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ABSTRACT

We present the design and implementation of an immersive
interactive volumetric visualization system. This system
was designed to allow atmospheric modelers to visualize
their simulations in an immersive environment such as our
Fakespace FLEX system. By allowing them to play back
the entire simulation as well as choose what airborne par-
ticulates to turn on and off atmospheric scientists are given
an incredible degree of control regarding what to study and
look at from any angle with amazing detail at the interac-
tions between particulates in a simulation and interactions
of the particulates with surrounding terrain.

INTRODUCTION

Atmospheric simulation is an important means of under-
standing the environment around us. Through atmospheric
simulation we can predict how various airborne particulates
such as dirt, smog, and fire can affect our cities and overall
public health. However, problems can arise when trying to
interpret the results of the simulation. For example, it can
be difficult to determine the density or shape of an individ-
ual particulate if the area under study is large. A similar
problem arises when attempting to find how various terrain
formations interact with and affect the atmosphere. How-
ever, little in the way of research exists on how to accurately
model atmospheric data at interactive frame rates.

Since raw data can be hard to conceptualize, particularly
when the size of the data sets can be hundreds of megabytes
if not gigabytes, an alternative method of interpreting at-
mospheric data is needed. Virtual reality technology allows
us to accurately and realistically model atmospheric data
in a meaningful way for the user. Virtual reality has long
been used as a way of creating realistic visual simulations
to help aid in interpreting large and complex data sets. Re-
cent advances in visualization and supporting technologies
now offers the possibilities of creating realistic, real-time
atmospheric visualizations for research.

By combining virtual reality technology with atmo-

spheric simulation users are able to visually conceptualize
large amounts of atmospheric data in an interactive way.
This paper describes a package we call Vesuvius which is
a virtual reality library for visualizing large sets of atmo-
spheric data. Vesuvius is intended to allow users to visualize
various atmospheric data sets from a variety of viewpoints
and to allow for playback of atmospheric data sets that con-
tain temporal information.

The rest of this paper is structured as follows. First
we present some related work on atmospheric visualization,
virtual reality, and previous research on volume rendering.
Next we present an overview of the execution environments
followed by our immersive volume visualization library for
visualizing atmospheric data. Lastly presents our conclu-
sion and possibilities for future work.

BACKGROUND

Atmospheric visualization would benefit from the merger
of both volume visualization and virtual reality. Marrying
the two, users can see realistic 3-dimensional representa-
tions of their atmospheric simulations. In addition, it al-
lows users to immerse themselves in the simulation, en-
abling them to watch it from different points of view in a
highly realistic environment.

Atmospheric Simulation

Atmospheric modeling and simulation is done with
numerical models like the National Center for Atmo-
spheric Research (NCAR)/Pennsylvania State University
Mesoscale Model (MM5). Models such as MM5 simulate
the behavior of a wide range of atmospheric parameters, in-
cluding mass parameters (e.g. temperature and humidity)
as well as momentum parameters (e.g. wind U, V, and W
fields). When these models are initialized with archived me-
teorological data for prior conditions, their simulations can
be used to analyze the state of the atmosphere during a past
event. When they are initialized with current meteorologi-
cal observation data, their simulations serve as atmospheric
forecasts. These models are quite adaptable and can be uti-
lized for atmospheric simulations over domains with reso-
lutions ranging from tens of kilometers down to just a few
kilometers. Ongoing research is further refining the physics
in MM5 so that simulations over domains with horizontal



resolutions of less than one kilometer can be achieved.

In addition to models like MM5 which simulate the state
of the atmosphere, there are specialized models that sim-
ulate a specific component of the atmosphere. One such
model is the Comprehensive Air Quality Model with Ex-
tensions (CAMx) which simulates the behavior of atmo-
spheric chemicals and its use is common in air pollution
studies. Like MM5, CAMx can simulate past, current, or
future events and can be scaled to adapt to a wide variety of
domain sizes and resolutions.

Atmospheric Visualization

In 1988, the Space Science and Engineering Center
(SSEC) at the University of Wisconsin, Madison released
the Vis5D atmospheric visualization tool and in 1994, a vir-
tual reality port of this open-source application was created
for the CAVE immersive display system. Vis5D, with it’s
grid limitations, displaying smog data over Los Angeles
can be seen in Figure 1. Since these early efforts, a great
deal of the work done in the area of atmospheric visualiza-
tion has been in the field of cloud simulation and rendering
(Dobashi et al., 2000; Ebert and Parent, 1990; Harris and
Lastra, 2001). Because of the level of complexity in ren-
dering clouds (realistic shading, light scattering, etc) much
previous work has been done in non-interactive rendering
techniques for cloud rendering. Work into interactive cloud
rendering has produced methods whereby most scattering
and shading are done in a preprocessing step and textured
polygons known as imposters are used to bypass fill rate
limitations (Harris and Lastra, 2001).

Figure 1. Volume Rendering in Vis5D

Volume Rendering

Volume visualization deals with displaying volumetric
data sets, represented as sample points. There are two means
of achieving this. First is indirect volume rendering (IVR)
which involves converting the volumetric data into a set of
polygonal iso-surfaces which are then rendered using tradi-
tional graphics hardware. The second means is called direct
volume rendering (DVR) which involves rendering directly
to the screen without an intermediate step such as converting

to iso-surfaces.

Indirect volume rendering assumes that extractable iso-
surfaces exist, which is not always the case (such as flow
fields, clouds, etc.). In addition, the complexity of the iso-
surfaces might be so complex that they may overwhelm the
capabilities of the graphics hardware. Because of this, di-
rect volume rendering may be more efficient. What follows
is an explanation of the primary methods of direct volume
rendering.

Raycasting
Raycasting is perhaps the most researched of direct vol-

ume rendering algorithms (Levoy, 1988, 1990) with several
acceleration techniques for more interactive volume ray-
casting being proposed over the last decade (Grimm et al.,
2004; Knittel, 2000; Mora et al., 2002; Wan et al., 1999).

For each pixel in the image, a ray is cast into the vol-
ume. At fixed intervals along the ray the volume data is re-
sampled, most commonly using tri-linear interpolation. Tri-
linear interpolation involves taking the scalar values of the
eight neighbors to a particular pixel and weighing them ac-
cording to their distance to the actual location. The solu-
tions to each interval are combined either in a front-to-back
or back-to-front order to determine the final color and opac-
ity of the pixel. Because each pixel has to be computed,
raycasting is the slowest of volume rendering algorithms.
However, because volumes are determined on a pixel-by-
pixel basis, they can generate high-quality images without
any blurring or loss of detail.

Shear-warp
Shear-warp (Lacroute and Levoy, 1994) is a fast means

of software volume rendering. Unlike raycasting, no rays
are cast into the volume. Instead, the volume is projected
slice by slice onto the image plane using bi-linear inter-
polation within the slices. In shear-warp, an intermediate
image plane is created and aligned with the volume. The
volume itself is then sheared to turn the projection direc-
tion into a direction perpendicular to the intermediate image
plane. This intermediate image is finally warped to the final
image plane. Due to the warping to the final image plane
only being required once per image, not once per slice and
run-length encoding of the volume data, shear-warping is
considered the fastest software base volume rendering al-
gorithm. However, the speed of shear-warp does not come
without a price, magnification of volume data results in blur-
ring of details and the addition of artifacts. In addition, it re-
quires three copies of the volume data to remain in memory,
one copy for each major axis.

Texture-Based
3D texture mapping uses 3D textures to render volumes.

The volume is loaded into texture memory and sampled as
a series of slices. The resulting planes are then drawn as
a series of textured polygons that are blended together, thus
creating the final image. Because texture mapping and com-
positing are performed in hardware, the rendering is actually
faster than shear-warping for small datasets. However, if a
dataset if too large to fit completely into texture memory,



then performance is decreased considerably as data must
continually be paged back and forth between the hard drive
and graphical memory. To minimize the performance im-
pact of this, the volume is encoded into an octree structure
(Boada et al., 2001; Fang et al., 1996).

Virtual Reality

VR provides a medium composed of immersive interac-
tive computer simulations that provide real-time feedback
to the users (Sherman and Craig, 2003). VR is a technology
that can provide sophisticated real time 3D user interface
for users to interact with 3D applications. Therefore, VR
technology is a good candidate as a user interface for inter-
action with 3D atmospheric data. There have been various
research efforts regarding the use of VR technology in dif-
ferent contexts (Chen et al., 2001; Koller et al., 1995; Lin
et al., 2000; Loftin et al., 1998).

Interaction within a virtual environment can generally
be categorized into selection, manipulation, navigation, and
system control. Selection and manipulation techniques will
be very different from one application to another as each
application’s interaction requirements are different. Navi-
gation techniques are mandatory for large scaled VR appli-
cations like terrain visualization since the user will need to
be able to get from one point to another within the virtual
environment. In system control interaction, the user will be
able to control the state of the application at the system level
where the execution mode of the application is changed.

The research of applying VR technology into the field
of atmospheric research is a little explored research direc-
tion. The capability to see various types of volumetric data
in a 3D large screen immersive environment has not been
explored. In the research of large displays, (Huang et al.,
2006) described some of the unique features provided by
their use. These unique features provided by large displays
could be beneficial in the viewing and interaction with large
atmospheric datasets within a virtual environment.

HARDWARE AND SOFTWARE ENVIRONMENT

Our immersive visualization facility hardware includes
both a four-screen CAVE-like Fakespace FLEX display
(Figure 2), and a single-screen Visbox-P1 (Figure 3). The
FLEX display is driven by an SGI Prism running SuSE 9.0
Enterprise edition, with four active-stereo capable graph-
ics channels. Tracking of the participants is accomplished
with an Intersense IS-900 VETracker with wireless Mini-
Trax Head Tracker and wireless Wand with 5 Buttons and
center click joystick. Both the viewpoint and the dominant
hand are tracked at interactive rates to enable participants to
interact with the application

For the VisBox-P1 virtual environment system, a custom
built dual Opteron graphics workstation running OpenSUSE
10.0 with an NVIDIA GeForce 6800 GT with dual outputs
is used to drive two projectors. Tracking of the participants
is accomplished with an Ascension Technology Flock of
Birds with one sensor for positional tracking of the gamepad
used for button and joystick inputs. The tracked gamepad is
used by the participants to interact with the application. The

Figure 2. FakeSpace FLEX Display

Figure 3. VisBox-P1 Display

viewpoint of the participant’s head is tracked using propri-
etary optical tracking solution.

Vesuvius is designed to work well inside the open-source
FreeVR (Sherman, 2007) and OpenSceneGraph (OSG) li-
braries. The FreeVR virtual reality integration library is a
cross-display VR library with built-in interfaces for many
input and output devices. It allows programmers to develop
on a standard desktop machine, with inputs and display win-
dows that simulate a projection or head- based immersive
system. The application can then run on either the Visbox-
P1 or FLEX displays, or the display of a collaborator on just
about any type of VR system. The OpenSceneGraph library
is used to help with world rendering. OSG allows 3D objects



to be hierarchically organized within the environment, and
also provides a system that optimizes the rendering through
the use of various culling and sorting techniques.

Although we chose the VisBox-P1 and the FLEX as the
display devices, the application can easily be modified to
display on different virtual environment displays with vari-
ous configurations supported by the FreeVR library. In addi-
tion, the FreeVR library also supports various virtual reality
devices that enable the use of other tracking devices with the
application.

PROPOSED ARCHITECTURE

Although much has been done in the realm of volume
visualization little has been done in atmospheric visualiza-
tion, specifically with the MM5 model. Most volume vi-
sualization research has focused on visualizing static med-
ical data such as CAT scans and MRIs. Unlike medical
imagery, there is often a temporal variable associated with
atmospheric data sets. This means that for a given partic-
ulate, the user might wish to see its simulated interaction
over the course of minutes, hours, or even days. In addi-
tion, the size of atmospheric data tends to be considerably
more than that of medical data if for no other reason than the
scope of the datasets. Work in this area of dynamic volumes
is far from complete. In addition, atmospheric data contains
many types of divergent data, each of which may or may not
be wished to be displayed by the user. The purpose of Vesu-
vius is to address these differences by visualizing dynamic
and varied atmospheric data at interactive framerates.

Design

At the core of Vesuvius are two direct volume render-
ing algorithms: raycasting and shear-warping. Vesuvius was
designed with the algorithms derived from a common base
to create a minimum amount of code duplication and in-
crease overall program cohesion. As an added result of this
derived structure, other volume rendering algorithms such
as texture-based volume rendering can be easily added in
the future. In addition, this allows for a common interface
through which the algorithms can receive data (such as cam-
era position) and send data (such as the final volumetric im-
age). An overview of this design is given in Figure 5.

Raycasting was chosen as one of the direct volume ren-
dering algorithms to implement because of its ability to dis-
play highly detailed volumes. Unlike other algorithms such
as shear-warping, increasing the resolution of a volume or
its magnification will not result in any loss of detail when
using the raycasting algorithm. However, due to the compu-
tationally intensive nature of the algorithm, even with opti-
mizations such as early ray termination (Levoy, 1990), spa-
tial encoding of the volumetric data (Grimm et al., 2004; So-
bierajski and Avila, 1995), or an object-ordered approach
(Mora et al., 2002) the framerate could barely be consid-
ered interactive, especially in a virtual environment. This
algorithm is particularly suited to static, highly detailed vol-
umetric data such as that of medical data which comes from

CT and MRI scanners.

The second algorithm chosen was shear-warping be-
cause of how it complements raycasting. While shear-
warping tends to blur detail when the resolution is increased
or the volume is magnified, under normal viewing condi-
tions it is the fastest of the software volume rendering al-
gorithms. The speed of shear-warp allows the amount and
size of information normally contained in volumetric data
to run at interactive framerates. This is made more impor-
tant when temporal data is factored into the volume data,
where the volume will be required to dynamically move and
change in real-time. With the amount of data being dis-
played in such a way, it becomes essential that things run at
interactive framerates.

Once the image is obtained, a texture is created and
placed on a billboarded polygon at the position of the actual
volume data. This minimizes the amount of data that actu-
ally needs to be rendered as well as minimizes the amount
of calculating that needs to be done, as the polygon tex-
ture only needs to be recalculated when the camera position
changes.

Vesuvius works with an external program that will read
and convert MM5 files into a custom file format. Because
of the sheer size and complexity of MM5 files it is diffi-
cult to find and extract just the relevant volumetric informa-
tion for a given frame in real-time. This external program
extracts all relevant volume information (including bounds,
opacities, etc.) for each particulate and stores this into the
custom file format. In cases when there is temporal data
in the MM5, the step is recorded and the temporal data is
stored as deltas at each step interval. A command line op-
tion in the converter program allows the user to specify a
resolution for the time interval. This means that the user
can specify a higher resolution for the temporal data stored
in the MM5 file and the program will interpolate the tem-
poral data and add this new information into the file. While
this greatly increases the file size, it also makes animations
of atmospheric data both smoother and less computationally
intensive, which results in greater framerates. The layout of
this file structure is given in Figure 4.

What makes Vesuvius unique is the amount of control
it gives the user when viewing the atmospheric data. It en-
capsulates controls for moving through the temporal data in
the dataset, allowing the user to rewind, fast-forward, play,
and pause atmospheric simulations in real-time. In addition,
Vesuvius can render overlapping volume data such as that of
multiple particulates. This is done by first keeping track of
each particulate separately and computing how much each
particulate adds to the overall volume data at a given point.
From this, the user can choose to display, hide, or adjust the
transparency for any given particulate type. This allows the
user to focus on the interactions of one or several certain
particulates with the atmosphere and for the user to see how
these particulates are affected by the varying conditions of
the simulation without the added information of every other
particulate in the dataset.
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Figure 5. Software Design
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Figure 4. File Structure

CONCLUSIONS

Vesuvius provides atmospheric scientists a chance to in-
teractively evaluate the large amounts of data that are gener-
ated from an atmospheric simulation. Instead of gigabytes
of raw numbers they can utilize the three-dimensional inter-
action and visualization capability provided by FLEX and
VisBox-P1 or possibly other virtual reality environments.

By allowing them to play back the entire simulation as
well as choose particulate opacity and which particulates
to enable and disable, atmospheric scientists are given an
incredible degree of control regarding what they choose to
study and look at. In addition, by rendering the entire sim-
ulation in a full 3D virtual reality environment they are al-
lowed an unparalleled view from any angle with amazing

detail at the interactions between particulates in a simulation
and interactions of the particulates with surrounding terrain.

FUTURE WORK

Optimizing the renderer to achieve higher framerates is
the main focus of our future work. By paralellizing the
algorithm to fully utilize the many CPUs available to us,
the computation of the volume rendering should be done in
far less time. Also, by rethinking how data is shared be-
tween the different screens in the virtual environment we
hope to minimize redundant data in memory. We feel that
by re-evaluating how overlapping volumes affect each other
we can come up with a new, less computationally expen-
sive process. A texture-based volume rendering algorithm
is also being considered for hardware acceleration of small
datasets or small particulates in a dataset. In addition to ren-
dering optimizations, optimizations can also be made to the
file structure. By reorganizing the custom volume file we
hope to be able to fit more into memory and have less hard
drive access and seeking, which are notoriously slow.
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