
Abstract

The development of network-attached devices has
ushered in an era of autonomous, multi-function
equipment demanding minimal human interaction: the
only requirements are data and electricity. Despite
these advances, these machines continue underutilized
in network environments due to operating system
limitations regarding the management of these devices.
These limitations force the use of these devices via
other network hardware, such as a server, that manage
the device access and data. While effective, this results
in increased resource consumption and ignores the
capabilities presented by network-attached devices. In
order to facilitate optimal utilization of these devices,
we have designed a new, extensible management
architecture for all network-attached devices. This
architecture, presented here, supports the central
management of network-attached devices while
allowing client machines access to the device without
intermediate server hardware. Implementation of this
paradigm on test networks has decreased resource
consumption – especially bandwidth – considerably.

 1. Introduction

Network-attached devices are a modern innovation
in which the functionality of a single device – or
multiple, integrated devices – is designed in such a
way that access, management, and utilization of a
device occur over a network connection independent of
any other systems. Such devices have many advantages
in any network when used under their native network-
attached access paradigm: from a client perspective,
network-attached devices allow clients to send data
directly to the device via the network connection
without any intermediate servers to manage access to
the device, lowering access time and increasing
productivity. From a management perspective, they
provide self-hosted central management via the
network connection, allowing administrators to make

global changes easily.
Despite these advantages, most administrators do

not utilize network-attached devices under their native
access paradigm. The reason for this is a lack of
management architecture for network-attached devices
in modern operating systems [2]. All mainstream
operating systems provide support for sharing,
utilizing, and managing devices attached to a server
running the same operating system. They do not,
however, support the utilization of a device which is,
itself, a server running a neutral operating system.

While operating systems lack the support required
to manage and utilize network-attached devices fully,
they do have support for extending their capabilities
with new access and management architectures.
Utilizing these features, it is therefore possible to add
an architecture for network-attached device
management and access. This would allow the benefits
of these devices to be fully realized.

While it is not possible to incorporate every
network-attached device into the initial architecture
(there is no limit to the types of devices that can be
connected directly to the network), it can be designed
in such a way that it is easily extensible, allowing for
the simple addition of newly created device classes.
Such an architecture was designed, implemented, and
tested for the purposes of improving network resource
utilization.

The remainder of this paper is organized such that
the “Background” section details the features of
network-attached devices and introduces terminology
relevant to the remainder of the paper. The
“Management Paradigms” section details the
management features currently available in operating
systems, as well as those required in an optimal access
and management architecture. In “Optimal
Architecture,” the architecture developed and
implemented for the optimal utilization of network-
attached devices is detailed. Testing results are given in
the “Analysis” section and the paper concludes with a
summary of the findings. Finally, future work

An Extensible Architecture for Network-Attached Device Management

Michael J. McMahon, Jr. Sergiu M. Dascalu Frederick C. Harris, Jr. Juan Quiroz

University of Nevada, Reno
mike@mikerosoft.org dascalus@cse.unr.edu fredh@cse.unr.edu quiroz@cse.unr.edu

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

directions and tasks are addressed in the “Future
Work” section.

 2. Background

The term “network-attached device” is applied to a
great number of electronic devices. Strictly speaking,
devices bearing this moniker need meet no requirement
greater than a connection (via physical,
electromagnetic, or other means) to an interconnected
set of other electronic devices. As such, a good number
of devices and associated categories fit within this
classification. It is therefore necessary to clarify the
term in order to convey the precise meaning within the
context of this paper. As such, the subsequent sub-
sections detail the meaning of, and differences
between, network-attached and network-capable
devices.

 2.1. Network-Attached Devices

A network-attached device, in relation to modern
computer networks, is an electronic entity that provides
a necessary function either to an end-user or to another
entity on the network. These devices are autonomous –
requiring no external data management or support –
and require only energy and data to carry out their
specific (often specialized) function(s). The resources
or functionality that they provide is designed to be
accessible to any type of client via a network
connection.

 2.2. Network-Capable vs. Network-Attached

A network-attached device, within the context of
this paper, is different from a network-capable device.
Though both are attached directly to a network in order
that their resources be shared, they differ in one key
manner: network-capable devices are dependent on a
server to manage their data, whereas network-attached
devices manage their own data. That is, the
dependency on a server is the key difference. An
illustration of this difference is given in Figure 1.

 3. Management Paradigms

The management of network-attached devices is
significantly easier and more efficient than that of
network-capable devices, which require dedicated or
shared servers. However, the modern use of network-
attached devices is not as autonomous entities, but

rather as network-capable devices that require a server.
This choice results from limitations within the
operating systems of the network entities that wish to
utilize the network-attached device [2]. Specifically,
this deficiency is within the installation and
maintenance mechanisms that the systems provide for
centralized device management.

When managing a network-attached device,
administrators have two options: treat the device as a
network-capable device, or as it is – an autonomous,
network-attached entity. The choice of management
paradigm determines the manner in which a network-
attached device will access data and be accessed by
clients on the network. If the device is installed with a
server to manage its data access, it is installed as a
network-capable device. This is the easiest and most
common scenario in organizations, as the server can
often broadcast device information and automate
device installation to clients to some degree, thus
simplifying management and client installation.

If the device is installed with no supporting
hardware as an autonomous device (which it is), then it
utilizes the network-attached paradigm (see Figure 1).
This is an optimal paradigm in terms of network
bandwidth use and device autonomy.

The following sub-sections are designed to
illustrate the management differences and trade-offs
between the utilization of a network-attached device
under its native paradigm (which has been described
here), and as a network-capable device [4],[5].

 3.1. Network-Capable Devices

When treated as a network-capable device,
administrators can often utilize the driver installation
facilities of the operating system to alleviate the effort
required for a successful installation for a network-
attached device. Allowing a server to host the device
allows administrators to script the installation – a sub-
optimal process in itself – and centrally orchestrate the
installation of the device (removal is not always as
easy) [6],[9]. The trade-off here is that management of
the device is simplified, however additional resources
are required: bandwidth, servers, electricity, wiring,
maintenance, etc.

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

 3.2. Network-Attached Devices

The installation of an autonomous network-
attached device under a network-attached (native)
paradigm differs from that of the network-capable
paradigm in that device software must be installed on
each client machine that wishes to use the device. In a
network-capable paradigm, the installation of such
software needs to occur only on the server system;
here, it must occur on every system, although the
installation of a driver is often the only requirement.
Because operating systems do not easily support the
utilization of network-attached devices under the
paradigm for which they were designed, administrators
have continued to use the sub-optimal network-capable
management paradigm. In order to reap the full
benefits of network-attached devices, they must be
supported fully under their inherent paradigm.

 4. Optimal Architecture

In order to allow the optimal utilization of network-
attached devices under their native management
paradigm, an extension was created that embodies the
efficiency of network-attached devices, yet retains the
ease-of-management inherent in network-capable
devices [7],[8],[10]. This architecture was test-
implemented [11],[12],[13],[14],[15] under the
Microsoft® Windows® operating system as an
extension to Group Policy [16],[17],[18],[20]. The
choice of the Windows® operating system was made
because it is the most commonly-used client operating
system in business environments and, as such,
implementation of the architecture under this operating
system stands to benefit the most people. The
architecture itself is indifferent to the host operating
system and may be implemented for any operating
system.

The architecture is designed for networks in which
a single (or small set) or servers can supply
configuration information to all client machines on the
network. Since all major operating systems are capable

of this in varying forms, the particular implementation
of the framework will vary, but the core organizational
and design principles should remain the same.

 4.1. Structure

The basic structure of the architecture places
management of all network-attached devices within the
purview of one central module. This module is
executed directly by the operating system at reasonable
intervals (e.g. startup, shutdown, or periodically) to
perform management tasks that update the client
system with new configuration information related to
network-attached devices present on the network.

The central module then executes each registered
module that has been added to it. These individual
modules represent a particular type of device, which
may be very generic or extremely specific to the device
it manages. This may range from a module to manage
all network-attached printers to a module that manages
only network-attached fax machines. In any case, each
module completely manages a particular type of device
independently of any other module.

As shown in Figure 2, this creates a branching
structure from the central module to all other modules.
The architecture is thus easily extensible to any future
or current network-attached device. The addition of a
module to the central module requires only that a
function call be placed in the appropriate section of the
central module code.

 4.2. Modules

The central module is responsible for providing an
executable interface to the operating system, as well as
retrieving configuration information from a central
server. This configuration information consists of data
necessary for the installation or modification of
network-attached devices on client machines. In the
case of printers, this would include driver and IP port
information; storage devices would require only
network addresses.

Individual device type management is broken up
into autonomous modules, each of which manages a
particular type of device. Each module has full access
to configuration information passed to it by the central
module. Adding an additional device type to the
system is thus merely a matter of adding a function call
to the central module and ensuring that the newly-
added module stores its information in the same
location as other modules. In the case of a Windows
system, this location is a particular registry key that is

Figure 1. Illustration of the difference between
network-capable and network-attached devices [1].

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

automatically populated by Group Policy with settings
provided by a server.

Each registered device type that the central module
manages is independent of any other. Since the types
of devices that are network-attached are (and surely
will be) disparate, the configuration information for
each device type is compartmentalized. When
executed, each individual module processes all
configuration information pertaining to the type of
device it manages. For example, when the IP printer
module executes, it processes all configuration
information for IP-based printers. As such, it installs,
updates, and removes all IP-based printers before the
next module is executed.

 4.3. A Word on Drivers

After careful experimentation, it was decided that
the architecture would mandate that device driver
installation not be a separate module. Rather, driver
installation for a device must be handled within the
same module that installs and configures the device. To
illustrate, consider the installation of network-attached
printers and their drivers: the options are to install all
drivers and then all printers that use those drivers, or to
have each printer installation routine install the driver
for that particular printer. Since the former case would,
ultimately, result in inconvenient module
dependencies, the latter case is preferable and the
defined method for printer installation/management
under this architecture. The architecture with a
separated driver module is shown in Figure 2.

 4.4. Execution Sequence

The actual execution of any implementation of the
management extension architecture will, just as its
actual implementation, vary by operating system.
However, the general method of execution will entail a
query by a client to a server for configuration
information, with which the server will respond with
the new or current configuration information. This
query may occur at any time that the system is running
and will also depend on the properties of the operating
system – the most important property being any built-
in synchronization features that the operating system
provides.

Because the architecture defined here is only an
extension to the operating system, it is free to be
configured (as much as necessary for the particular
system it operates on) to utilize existing system
features. An example of this is given in Figure 3,
which represents the execution sequence for an
implementation of the architecture under the Microsoft
Windows environment when created as an extension to
Group Policy. As this illustrates, because the extension
utilizes Group Policy, it is subject to the same
execution and refresh constraints as the Group Policy
implementation.

 5. Analysis

In order to verify the performance of the newly-
developed architecture, it was implemented as an
extension to Microsoft® Group Policy on the
Microsoft® Windows® platform. After extensive
preliminary testing, the extension was deployed on a
test network and the performance of the systems was
analyzed.

The test environment consisted of a network of 1
client computer, 2 servers, and a network-attached
printer (Brother MFC-420CN [3]) connected to the
network.

In order to comparatively test the native network-
attached paradigm against the network-capable usage,
two test scenarios were run for identical print jobs. The
first involved utilizing a network-attached printer as a
network-capable device under the paradigm provided
by the operating system. Here, the server was
configured to manage the network-attached device. In
the second scenario, the network-attached printer was
utilized under its native paradigm using the newly-
developed extension.

Figure 2. Class diagram for the prototype client-side
extension showing static classes.

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

Under these scenarios, bandwidth measurements
were made using the monitoring tools located on the
gigabit switch to which the devices were connected.
The results of these measurements are presented in the
proceeding sub-sections.

 5.1. Management Bandwidth

In this phase of testing, the bandwidth consumed
for the installation of a printer under the two paradigms
was monitored. The results were consistent across all
iterations of the test – a sensible result since the printer
was the same in all cases, as was the driver.

In all trials, the installation of the network-attached
printer under the network-capable paradigm (operating
system supported) required 3.5MB of bandwidth. This
consisted of both management data and the driver
installation files from the server hosting the device to
the client.

The network-attached paradigm test required 6MB
in all trials. The data transferred consisted of
management and driver installation files held on the
Active Directory server.

The results here show that the use of the network-
attached device architecture implementation require
71.43% more bandwidth than the network-capable
scenario. Upon examination, it was discovered that the
difference was due to the fact that the operating
system-specific driver was installed in the network-
capable case, whereas the entire driver was transferred

in the network-attached case.

 5.2. Print Job Bandwidth

For this phase of testing, the bandwidth consumed
on the network during the transmission of a print job
from the client to the printer was measured. A single
print job of 2.5 MB was sent to the device and the
results averaged.

The average performance under the network-
capable paradigm was that the 2.5 MB print job
consumed 5.1 MB of bandwidth. The data path
observed involved a 2.6 MB transmission from the
client to the device server and a 2.5 MB transmission
from the server to the device. The slight increase in the
initial transmission size has been attributed to control
data sent to the server by the client in the passing of the
print job.

Under the network-attached paradigm, the average
bandwidth consumed by a 2.5 MB print job was 2.5
MB. This was the expected result, as no retransmission
of data occurred.

 5.3. Consequences

Based on the results of the tests, the network-
attached paradigm clearly decreases print job
bandwidth 51.1% as compared to the network-capable
alternative. Although the initial management
bandwidth was higher, this was a one-time
consumption. One must consider that with even
moderate print usage, the bandwidth savings will
quickly nullify the increased cost of installation. Over
time, the network-attached paradigm will approach the
observed bandwidth savings of 51.1%.

 6. Conclusion

This paper has outlined an architecture for the
centralized management and utilization of network-
attached devices. This architecture is the first attempt
to codify the client-side utilization of these devices
such that the devices themselves are used in an
efficient manner, i.e., having minimal resource
consumption and administration requirements.

Implementation and testing of this module-based
architecture under the Microsoft® Windows®
operating system indicated that bandwidth
consumption under the network-attached paradigm
decreased 51.1% as compared to the network-capable
case. Despite a short-term management bandwidth

Figure 3. The sequence of events and triggers
responsible for the propagation of settings that allow

the management of network-attached devices.

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

increase of 71.43% over the network-capable instance,
the network-attached architecture was shown to
asymptotically approach a 51.1% bandwidth savings
over time.

Clearly, the benefits of the implementation of this
architecture have noteworthy practical benefits.

 7. Future Work

The current implementation of the architecture is
rough, at best. Future implementations should refine
the driver installation process – a goal that may
significantly reduce the bandwidth consumed during
management updates.

While the current implementation of the
architecture provides the necessary functionality using
C++ API calls to Windows®, better solutions exist.
Under development is a new system utilizing Windows
Management Instrumentation [19] and the C#
language. This change stands to significantly improve
performance and simplify the incorporation of
additional device classes in the future.

On a broader scale, the adaptation and
implementation of the architecture on other platforms
should be completed. While this is not an immediate
goal, it is one that can be accomplished either
independently or by operating system manufacturers.
Other target platforms include Linux and Mac OS X.

 8. References

[1] WPClipart, "WPClipart," in WPClipart, [On-line
document], (2006 November), Available at HTTP:
http://www.wpclipart.com

[2] Silbershatz, Galvin, & Gagne, Operating System
Concepts, 6th ed., New York, NY: John Wiley & Sons,
Inc., 2003.

[3] Brother International, "MFC-440CN," in Brother
International Multifunction Centers, [On-line
document], (2006 November), Available at HTTP:
http://www.brother-
usa.com/mfc/mfc_detail_AREA=MFC_1&PRODUCTID=MF
C440CN.aspx

[4] Mark Burgess, "Theoretical System Administration," in
14th System Administration Conference (LISA 2000),
2000, pp. .

[5] William R. Stanek, Microsoft Windows NT Server 4.0
Administrator's Pocket Consultant, 1st ed., Redmond,
WA: Microsoft Press, 1999.

[6] Nemeth, Snyder, Seebass, & Hein, UNIX System
Administration Handbook, 3rd ed., Upper Saddle River,
NJ: Prentice Hall PTR, 2001.

[7] Bruce Boardman, "Network Monitoring Systems,"
Network Computing, October, 2004, Available at
HTTP:

http://www.networkcomputing.com/showArticle.jhtml?articleI
D=47900819&pgno=1.

[8] Narayan Desai, Rick Bradshaw, Scott Matott, et. al., "A
Case Study in Configuration Management Tool
Deployment," in 19th Large Installation System
Administration Conference, 2005, pp. 39-46.

[9] Apple Computer, Inc., Mac OS X Server: Deploying
Mac OS X Computers for K-12 Education, 1st ed.,
Cupertino, CA: Apple Computer, Inc., 2004.

[10] Alva L. Couch, Ning Wu, and Hengky Susanto,
"Toward a Cost Model for System Administration," in
19th Large Installation System Administration
Conference, 2005, pp. 125-141.

[11] Dale and Teague, C++ Plus Data Structures, 2nd ed.,
Sudbury, MA: Jones and Bartlett Publishers, 2001.

[12] D.S. Malik, C++ Programming: Program Design
Including Data Structures, 2nd ed., Boston, MA:
Thomson Course Technology, 2004.

[13] Gary J. Bronson, C++ for Engineers and Scientists, 1st
ed., Pacific Grove, CA: Brooks/Cole Publishing
Company, 1999.

[14] Microsoft Corporation, "Windows GDI," in Microsoft
Development Network, [On-line document], (2006
October), Available at HTTP:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/gdi/prntspol_7mgj.asp

[15] Microsoft Corporation, "Windows Installer," in
Microsoft Developer Network, [On-line document],
(2006 October), Available at HTTP:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/msi/setup/windows_installer_start_page.asp

[16] Microsoft Corporation, "Group Policy," in Microsoft
Developer Network, [On-line document], (2006
October), Available at HTTP:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/policy/policy/group_policy_start_page.asp

[17] Microsoft Corporation, "Windows Server® 2003 Group
Policy," in Microsoft Windows Server® TechCenter,
[On-line document], (2006 October), Available at
HTTP:
http://technet2.microsoft.com/windowsserver/en/technologies/f
eatured/gp/default.mspx

[18] Jeremy Moskowitz, Group Policy, Profiles, and
IntelliMirror for Windows 2003, Windows XP, and
Windows 2000, 1st ed., Alameda, CA: Sybex, Inc.,
2004.

[19] Microsoft Corporation, "RSoP WMI Classes," in
Microsoft Developer Network, [On-line document],
(2006 November), Available at HTTP:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/policy/policy/rsop_wmi_classes.asp

[20] Microsoft Corporation, "ProcessGroupPolicyEx," in Microsoft
Development Network, [On-line document], (2006 November),
Available at HTTP:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/policy/policy/processgrouppolicyex.asp

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

