarIdentifier ::= '[\$@A-Za-z_][A-Za-z_0-9]*'
45 snippetEditorFunctionCall ::= '\[#' WS expression (WS

':' WS parameters)? WS '\]'
46 string ::= '"(\\"|[\u0000-\u0021\u0023-

\u9999])*"|\'(\\\'|[\u0000-\u0026\u0028-\u9999])*\''
47 unaryArithmetic ::= '!' WS expression
48 condition ::= '\(' WS expression WS '\)'

Fig. 7. SL Grammar: Level 5, secondary support

the editing space. Once in place, a snippet can be
repositioned and manipulated as needed. A newly dropped
snippet is called a visualized snippet. These snippets are
ready for customization. Not all snippets require
customization; some may meet one’s needs immediately
upon being dropped. However, most snippets will need at
least minor customizations. A snippet can be customized in
two ways. With some types of snippet editors, editing text
and/or manipulating controls will help customize the
snippet. For other types of snippet editors, one may drop
additional snippets. For example, in a CodeEditor one may
drop as many snippets as necessary. In an
ExpressionEditor only a single snippet may be dropped.

The Select Build Language option of the Project menu
allows a programmer to select the language desired for
output. The current Beta 2 release of Redwood supports C,
C++, and Java output for all included snippets. The Project
menu’s Build option runs the Snipplet scripts for the
project generating source code output in the desired
language. This code is placed in source files as appropriate.

Figures 8 and 9 form the two portions of the Sigma
Summation snippet. Figure 8 contains the display tag,
which describes the visual elements of the snippet. Figure
9 contains the template tag. The template tag describes how
source code is generated based on the customizations made
to the snippet. Figure 10 demonstrates the use of the Sigma
Summation snippet in Redwood. The code in the figure
performs the naive matrix multiplication algorithm [16].
Because of the graphical environment, programming
constructs can be described in their natural form. Figure 11
is the equivalent code written in Java. While it is relatively
easy for a programmer to decipher either version, Figure 10
displays a more compact depiction.

7 RELATED WORK
In its early stages, Redwood has been inspired primarily by
Alice, a visual programming system developed at Carnegie
Melon University by the Stage 3 Research Group [17, 18].
Alice proposed the idea of visual, drag-and-drop
programming as a means for teaching computer-based
problem solving and computer programming to high school

and university students. However, Redwood is not designed
specifically for use by students. Redwood’s scope is larger,
as it aims at providing a useful tool for the much larger
open source software community, including beginners,
intermediate, and experienced programmers. Of course,
based on its main features (visual representation and direct
manipulation), Redwood fits in the category of visual
programming environments [19, 20].

<Snippet type="Math.Sigma Summation"
extends="Statement, Expression"><display><table>
 <tr>
 <td width="8"/>
 <td valign="center">
 <table>
 <tr><td halign="center"><ExpressionEditor
 name="haltingvalue">
 <param name="MinimumSize"><Dimension>
 <param name="Size"><int value="10"/><int
 value="10"/></param>
 </Dimension></param>
 </ExpressionEditor></td></tr>
 <tr><td halign="center"><LineEditor>
 <param name="Text"><String
 value="∑"/></param>
 <param name="FontSize"><int value="24"/></param>
 <param name="Editable"><boolean
 value="false"/></param>
 </LineEditor></td></tr>
 <tr><td halign="center"><table><tr>
 <td><IdentifierEditor name="loopvariable">
 <param name="Text"><String value="i"/></param>
 <param name="MinimumSize"><Dimension>
 <param name="Size"><int value="4"/><int
value="-
 1"/></param>
 </Dimension></param>
 </IdentifierEditor></td>
 <td><LineEditor>
 <param name="Text"><String value=" =
"/></param>
 <param name="Editable"><boolean
 value="false"/></param>
 </LineEditor></td>
 <td>
 <ExpressionEditor name=”initialvalue”>
 <param name=”Snippet”>
 <Snippet type=”Numeric Value”>
 <LineEditor name=”value”>
 <param name=”Text”><String
 value=”0”/></param>
 </LineEditor>
 </Snippet>
 </param>
 <param name=”MinimumSize”><Dimension>
 <param name=”Size”><int value=”10”/><int
 value=”10”/></param>
 </Dimension></param>
 </ExpressionEditor>
 </td>
 </tr></table></td></tr>
 </table>
 </td>
 <td valign=”center”>
 <ExpressionEditor name=”expression”>
 <param name=”MinimumSize”><Dimension>
 <param name=”Size”><int value=”10”/><int
 value=”10”/></param>
 </Dimension></param>
 </ExpressionEditor>
 </td>
 <td width=”4”/>
 </tr>
</table></display>

Fig. 8. Snippet display of Sigma Summation

<template language="Java">
 sub calculateReturnValue
 {
 var uid = getUID ();

 var expressionReturnValue = [#"expression" :
 "+Expression:return calculateReturnValue ();"];

 var resultType = [#"expression" :
"+Expression:return
 determineResultType ();"];

 var result[] = {
 "
 " + resultType + " Snippet_SigmaSummation_sum_" +
 uid + " = new " + resultType + " ();
 for (RedwoodDouble " + [#"loopvariable"] + " = " +
 [#"initialvalue"] + ";
 " + [#"loopvariable"] + ".lessThanOrEqualTo (" +
 [#"haltingvalue"] + ").booleanValue (); " +
 [#"loopvariable"] + " = " + [#"loopvariable"] +
 ".add (new RedwoodDouble (1)))
 {
 " + expressionReturnValue[0] + "
 Snippet_SigmaSummation_sum_" + uid + " =
 Snippet_SigmaSummation_sum_" +
 uid + ".add (" + expressionReturnValue[1] + ");
 }
 ",
 "Snippet_SigmaSummation_sum_" + uid
 };
 return result;
 }

 var returnValue = calculateReturnValue ();
 return returnValue[0];
 </template></Snippet>

Fig. 9. Snippet template of Sigma Summation (Java output)

Fig. 10. Matrix Multiplication with Sigma Summation Snippet

Fig. 11. Matrix Multiplication in Java

Examples of environments that have similarities with
Redwood include Prograph [21], LabView [22], CODE
[23] and several others. Nevertheless Redwood is distinct
from them in at least one of the following: execution
model, application domain (e.g., LabView is best suited for
engineering applications: test, measuring and control [24]),
program components used (in this respect, snippets seems
to be a concept quite unique to Redwood, at least in the
sense we use it), and user interface (“look and feel”), which
is clearly Redwood specific. This is not to say that
Redwood is better than these languages, as for example the
above environments supports parallel programming while
Redwood does not at this point in time.

It is fair to say that, first, we are currently concerned
with actually enhancing Redwood’s present capabilities and
plan for the near future a comparative study with other
visual environments and, second, most of the above
environments are specialized, and good or very good in
some respects. We believe that Redwood is also good at
what it does (or is characterized by) including support for
general program development, “smooth” (that is,
streamlined, simple and refined) user interface, support for
multiple languages, extensibility, and flexibility.

8 FUTURE WORK AND CONCLUSIONS
In this paper the main design solutions used for creating
Redwood were described. We believe that this novel
programming environment, based on the key concept of
snippets and employing the “drag-and-drop programming”
paradigm, offers attractive, efficient and comprehensive
support for software development.

Future releases of Redwood will include additional
programming support and more usability features. Snippet
displays will allow for dynamic content and the
environment will be stress-tested for efficiency, reliability,
and ease-of-use. Besides general improvements that can be
made to the system, we have plans to include a large
collection of pre-built snippets in the environments, in
addition to the online snippet library. This set will include
tools for parallel programming, mathematical
representations of programming constructs, and templates
for commonly-used structures such as loops.

One of the most useful features of Redwood is that it
allows one to “extend” languages. With a plain text
programming language, a developer is confined to
standards sometimes defined decades before. The
developer can add instances of new structures such as
classes and functions, but he or she cannot create new types
of structures. He or she cannot, for example, create a new
type of loop in C++ (such as an until loop), which might be
more direct (than a while loop) for solving certain
problems. Redwood is about designing and programming
software using natural techniques, where the environment
and language do not get in the developer’s way (on the

contrary, it is intended to gracefully and efficiently support
him or her). The system creates a supporting environment
for a programmer to work and think effectively.

REFERENCES
[1] Westphal, B. T., Harris, F. C., Jr., and Dascalu, M. S. (2004)

“Redwood: A Visual Environment for Software Design and
Implementation”, in WSEAS Trans. on Computing, 2(3):380-386.

[2] Westphal, B. T., Harris, F. C., Jr., and Dascalu, M. S. (2004)
“Snippets: Support for Drag-and-Drop Programming in the Redwood
Environment”, in Journal of Universal Computer Science (JUCS),
2004, 10(7):859-871.

[3] Westphal, B. T. (2004) “The Redwood Programming Environment”,
Master's thesis, University of Nevada, Reno, NV, USA.

[4] “Mac OS X Panther Operating System”, retrieved March 1, 2005 at
http://www.apple.com/macosx/

[5] Burnett, I., Baker, M.J., Bohus, C., Carlson, P., Yang, S., and Van
Zee, P. (1995) “Scaling Up Visual Programming Languages”, IEEE
Computer, vol. 28, no. 3, March, pp. 45-54.

[6] Na, L., Hosking, J, and Grundy, J. (2004) “Integrating a Zoomable
User Interfaces Concept into a Visual Langauge Meta-Tool
Environment”, Proceedings of the 2004 IEEE Symposium on Visual
Languages and Human Centric Computing, pp. 38-40.

[7] Wang, H. and Wang, C. (2001) “Open Source Software Adoption: A
Status Report”, IEEE Software, vol. 18, no.2, pp. 90-95.

[8] Lawton, G. (2002) “Open Source Security: Opportunity or
Oxymoron?”, IEEE Computer, vol. 35, no. 3, March, pp. 18-21.

[9] van Krogh, S. G., Spaeth, S., and Haefliger, S. (2005) “Knowledge
Reuse in Open Source Software: An Exploratory Study of 15 Open
Source Projects”, Proceedings of the 38th Annual Hawaii
International Conference on Systems Sciences (HICSS’05), pp. 1-10.

[10] Ganssle (2000) The Ganssle Group. “Open Source?”, retrieved
February 20, 2005 at http://www.ganssle.com/articles/opensrc.htm

[11] Fitzgerald, B. (2004) “A Critical Look at Open Source”, IEEE
Computer, vol. 37, no. 7, July, pp. 92-94.

[12] “com.bleugris.xml v1.07 Programmer's Manual”, retrieved March 1,
2005 at http://www.bleugris.com/java/docs/com_bleugris_xml.html

[13] “Perl.com: Documentation”, retrieved February 20, 2005 from
http://www.perl.com/pub/q/documentation

[14] “Core JavaScript Reference 1.5”, retrieved Feb. 2005 from http://
devedge.netscape.com/library/manuals/2000/javascript/1.5/reference

[15] Kew, N. (2000) “CGI Programming FAQ”, retrieved February 22,
2005 from http://www.htmlhelp.com/faq/cgifaq.html

[16] Foster, I. (1995) “Matrix Multiplication”, retrieved February 28,
2005 from http://www-unix.mcs.anl.gov/dbpp/text/node45.html

[17] Pausch, R. et al. (1995), “A Brief Architectural Overview of Alice, a
Rapid Prototyping System for Virtual Reality”, IEEE Computer
Graphics and Applications, May 1995.

[18] “Alice: Free, Easy, Interactive 3D Graphics for the WWW”,
retrieved February 28, 2005 from http://www.alice.org/

[19] Levialdi, S. (2001) “Visual Languages: Concepts, Constructs, and
Claims”, Proceedings of the 23rd IEEE International Conference on
Information Technology Interfaces, pp. 29-33.

[20] Burnett, M.M. (2001) “Software Engineering for Visual
Programming Languages”, Handbook for Soft. Eng. and Knowledge
Engineering, vol. 2, pp. 77-92. World Scientific Publishing.

[21] Cox, P.T., Glaser, H., and MacLean, S. (1998) “A Visual
Development Ernvironment for Parallel Applications”, Proceedings
of the 1998 IEEE Symposium on Visual Languages, pp. 144-151.

[22] Wang, J.Z. (2003) “LabView in Engineering Laboratory Courses”,
Procs. of 33rd IEEE Frontiers in Education Conf., vol. 2, pp. FE13.

[23] Newton, P. and Browne, J.C. (1992) “The CODE 2.0 Graphical
Parallel Programming Language”, Proceedings of the ACM
International Conference on Supercomputing, pp. 167-177.

[24] Josifovska, J. (2003) “The Father of LabView”, IEE Review, Virtual
Instrumentation, October, pp. 32-35.

