
VFire: Virtual Fire in Realistic Environments

Roger V. Hoang∗ Joseph D. Mahsman† David T. Brown‡ Michael A. Penick§ Frederick C. Harris Jr.¶

Timothy J. Brown‖

University of Nevada, Reno
Desert Research Institute

ABSTRACT

The destructive capacity of wildfires and the dangers and limita-
tions associated with observing actual wildfires has led researchers
to develop mathematical models in order to better understand
their behavior; unfortunately, current two-dimensional visualiza-
tion techniques make discerning driving forces of a fire difficult
and restrict comprehension to the trained eye. VFire is an immer-
sive wildfire visualization application that aims to ameliorate these
problems. We discuss several recent enhancements made to VFire
in order to not only increase the amount of meaningfully visualized
data and visual fidelity but also improve user interaction.

Keywords: Applied Virtual Reality, Wildfire Visualization

Index Terms: I.3.8 [Computing Methodologies]: Com-
puter Graphics—Applications I.3.7 [Computing Methodologies]:
Computer Graphics—Three-Dimensional Graphics and Realism
I.6.6 [Computing Methodologies]: Simulation and Modeling—
Simulation Output Analysis

1 INTRODUCTION

Wildfires pose a considerable challenge to researchers. Understand-
ing their destructive behavior may be key to mitigating the damage
they cause; however, the costs and risks associated with purpose-
fully setting an area ablaze make doing so impractical; additionally,
as controlling the spread of an unexpected wildfire is a primary con-
cern, experimenting with new suppression techniques at such events
is a risky proposition. In response to these problems, researchers
have developed mathematic models using data collected from un-
planned fires [4].

Visualizations of these fire models have been bound to the realm
of two-dimensional images. Unfortunately, it is difficult to iden-
tify critical factors that dictate wildfire behavior in two dimensions.
Slope, for example, is difficult to determine from a two-dimensional
image. VFire is a virtual reality wildfire visualization tool that ad-
dresses this problem. Visualizations are produced using remote
sensing data in conjunction with the inputs and outputs of a sim-
ulation model. By attempting to reconstruct actual fires using a
simulation with similar preconditions and comparing them to what
was seen by observers on the ground, researchers will be able to
use VFire to view a simulation from multiple perspectives and ver-
ify and refine fire models. Additionally, VFire will be used to pro-
vide training scenarios and inform land managers of the benefits of
preventative measures.

∗e-mail: hoangr@unr.nevada.edu
†e-mail:mahsmanj@unr.nevada.edu
‡e-mail:dtbrown@unr.nevada.edu
§e-mail:penick@cse.unr.edu
¶e-mail:fredh@cse.unr.edu
‖e-mail:tim.brown@dri.edu

With these purposes in mind, much of our efforts have been fo-
cused on increasing the amount of visualized data, enhancing the
visual presentation, and improving user interactivity. To do so, we
exploit several features of modern graphics hardware, in particular
the programmable shader, in order to speed up not only the ren-
dering but also the simulation updating. The rest of this paper is
structured as follows: Section 2 describes FARSITE, the fire be-
havior simulator that VFire visualizes; Section 3 details the main
components of the visualization; Section 4 discusses the user in-
teractivity currently available; finally, Sections 5 and 6 provide our
conclusions and future work, respectively.

2 FARSITE

Our visualization is currently driven by data from FARSITE [1],
a wildfire simulator developed by the USDA Forest Service and
used by a number of national and state fire and land management
agencies. FARSITE takes into several factors including elevation,
slope, and fuel type to simulate fire behavior based on an elliptical
spread model; the data outputted from the program include times
of arrival, fireline intensity, and spread direction. Data is spatially
organized into a evenly-spaced rectangular grid, with each variable
placed in a different grid.

3 VISUALIZATION

VFire is composed of three primary visible components: terrain,
vegetation, and fire. In addition to determining which pieces of
data can effectively be visualized for each element, rendering each
of these parts in a multi-display environment such as our four screen
CAVE-like Fakespace FLEX display presents its own set of prob-
lems. These problems and our solutions to them are outlined in the
following sections.

3.1 Terrain

The topology of an area can have a significant influence on the be-
havior of a wildfire. Slopes can cause fires to climb faster or de-
scend slower; additionally, the spatial characteristics of the land can
mitigate or intensify the effects of wind; as a result, accurately de-
picting terrain is paramount. Due to the size of terrain used for wild-
fire analysis, VFire uses a level-of-detail rendering system based on
[5]. Terrain is preprocessed into chunks which are loaded as needed
in a separate thread at runtime. To further speed up rendering, the
terrain geometry is stored in vertex buffer objects directly in video
memory; vertex morphing is done in a vertex shader.

Originally, we used a 1m resolution satellite image to texture the
terrain. While the results were acceptable at long distances, the
magnification of the texture when the user approached the terrain
yielded a very blurry, unrealistic image. Further compounding the
problem was the existence of objects in the image; a tree or build-
ing present in the image would be rendered onto a relatively flat
surface. As a result, the image was abandoned in favor of a multi-
texturing solution that covers the terrain in a repeating mixture of
grass, slash, and rock textures. We store the vegetation data grid
inputted into FARSITE as a texture. Within the vertex shader, we
determine the type of vegetation that exists around each vertex and
assign texture weights accordingly. The interpolation during the



rasterization phase allows for smooth transitioning from one tex-
ture type to another.

We implement terrain scorching effects in similar fashion. The
progress of a fire is outputted from FARSITE as grid which we store
as a texture; the value in each cell represents the time at which the
cell begins to burn. Again, within the vertex shader, we compare
the current simulation time to the time of arrival from the appro-
priate texel and modulate the properties of each vertex accordingly,
adding a reddish glow around the time of arrival and slowly increas-
ing the weight of a burn texture.

3.2 Vegetation

Just as accurate depiction of terrain is critical for analysis, so too
is accurate representation of vegetation, as the type and density of
vegetation heavily influences the characteristics of a wildfire. Two
interchangeable modules may be used for rendering vegetation.
The first module, developed in-house, consists of procedurally-
generated trees. For every tree generated, 116 unique vertices are
used. In heavily-wooded areas, implementing burn effects using
vertex texture fetches causes a significant drop in framerate due to
the introduction of a large latency in the shader [2]; instead, we
compute the times of arrival during the generation phase and store
them as vertex attributes, which are much faster to retrieve. The ef-
fects of crowning are visualized by only burning portions of a plant
that are above or below a particular threshold height.

The second module utilizes SpeedTree (www.speedtree.com).
The SpeedTreeRT library could not be used for an application in
a CAVE out-of-the-box. CAVE systems utilize multiple video out-
puts. As a result, a rendering context must be managed for each out-
put in a 3D application. In such applications, identifiers specific to a
rendering context, such as texture objects and vertex buffer objects,
must be allocated and tracked for each rendering context. The en-
tire SpeedTreeRT library was modified in order to achieve this goal.
In addition, the shaders that accompany the SpeedTreeRT reference
application were modified to add burn effects using a burn progress
value restricted to the range [0..1], where 0 is unscathed and 1 is
charred. Burn effects include dissolving leaves and progressively
modulating fragment colors.

Future work includes making similar modifications to Speed-
Grass to allow its use in a CAVE. Because grass and shrubbery are
expensive to render using multiple instances of SpeedTree models,
the use of SpeedGrass will be a compromise between detail and
efficiency in rendering these vegetation types.

3.3 Fire and Smoke

Fire and smoke are implemented using particle systems. To speed
up rendering and updating of particles, all particle properties are
maintained on the GPU [3]; however, because these properties
must be consistent between screens, emissions are done on the
CPU. Additionally, all particle data for all screens is updated es-
sentially in lock step using the same time deltas. All particles are
rendered as cylindrical billboards; in the case of fire particles, the
tops of these billboards are skewed according to spread direction
and rate data outputted from FARSITE and retrieved in the vertex
shader.

To address the brightness of the fire effects during various times
of the day, high dynamic range rendering was employed; as a result,
the effects are muted under well-lit conditions while substantially
brighter under darker conditions. To prevent screens from having
dissimilar coloration, the same average luminance is used during
the tone-mapping process. Presently, this value is computed by tak-
ing a simple average of each screen’s luminance; eventually, this
will be done with a user-oriented weighting scheme.

4 INTERACTION

VFire currently allows the user to interact with the visualization in a
number of ways through the use of a tracked wand. The user can fly
about the virtual world or constrain movement to follow the terrain;
additionally, the user may drop markers that can be teleported to at
any time. The lighting of the world can be modified with the press
of a button, allowing the user to view a simulation under various
lighting conditions.

Currently, the states of the majority of VFire’s graphical ele-
ments can be determined purely by the current simulation time;
as such, time can be almost freely controlled, allowing the user to
speed up, slow down, stop, and reverse the simulation. The ex-
ception to this property are the particle effects, which are dynami-
cally allocated and destroyed. To allow for time reversal, particles
are created with approximated states at their times of death as time
flows backwards and are destroyed if their age becomes negative.

5 CONCLUSIONS

VFire provides an immersive visualization of an established fire be-
havior model. In addition to being a model verification tool, VFire
can reveal crucial aspects of fire behavior to analysts and visual-
izes data in such a way that it can be more easily understood by a
broader audience.

By exploiting features of modern graphics hardware, we were
able to increase the visual fidelity of our visualization without re-
ducing interactivity; on the contrary, by creating a system where
every vertex knows when and how to destroy itself, the user has
been granted more control over the visualization.

6 FUTURE WORK

Improving the accuracy of the visualization will continue to be a
main objective. We are developing ways to incorporate more data
into the visualization in order to represent variables such as fireline
intensity and wind. Additionally, incorporating a physically-based
smoke model will be integral for atmospheric analysis. In order
to more closely replicate the real world, we are also working on
the ability to extract vegetation and objects from satellite images
in conjunction with other pieces of data using image processing
techniques.

In the realm of interactivity, we plan to integrate the FARSITE
software directly into VFire in order to allow users to experiment
with various parameters and increase VFire’s utility as a training
tool. With respect to this, given the GPU-centric nature of our cur-
rent version of VFire, pushing the simulation software directly onto
the graphics hardware may be a logical step; current graphics hard-
ware now has features that bring such a move closer to reality.

ACKNOWLEDGEMENTS

This work was partially supported by the US Army PEOSTRI,
NAVAIR Contract N6133907C0072.

REFERENCES

[1] M. A. Finney. Farsite: Fire area simulator - model development and

evaluation. Research Paper RMRS-RP-4 Revised, USDA Forest Ser-

vice Rocky Mountain Research Station, 1998.

[2] P. Gerasimov, R. Fernando, and S. Green. Shader Model 3.0: Using

Vertex Textures. NVIDIA Corporation, 2004.

[3] L. Latta. Building a million particle system. In Proceedings of the

Game Developers Conference 2004, 2004.

[4] W. R. Sherman, M. A. Penick, S. Su, T. J. Brown, and F. C. Harris.

Vrfire: an immersive visualization experience for wildfire spread anal-

ysis. In IEEE Virtual Reality Conference, 2007. VR ’07, pages 243–246,

Mar. 2007.

[5] T. Ulrich. Rendering massive terrains using chunked level of detail

control. SIGGRAPH Course Notes, 2002.


