
AVRATAR: A VIRTUAL ENVIRONMENT FOR PUPPET ANIMATION

Alexander Redei
Department of Computer Science & Engineering

Univ. of Nevada, Reno
Reno, Nevada, 89557

redeia@unr.nevada.edu

Ed Tumbusch
Department of Computer Science & Engineering

Univ. of Nevada, Reno
Reno, Nevada, 89557

edtumbusch@sbcglobal.net

Josh Koberstein
Department of Computer Science

& Engineering
Univ. of Nevada, Reno
Reno, Nevada, 89557

koberste@unr.nevada.edu

Sergiu Dascalu
Department of Computer Science

& Engineering
Univ. of Nevada, Reno
Reno, Nevada, 89557
dascalus@cse.unr.edu

Fred Harris
Department of Computer Science

& Engineering
Univ. of Nevada, Reno
Reno, Nevada, 89557

fredh@cse.unr.edu

ABSTRACT

When it comes to three dimensional computer animations,
the use of live actors to control the movements of
onscreen characters produces a realism that is
unsurpassed. But so are the costs, and that is why
Avratar, a virtual environment for puppet animation, uses
widely available products utilizing motion capture
technology to control a real time puppet in a world
limited only by the imagination of the user. This paper
introduces Avratar, a virtual puppet animation system,
where users are able to utilize the natural movements of
their own body to create dazzling real time performances
or animated cinema. The UML-based software model of
Avratar is presented in this paper, in addition to examples
of application, and planned future work.

KEYWORDS: Virtual reality, animation, P5 glove,
digital puppeteering, software engineering,

1 INTRODUCTION

Avratar is the brainchild of team triple-eight, which
consists of the five authors listed on this document. The
original inspiration was from Ed Tumbusch, who recalls
seeing an animated bumper while watching TV. The
bumper was a 3D digital character that would promote
upcoming programs. The character was controlled via
motion sensing gloves that were connected to a
mainframe system. When a user moved the gloves an
animated character mimicked their movements. When Ed
described this to our team, we all liked the idea; and thus,
Avratar: a virtual environment for puppet animation was
born.

Digital animation methods have been available to the

movie industry for years [1]. Real-time 3D animation
methods are almost always passed in favor of cheaper,
and less tedious methods. Consumers are unlikely to

adopt Hollywood-style animation methods because they
are too expensive and take too much time.

Actual consumer products that do some aspects of

real-time 3D animation indeed exist, but are very limited
in application and do not use graphics standards. Such an
example of this would be iClone [2], a software that
mimics the user via a digital avatar with the use of a
webcam and a microphone

Users of Avratar are able to utilize a widely available

and inexpensive input peripheral, the P5 glove, and
standard 3D editing tools to transform natural hand and
finger movements into sophisticated and fun digital
animated cinema. Users can roll their own digital puppets
by combining pre-existing models (head and hand puppet
models) into a character they wish to animate. The user
selects an appropriate environment (a cave, for instance),
and the animation process begins. This consists of a
multi-layered concept: meaning in each layer a user works
with one item of an animation, until the user is satisfied
and the layers are combined into a single animation.

As discussed above, there are several existing methods

of modeling a digital puppet, but they are slow, tedious,
and wildly expensive. Avratar delivers an affordable
platform for digital puppeteering [3, 4] utilizing standards
instead of custom solutions. The result is a new kind of
digital animation that allows for a user, with little training
and minimal expenses, to deliver dazzling animations.

The remainder of this document is structured as

follows: Section 2 outlines related work in the field of
digital puppeteering and shows the methods available.
Section 3 details the functional and non functional
requirements of Avratar in addition to use case models, in
UML format [5]. High-level design is described in
Section 4, Section 5 describes results with user

applications, and Section 6 details the future direction of
Avratar. Our conclusions are presented in Section 7.

2 BACKGROUND

Digital animation methods have been available, and in

high demand in the movie industry for years [1]. Digital
animation is mostly done manually by the work of
specialized artists, and true digital animation via motion
capture is usually passed in favor of other techniques
because of the costs. The methods used by the movie
industry usually involve slow, tedious, and highly
uncomfortable work (such as painting an actor’s entire
body blue or green, then attaching sensors like poka-dots
to their bodies, and having them perform, naked, in front
of a camera for hours). There is no consumer market with
such methods; a consumer would not have the money, nor
find the interest in this kind of digital animation.

One product that is consumer-oriented, called iClone

[2], allows the user to create a three dimensional avatar
complete with lip synchronization from a voice recording.
Provided the user has a camera and a picture of his or her
face, the iClone software will digitally mimic, through a
3D avatar, the user’s facial movements based upon input
from the camera and a microphone. This program does
not provide for any customization and does not allow for
user-controlled animation.

MotionBuilder [6], a product developed by AutoDesk

Inc., allows a user to animate a 3D character in real-time
by wearing motion capture devices. MotionBuilder, like
Avratar, allows a user to create an environment, and use
special effects. MotionBuilder, however, is not consumer-
oriented and comes with a hefty price tag.

3 REQUIREMENTS MODELING

Following standard software engineering
guidelines, the main functional and nonfunctional
requirements of Avratar are presented below.

3.1 Functional Requirements

R01 The software shall have a complete GUI widget

 system implemented through CrazyEddie [7].

R02 The program’s menu system shall be entirely

 rendered, that is, all menus should be in OpenGL
 [8] (for appearance, speed, and ease of use).

R03 The workflow will be separated into two phases:

 an initial recording phase, and an editing phase.

R04 The menu may contain an exportation tool where
 a scene/show can be exported into standard
 movie formats (.avi, .mpeg, etc).

R05 The user should be able to create, load, and

 modify custom models for use with 3D digital
 puppets.

R06 The software shall be able to take input from the

 P5 glove [9] and animate a model by using the
 3D input peripheral.

R07 The software should be able to map P5 glove

 inputs to components (set which glove will
 control which object).

R08 The software should be able to map the

 sensitivity of P5 input to components in the
 scene (set the sensitivity of how fast each object
 will move).

R09 The software shall be able to record and set the

 position of sound through the OpenAL sound
 wrapper [10].

R10 The program may contain the functionality to be

 able to load and play user-specified music and
 sounds.

R11 The program shall be able to record the state of

 each object at any given time.

R12 The program should be able to take the state of

 each object and be able to modify it (editing in
 layers, so as to add to the fun of the movie).

R13 The user should be able to edit or switch the

 perspective (camera) of the scene either during
 recording or through the editor.

R14 The program may contain pixel shader effects

 that will modify graphical primitives of the scene
 (for instance, one could render the movie to look
 like a cartoon show).

R15 The program may contain a particle generation

 engine that can be set by the user to create sparks
 and particles in the scene.

R16 The program may contain the functionality to

 generate fog and modify the visibility
 based on the fog parameter in a scene.

R17 The program shall be able to save scenes for later

 use and load saved scenes.

R18 The program shall be able to play back previous
 recordings.

3.2 Non-Functional Requirements

N01 The program shall have many widgets and icons,

 and will refrain from using text with a preference
 toward easily understandable GUI elements.

N02 The GUI design will refrain from using layers of

 windows, and instead will favor a tabbed menu
 and editing system.

N03 The program should be able to run on any

 modern system (1.8+ Ghz P4, 512MB RAM)
 without stuttering or stalling.

N04 The program may be able to run on older

 systems (< 1.50 Ghz, 256MB).

N05 An average user with three hours of usage shall

 be experienced enough to create a movie scene.

N06 An average user with six hours of usage should

 be able to modify objects in the editor in layers.

N07 An average user with ten hours of usage may be

 able to create particle effects and use “shaders”

 (modify graphical primitives, such as rendering a
 cartoon).

3.3 Use Case Modeling

Avratar is a studio for 3D digital puppet animation, and as
such it incorporates a fairly elaborate workflow (see
Figure 1). In essence, digital animators and directors are
the main users of avratar and utilize it either for a live
puppet show, or a saved puppet show which can be
played back later.

3.4 Description of Selected Use Cases

Load scene - This allows the user to load a pre-built
environment into the avratar scene for animation.

Load model - This will take a model from most 3D
modeling studios and import it into avratar.

Select model - This allows the user to recursively select
models until they’ve built a character, which will be then
be loaded into the avratar scene.

Load character - This allows a user to load a pre-built
character, which is then available in the avratar scene.

Figure 1. Avratar simplified use case model.

aVRatar

User
loadScene

newScene

editScene

record

saveScene

placeObject

playback

layerEdit

animateObject

loadModel

setLayers

configureGlove

Fileshare Audience

Live Audience

Presenter

Content Author
<<extend>>

<<include>>

<<extend>>

<<include>>

<<include>>

<<include>>

<<include>>

Record a layer - This uses input from the P5 peripheral
glove to model the movements of an object. Each layer
contains a special effect, sound, or an animation.

Edit a layer - Allows the user to override a layer with
input from the P5 glove.

Remove a layer - Deletes the specified layer.

Record sound - This uses OpenAL to record sound into
the avratar animation. The sound track can be overwritten
if needed.

Apply special effects - This allows the user to apply
special effects, such as cell-shading, to the scene.

Playback - Allows the user to playback a recorded scene.

4 DESIGN OVERVIEW

This section provides an overall perspective on how
the system was designed and implemented. Avratar was
designed as a virtual puppet animation studio, and as such
we utilized standard wrappers for the 3D rendering, GUI,
and sound system. The 3D rendering was achieved via
Ogre [11], a LGPL cross-platform wrapper for Direct X
and OpenGL. OpenAL [12], a LGPL sound wrapper, was
used for the recording and playback of sound. Finally, the
GUI was done via CrazyEddie [7], a LGPL GUI toolset
with a library of pre-built widgets.

4.1 High Level Design

Avratar’s main design can be divided into six

components which are illustrated in Figure 2. These
components are: the core, the playback system, the
recording system, the scene editing system, the layer
editing system, and the configuration system. The scene
editing system is responsible for the environment, and the
layered editing system works with the recording system to
provide rich multimedia through layers. The configuration
system provides real-time mappings for input from the P5
glove (for instance, mapping the current input to hand
movements, or redirecting future passes to body
animation).

4.2 Design Diagram

Figure 3 shows the organization and dependencies of
the core and recording components of Avratar. In short,
the core of Avratar consists of the modeling system which
uses “bones” [13] to create character animations. Each
bone is a fundamental element in a moving system; each
bone must move as a single unit. The bones are connected
via pointers that indicate the order bones are connected
and how they behave when a neighbor is moved [14, 15,

16, 17]. The core of Avratar takes this data to create a
digital puppet.

Figure 2. Avratar system level diagram.

Figure 3. Avratar design diagram.

The recording system consists of multi-layered editing

(each layer is stored as a node in a dynamic list), and
multi-threaded sound recording and playback system. The
sound system is performed on a separate thread in the
application because it needs systematic access to I/O that
cannot be guaranteed with a linear-programmed solution.

5 RESULTS: AVRATAR IN ACTION

This section provides an inside look into the Avratar

system and the user interface with applications. Avratar
utilized the CrazyEddie GUI wrapper [7], a LGPL
product that provides a GUI platform through OpenGL,
and also comes with a library of pre-built widgets.
Custom GUI components were built to suit the needs of
Avratar, for instance, the scene selector, which used a
special render-to-texture GUI widget.

5.1 Scene Selector

This screenshot in Figure 4 represents what the user
sees when prompted to select what scene they would like
to use. The user will recursively select from the scene
selector parts they want to use in their digital animation
(head, hand models, environment, etc) until they’ve built
an entire scene and are ready to start. At each stage,
Avratar provides an advanced previewing feature by
allowing the user to try out a model using direct input
from the P5 glove in a separate view space.

Figure 4. Avratar scene selector.

5.2 Glove Mapper

The glove mapper (shown in Figure 5) screen is the
heart of the layered editing approach utilized by Avratar.
Every single controllable part of the character is listed in
the glove mapper, along with a checkbox that controls its
state. Each time a new layer is made, the checked items
will be overwritten with the new input and the non-
checked items will keep the previous animation. If no
value has been recorded for an item, the default value of 0
is used.

5.3 Audio Options

This screen in Figure 6 represents what the user is
presented with for audio options. The audio component of

Avratar is driven via OpenAL [10], a LGPL sound
wrapper from Creative. OpenAL provides a common
platform for sound playback, recording, and processing.
Avratar utilizes playback and recording via a multi-
threaded sound system, and some digital processing. In
figure 5, the user is able to determine if they want to
record or overwrite the audio during the next pass of
recording. In addition, the user has the option to mute or
increase the gain of a previously recorded audio track.

Figure 5. Avratar input mapper.

Figure 6. Avratar sound configuration.

5.4 Special Effects

Ogre 3D [11], the wrapper used to program Avratar,

supports a plethora of special effects. Since Avratar’s
research focus is in digital puppet animation, it supports
the cell-shader special effect shown in Figure 7. Cell-
shading is a special effect that renders a 3D model to look
like a cartoon, a very well-known application of this is the
character “bender” from Futurama (in certain action
scenes he is rendered via cell-shading to look like a
cartoon, although there’s really a 3D model powering the
animation).

Figure 7. An Avratar puppet with cell-shading.

6 FUTURE WORK

Avratar is able to take input from an inexpensive,
widely available peripheral, the P5 glove, and transform it
into a tool as powerful as the user’s imagination. Avratar
supports models made in common editing studios, and
some special effects.

In the future, we’d like to extend the special effects

component of Avratar to include particle effects. Particle
effects will provide Avratar with a new world of realism,
things such as smoke, generated clouds, fog, sparks, and
more will be supported. Particle effects are currently
supported in Ogre 3D [11] (the 3D wrapper used by
Avratar).

In addition, we’d like to extend the motion capture

input devices supported by Avratar. For the first versions
of Avratar it made sense to use the P5 glove for economy.
However, digital artists and other users of Avratar might
be able to make use of larger motion sensor arrays and
more expensive equipment that are not yet supported by
Avratar. A great application of this would be a full-body
motion capture device [18]. This proposed extension
would allow Avratar to capture input from a larger motion
sensor array and support additional input peripherals.

7 CONCLUSIONS

Avratar is a real-time digital puppet animation studio
that uses the inexpensive and widely available P5 glove
[9] to control a real-time digital 3D puppet. Avratar has
many applications in personal multimedia because it
boasts an attractive combination of affordability and
utility. Because of the focus on digital puppeteering, it’s
simple to use and users can create custom models on their
favorite 3D editing platforms, then import them into
Avratar. Planned enhancements for Avratar include
adopting larger motion sensor equipment and a particle
generation system.

REFERENCES

[1] Wired Magazine, How Digital Animation Conquered

Hollywood,http://www.wired.com/wired/archive/14.
03/animation.html, accessed May 1st, 2006.

[2] iClone website, http://www.reallusion.com/iclone/,
accessed March 20th, 2007.

[3] George Latshaw. The Complete Book of Puppetry.
Dover Publications, 2000.

[4] Richard Williams. The Animator’s Survival Kit. Faber
& Faber, 2002.

[5] Sommerville, I. Software Engineering, Addison-
Wesley, 7th Ed., 2004.

[6] AutoDesk MotionBuilder website, AutoDesk
MotionBuilder, http://usa.autodesk.com/adsk/
servlet/index?id=6837710&siteID=123112, accessed
March 20th, 2007.

[7] CrazyEddie GUI website CrazyEddie GUI System,
http://www.cegui.org.uk/wiki/index.php/Main_Page/
, accessed March 20th, 2007.

[8] OpenGL website, The Industry-Standard for High
Performance Graphics, http://www.opengl.org/,
accessed March 20th, 2007.

[9] Yahoo, P5 Community Forum, http://groups.yahoo.
com/group/p5glove, accessed March 20rd, 2007.

[10] OpenAL website OpenAL: Cross Platform 3D audio
http://www.openal.org/, accessed March 20th, 2007.

[11] Ogre 3D website Ogre: Object-Oriented Graphics
Rendering Engine http://www.ogre3d.org/, accessed
March 20th, 2007.

[12] Creative Inc., Programmers Guide to OpenAL.
http://developer.creative.com/articles/article.asp?cat
=1&sbcat=31&top=38&aid=51, accessed March
20th, 2007.

[13] 3D nuts. Rigging Robotic Joints. http://www.3dnuts.
com/tutorials/robotrigging/rigging_robot_joints.sht
ml, accessed March 20th, 2007.

[14] Adi Bar-Lev, Alfred M. Bruckstein and Gershon
Elber: Virtual Marionettes: A System and Paradigm
for Real-Time 3D Animation, http://www.cs.
technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi?2004/
CIS/CIS-2004-05, accessed March 20th, 2007.

[15] Siggraph, Outline of the History of 3D Animation,
http://www.siggraph.org/education/materials/Hyper
Graph/animation/character_animation/motion_captu
re/history1.htm, accessed March 20th, 2007.

[16] Katherine Pullen and Christopher Bregler, Motion
Capture Animation, http://mrl.nyu.edu/~bregler/
papers375.pdf accessed March 20th, 2007.

[17] GameDev website Cell Shading, http://www.
gamedev.net/reference/programming/features/celsha
ding/, accessed March 20th, 2007.

[18] MetaMotion, Full-Body Motion Capture Gypsy 5,
http://www.metamotion.com/gypsy/gypsy-motion-
capture-system.htm, accessed March 20th, 2007.

