
PARALLEL ASSEMBLER FOR FUZZY GENOME SEQUENCE ASSEMBLY

Sara Nasser Adrienne Breland Frederick C. Harris Jr.

Department of Computer Science and Engineering, University of Nevada Reno
Reno, NV 89557

{sara, adrienneb, fredh}@cse.unr.edu

Abstract
Assembly is an NP-Hard problem, which involves

comparing fragments that have a time complexity of O(n2).
This paper presents a parallel approach for sequence as-
sembly. The parallel technique is based on classification
to group organisms by similarity rather than an embarrass-
ingly parallel approach that requires duplication of the data
across all nodes. This process of classification, based on
DNA signatures, is useful in parallel assembly as it divides
the problem into subtasks. The classification is followed
by a fuzzy assembly of these fragments. The assembly of
each tasks is achieved by using a modular approach. The
parallel implementation of the assembly shows a speedup
in assembly while preserving coverage of fragments.

1 Introduction

Computational biology is an expanding interdisci-
plinary field that applies computational sciences to solve
biological problems. Several biological problems that were
tedious or impossible to solve manually have been tackled
or are being tried using computational techniques. Some
of these problems include DNA sequence alignment and
DNA sequence assembly. Finding the genome sequence
is an important step that leads to understanding of the or-
ganism structure and drives further research into discovery
of genes and study of the mechanisms that can explain the
properties of an organism.

Genome sequences are large in size and can range
from several million base pairs in prokaryotes to billions of
base pairs in eukaryotes. For example, Wolbachia genome,
a bacteria has 126 million base pairs (Mb) , Arabidopsis
thaliana, a plant has 120Mb, and the human genome is 3.2
billion base pairs. The whole genome cannot be sequenced
all at once because available methods of DNA sequencing
can handle only short stretches of DNA at a time. Although
genomes vary in size from millions of nucleotides in bac-
teria to billions of nucleotides in humans, the chemical re-
actions researchers use to decode the DNA base pairs are

accurate for only few hundreds of nucleotides at a time [13]
or generally in the range (40 Kbp -1000 Kbp) depending
on the technology. Obtaining shotgun sequences has al-
lowed sequencing projects to proceed at a much faster rate,
thus expanding the scope of the realistic sequencing ven-
ture [12].

The problem of sequence assembly is acquiring data
and assembling the DNA fragments or sequences into an
entire genome sequence. There are two important aspects
to understanding the problems that arise in genome assem-
bly: the genome is cut into smaller portions, and fragments
or sequences are cut at random positions. To obtain the
original sequence these fragments need to be combined.
The fragments are combined by determining overlaps be-
tween fragments. Thus, to combine fragments together by
finding overlaps, portions of fragments need to appear more
than once. Using a sequence fragment once cannot create
overlaps. Therefore multiple copies of original sequences
are made to ensure that the entire sequence is covered
atleast once and several regions occur more than once. This
process is generally referred to as coverage of nX, where n
is the number of copies and X is the sequence. Coverage
of 8X or 10X is widely accepted and it has been shown it
is sufficient to reconstruct the entire sequence. Thus for a
genome sequence of length 4(million)MB, if the sequence
fragments of length around 500 bp are generated we need
80,000 sequences.

Following the sequencing process, an assembler
pieces together the many overlapping bases and recon-
structs the original sequence [13]. The process explained
above is known as the whole-genome shotgun method.
There are three main steps involved in the assembly of se-
quences. The first step, Sequencing, breaks the genomic
DNA into fragments by sonication, a technique which uses
high-frequency sound waves to make random cuts in DNA
molecules [3]. In the assembly phase the sequences are
combined to form contiguous sequences. Generally assem-
bly leads to longer sequences of contigs that do not overlap.
The final phase is finishing, in this phase contigs are joined
by closing physical gaps. This phase is the most time con-



suming phase, which can be improved by using more than
one clone libraries are prepared using different vectors. As
different vectors clone sequences differently, using more
than one vector can help improve coverage. Fragments that
were not cloned by one vector could be cloned by the other.
Thus gaps could be reduced as overall coverage increases
when sequences are generated using different vectors.

The large dataset genome sequences created due to
duplication and the processing time complexity makes se-
quence assembly a viable candidate for parallel processing.
Parallel processing is a technique to divide a task into sub-
tasks and to run the subtasks simultaneously on more than
one processor, such that, the overall time required to per-
form the task is less than the time to perform the task se-
quentially. The results from each processor are combined
in the end and some post-processing is done. As processors
have become less expensive, parallel systems became af-
fordable and have popularity to solve some NP-Hard prob-
lems that could not have been approached earlier.

The applicability of parallel processing to a problem
depends on how well the problem can be divided into sub-
tasks and the whether subtasks can be processed indepen-
dently. For example, Monte Carlo methods use repeated
random sampling to solve a problem, each process is inde-
pendent of other processes. Therefore, these methods can
be parallelized easily [18].

In this paper we present a parallel implementation of
the fuzzy sequence assembly, and discuss load balancing
issues and the new approach in Section 3. In Section 3
we describe the sequential approach to dividing the process
into modules. This modularization leads us to the parallel
implementation of the algorithm in Section 4. Results and
discussions are presented in Section 5.

2 Background

Utilization of parallel techniques have been sought
to a limited extent in bioinformatics. Wide spread use of
parallel processing in this domain has been limited by the
availability of applications that exploit parallel architec-
tures [6].

Bioinformatics databases have grown tremendously
in the past few years. An example is the growth of se-
quences present in GenBank by 200% over the past 6 years.
Techniques such as compression and hashing have been
used in the past to address the issues of size and speed in
assembly. Compression of DNA sequences was performed
to reduce the size of the fragments and perform faster com-
parisons. Since the first method to compare compressed
strings was proposed in [1], there have been several tech-
niques to apply compression to DNA sequences. DNA
compression results in increased speed, but is only suitable
for exact matching [7, ?]. Therefore, this technique is not
well suited to approximation problems such as assembly.

In addition to compression techniques there are methods
that perform analysis of data. FASTA is a rapid heuris-
tic search method for protein and DNA alignment that per-
forms statistical analysis of data prior to alignment [8], re-
sulting in an improvement in performance. Hashing tech-
niques are used to search for word patterns of high fre-
quency which makes assembly faster and heuristics have
been used to reduce number of comparisons required in as-
sembly. These methods, although useful, have some draw-
backs, such as, the need for decompression before assem-
bly. Hashing techniques make assembly very fast but limit
comparisons of overlaps to high frequency words.

To comply with the fast growth of these databases,
high performance computing has been sought as an an-
swer to increase performance. Application of parallel tech-
niques can make bioinformatics techniques faster without
compromising the results. A parallel algorithm for DNA
alignment, in which alignment is calculated on each node
and then gathered into a single global alignment on the
root, is presented in [15]. mpiBLAST is an example of
an open-source, parallel implementation of NCBI BLAST
to improve the performance of BLAST by several orders
of magnitude while scaling to hundreds of processors [9].
ParAlign is another parallel approach for DNA alignment
and search within databases [17]. These tools with few oth-
ers have led the way to parallel implementation of bioinfor-
matics algorithms.

2.1 Embarrassingly Parallel Computation

The first attempt to parallelize assembly was using an
embarrassingly parallel computing technique, where a data
set can be divided into completely equal independent tasks
that execute simultaneously [18]. This also suggests that
the only communication between the processors is when
the processes start and end. These are the simplest cate-
gory of parallelizable problems as they are easy to imple-
ment and require no special techniques. Examples of such
problems are mandle-brot, Monte Carlo methods and some
image processing transformations.

An embarrassingly parallel implementation of se-
quence assembly is to divide the DNA fragments into
groups of fixed size. The groups are assigned to different
nodes/processors, where each node has access to the entire
fragment data, but only assembles the sequences within the
group. This strategy, though simple can increase the per-
formance of assembly as n processes share the work. A
master-slave architecture works well for this kind of imple-
mentation. The master process performs initial grouping of
fragments and distributes the jobs to the slaves. The slaves
receive individual jobs and assemble the data given to them
and return the assembled sequences (or contigs) to the mas-
ter. The master post-processes the contigs to eliminate any
duplicate contigs and finalizes the assembly.

There are some drawbacks of the embarrassingly par-



allel implementation to assembly. This parallelization can
improve performance, but still requires the duplication of
the data all the slaves, as all slaves need access to the en-
tire data set. This assembly can create a large number of
duplicate contigs as each slave works independently. The
presence of duplicate contigs can create another challenge
as they increase the post-processing on the master node and
network traffic.

To address the issue we propose classification of data
in to groups. In this approach groups of sequences are as-
signed to each processor, the process assembles the frag-
ments within the group. This approach reduces redundant
assembly and duplicate contigs, as it performs assembly on
limited number of sequences. The slaves need to communi-
cate to exchange contig information. A master-slave archi-
tecture is proposed for the parallel implementation based
on this partitioning. To increase efficiency classes are cre-
ated using the technique listed in [10].

3 Module Assembly Sequential Approach

Equipped with a sequential program to classify se-
quence fragments into taxonomic groups, we began ana-
lyzing the parallel implementation that best suits assembly.
This section presents the details of parallel implementation.

The process of assembly starts with identification of
DNA signatures, followed by fragment classification to di-
vide the data sets into smaller categories. The classes ide-
ally represent two significant properties: 1) they contain
fragments belonging to the same region in the genome and
2) they have continuity and can form contigs for the lo-
cal regions of the genome. This grouping is followed by
assembly, which is divided into three major steps. These
steps of a sequential assembly are used to design the tasks
for the parallel processing as shown in Figure 1. The steps
start with assembly of the K individual classes.

Figure 1: Module Assembly

3.1 Round 1: Divide-and-Conquer

A divide-and-conquer strategy is used in the first
round of assembly. The sequences are classified using the
approach presented in [10]. Sequence classification can be
approached in two ways: 1) forming few classes of large
size, 2) forming smaller classes that are compact, and, few
of the small classes represents one large group. Because
improper loads on nodes can occur as the sizes of a class
is unknown, classes of larger size can become a bottleneck.
We use the second approach as it creates smaller groups
that can be assembled faster. This approach also balances
the load on a slave and is easier to implement, as assign-
ing more than one job to a slave is simple and does not add
overhead during post-processing. Consider a genome, that
contains a total of 8 million base pairs. A 10X coverage of
this genome results in 80 million base pairs or over 100,000
sequences of length 700 base pairs. If the classification of
this dataset results in two classes, assuming even distribu-
tion of the groups there will be two large groups of 50,000
sequences each for each slave. The situation gets worse if
the data is not distributed evenly and can result in load bal-
ancing issues as illustrated in Figure 2. Thus, we choose to
select smaller groups, so that the slaves get smaller classes
to assemble, which also results in faster in-class assembly.
Further details of load balancing will be covered in Sec-
tion 4.1.

Figure 2: Unbalanced Classes

Each of the classes is assembled to form contigs
within the class. Each class acts as an independent unit
and does not interact with any other class. Two kinds
of results are obtained after this module is completed: 1)
Contigs formed within the class (assembly of one or more
fragments by overlap), and 2) Singlets in the class (singlet
refers to a fragment that was not assembled with any other
sequence). Singlets are found in a class if a sequence can-
not be part of any contig. In this case, a singlet can also be



Figure 3: Round 2 Assembly: Review-and-Regroup

found if a sequence was not classified correctly or even if
it was classified correctly it does not have a good overlap
with any of the sequences present in the class. Singlets are
determined during the assembly process by identifying se-
quences that could not assemble. In such case the singlet
can be assembled with sequences from another class.

3.2 Round 2: Review-and-Regroup

The second module corrects any mis-classifications
made during the first module, reassigns singlet fragments
between classes, and performs intra-class assembly. If all
classes are compared a total of p(p-1)/2 comparisons will
be required, which can add network overhead. Addition-
ally, if there are large number of singlets then the parallel
version can slow down to the performance of the sequen-
tial version. To avoid comparing all possible classes we use
heuristics to determine whether the classes have any sim-
ilarity, and only classes that exhibit similar signatures to
each other are used to perform intra-class assembly. The
heuristics are described in Section 3.4. Round 2 can be
further enhanced by comparing singlets in all classes with
each other.Figure 3 depicts a representation of hierarchical
Round 2 grouping.

3.3 Round 3: Collect-and-Combine

As the name of the module suggests this section of
the algorithm collects the contigs assembled in Round 1
and Round 2. It combines the local contigs to form larger
contigs and connects overlapping regions between classes.
The contigs are processed to remove duplicates and longer
contigs are created by further assembly.

3.4 Class Restrictions

Round 2 assembly to review and regroup sequence
fragments, becomes computationally intensive as the num-
ber of singlets and classes increases. Therefore, to keep the
task from growing, restrictions are imposed on classes. Re-
striction on classes ensures that classes communicate with
certain classes only and not all the classes present in the
data set. Class restrictions are imposed by two techniques
described in this section.

3.4.1 Nucleotide Content

Two frequencies are used for analyzing the closeness of
sequence fragments to each other, Base pair content and
GC Content.

Base pair frequencies (BPF) of a fragment is the fre-
quency of A,C,T and G present in the fragments. BPC al-
lows us to compare if two sequences can a potential overlap
without actually assembling. It is calculated for the ends
of the fragments, rather than the whole sequence. Using
the entire fragment may include information that is not re-
quired for assembly. As assembly requires similarity at the
ends of the fragments and if these are not similar then com-
paring the rest of the fragment cannot yield information im-
portant to assembly. If the BPC at the sequence ends is not
similar then the sequences have less or no chance of assem-
bly. Thus each class has a range of BPC, that is compared
before intra-class assembly is performed.

BPFi =
∑
Xi

n
(1)

In Equation 1, i refers to a nucleotide type and n is the
length of sequence compared.

The four nucleotides of a DNA strand are connected
by hydrogen bonds between them. The nucleotide A bonds
specifically with T and the nucleotide C bonds with G.
AT pairs have two hydrogen bonds and GC bond pairs
have three hydrogen bonds, making the bonds more ther-
mostable. Thus, the GC content in an organism can some-
times be used to determine certain characteristics about that
organism.

Organisms are generally biased in the distribution of
A, C, G and T. This fundamental property of organisms
is used in separating one genome from another. Certain
organisms contain higher percentages of GC and are thus
known as GC rich, while some other organisms are domi-
nated by AT and are known as AT rich. Organisms belong-
ing to the phylum actinobacteria are listed as GC rich [11].
On other hand, Arabidopsis thaliana, a very popular plant
research organism has less than 40% CG content and thus
has more AT content. Theoretically, GC content percent-
ages of elements in a class are similar and within a small
range.GC content is expressed as the percentage of C and



G present in the fragment and is calculated as follows:

C +G

A+ C +G+ T
× 100 (2)

In Equation 2, A, C, G and T refer to the frequencies of the
occurrences of the four base pairs. In order to restrict com-
parisons of singlets with classes that are close, GC content
of classes is used. Each class has number of fragments that
are grouped by similarity. GC content is one of the factors
that is used to form these classes. We compute the low and
high GC content of each class. A singlet is compared with
elements of this class if it’s GC content is within this range.
Using GC content also helps in separation of organisms,
which is ideal for metagenomic assembly. The application
to metagenomic assembly is discussed in Section 5.

3.4.2 Hierarchical Clustering

The second method to impose class restriction is by limit-
ing comparisons of classes by the fuzzy distance between
classes. The distance di,j of a sequence from each cluster
can be calculated as follows:

di,j = min(µr
j), for all j = 0, . . . , k (3)

Here µ is calculated using a weighted fuzzy average

(WFA). Let {x1, ..., xP } be a set of P real numbers. The
weighted fuzzy average using the weight wp for xp is given
as:

µr =
P∑

p=1

w(r)
p xp, r = 0, 1, 2, . . . (4)

Here x is the parameter or DNA feature and p the number
of DNA features. The number of the iteration is given as
r. A hierarchical clustering of classes are created by com-
bining smaller classes whose distance is less that di,j < δ.
In this approach hierarchical clustering is used in Round 2
to restrict class comparisons to subclasses within the same
larger group. Thus classes that are closer in nucleotide fre-
quencies are virtually assigned to a group and only com-
pared with classes within the virtual group. Classes from
different virtual groups are not compared during round 2.

4 Master-Slave Architecture

Master-slave architecture is a popular technique of di-
viding tasks in a message passing parallel implementation.
In this technique, one processor is the master and the rest
of the processors are slaves. The master performs the clas-
sification of sequences, and assigns tasks to the slaves. The
slaves perform the assembly and return results back to the
master. The master performs the final processing before
finishing the task.

4.1 Load Balancing

Load balancing is an important issue in parallel im-
plementation of any algorithm. Load balancing aims to
distribute jobs evenly across all process to maximize the
overall performance. Several factors affect the balancing
of a parallel system, such as different processing speeds
of processors and different data sizes. If all processors are
given equal size data sets and if everything else is fixed then
maximum speedup can be expected. Generally, all slaves
may not finish at the same time. As sequences are classified
based on nucleotide similarities, the classes formed are not
necessarily the same size. Therefore, a class that is much
bigger than other classes can be found.

Unbalanced classes can be avoided by imposing re-
striction during classification. For example, if classes are
large then they cannot be merged. Nevertheless, if the sig-
natures are quite similar then this restriction will not pre-
vent fragments from belonging to a class.

To address this issue, a method for dividing large
classes during assembly is presented. In a regular master-
slave implementation of assembly, each slave gets a fixed
number of classes. In the proposed load balancing ap-
proach, depicted in Figure 4, if a class is large in size then
an embarrassing parallel technique is applied to divide the
class between more than one processor. Each slave is re-
sponsible for assembling an assigned portion of the class,
even though they have access to all the sequences in the
class. This splicing does not affect the assembly and may
add certain amount of overload to the slaves sharing the
class. But overall is faster than one slave performing the
entire assembly.

Figure 4: Static Load Balancing using Mixed Mode Simple
Parallelization



5 Results and Analysis

Accuracy of assembly is measured by the amount of
original genome that can be recovered. Parallel implemen-
tation generally aims at increasing the performance of a
process. Thus we will measure the two outcomes: cov-
erage and speedup. The speedup attained via the parallel
processing is measured to analyze the performance of the
parallel algorithm. The speedup factor S(n), is defined as a
measure of relative performance between a multiprocessor
system and a single processor system, and is given by

S(n) =
ts
tp

(5)

Where, ts is the execution time using one processor
and, tp is the execution time using a multiprocessor sys-
tem. Assembly of three genomes Yersinia pestis Pestoides
F plasmid CD complete sequence, containing 71,507 base
pairs, was performed are results are shown below. Fig-
ure 5 compares the speedup of the assembly for each
genome.The speedup for assembly is given in Figure 5,
which indicates that the parallel approach increases the per-
formance of assembly. The parallel code using MPI was
test on a research grid cluster running opterons with 2GB
of RAM. Microorganisms live in communities, and their

Figure 5: Speedup for Assembly of three genome se-
quences Yersinia pestis Pestoides F plasmid CD, Ara-
bidopsis thaliana genomic DNA, chromosome 3, BAC
clone:F11I2, and Geobacillus thermodenitrificans NG80-
2 plasmid pLW1071

structure and behavior is influenced by their habitat. Most
microorganisms genomes are known from pure cultures of
organisms isolated from the environment, be it a natural
organism-associated (i.e, human) or artificial system. New
techniques in genomic sciences have emerged that allow
an organism to be studied in its natural habitat as part of a
community. Research has broadened from studying single

species to understanding microbial systems and their adap-
tations to natural environments. These techniques have
been achieved by developing methods that can sequence
mixed DNA directly from environmental samples [2, 14].
This field of metagenomics (environmental genomics) in-
volves the sampling of microbial DNA from natural envi-
ronments rather than relying on traditional single-species
cultivation techniques. This sampling, coupled with rapid
developments in molecular biology, is changing our under-
standing of bacterial evolution and naturally existing mi-
crobial systems. Metagenomics is the application of mod-
ern genomic techniques to the study of microbial commu-
nities in their natural environments, bypassing the need for
isolation and lab cultivation of individual species [4, 16].

Whole-genome shotgun sequencing of environmental
DNA gained attention as a powerful method for revealing
genomic sequences from various organisms in natural en-
vironments [2, 16]. In a metagenomic sample an organ-
ism’s DNA is not only sliced into small fragments but also
mixed with other organisms’ DNA fragments, thus creating
a mixed population of fragments. This group of heteroge-
neous fragments needs to undergo assembly. A classifica-
tion based approach for assembly suits metagenomic data
as it can group organisms into classes. Preliminary tests
are performed on an Acid Mine Drainage Metagenome data
set. This metagenome has been assembled thus is a good
benchmark for assembly and verification of assembly. The
two scaffolds belong to Ferroplasma and Leptospirillum
sets.

Results of assembling scaffolds obtained from the
AMD environmental genome sequences from NCBI are
shown in Table 1.

Percentage Genome Recovered
Genome mpiCFGS

Ferrosplasma 96.57%
Leptospirillum Sp Type 94.02%

Table 1: AMD Scaffolds Parallel Implementation
In the table, mpiCFGS refers to the parallel implementation presented in this pa-
per to assemble sequences from the AMD metagenome. The shotgun sequences
were created artificially with average length of 700 bp. Contigs up to length 4000
bps were obtained.

Preliminary results of assembling scaffolds of AMD
data belonging to Ferroplasma and Leptospirillum sets are
displayed show a good recovery of the genomes.

6 Conclusions and Future Work

The results indicate that parallel implementation im-
proves the speed of assembly. Parallel implementation also
allows us to assemble larger data sizes at reasonable speeds,
which was difficult due to memory limitations. As nodes
share information after initial assembly, intra-class assem-
bly is also performed. We compared different parallel im-



plementations for assembly to analyze which implementa-
tion suits best. A simple load balancing technique is pro-
posed, which can be improved by addition of dynamic load
balancing. An improvement in load balancing can also re-
sult in a smoother speedup.

Future goal of this research is to move in the direction
of metagenomic assembly. This parallel assembly is a po-
tential tool for metagenomic data as the fragment data set is
much larger than single organisms. Metagenome sets also
contain more than one organism which can be assembled
individually. Thus each processor can run assembly job
independenent of other processors. The challenge with a
parallel assembly of metagenomes is classification of data
into groups that can represent organisms within it. There
are certain issues with classification of closely related data,
irrespective of the classification accuracy the parallel ap-
proach has shown improvements.

7 Acknowledgments

This research was supported in part by the NSF EP-
SCoR CIP Fellowship (RING-TRUE III Award number:
0447416). The authors also wish to thanks Dr. Alison
Murray from Dessert Research Institute, Reno, NV for her
insight to the problem.

References

[1] Amihood Amir and Gary Benson. Two-dimensional
periodicity in rectangular arrays. SIAM Journal on
Computing, 27(1):90–106, 1998.

[2] O. Beja, M.T. Suzuki, E.V. Koonin, L. Aravind,
A. Hadd, L.P. Nguyen, R Villacorta, M Amjadi,
C Garrigues, SB Jovanovich, RA Feldman, and
EF DeLong. Construction and analysis of bacterial ar-
tificial chromosome libraries from a marine microbial
assemblage. Environmental Microbiology, 2:516–
529, 2000.

[3] TA Brown. Genomes. Garland Science, 3rd edition,
2006.

[4] K Chen and L Pachter. Bioinformatics for whole-
genome shotgun sequencing of microbial communi-
ties. PLoS Computational Biology, 1:106–112, 2005.

[5] E.S. Gough and M.D. Kane. Evaluating parallel com-
puting systems in bioinformatics. In Third Interna-
tional Conference on Information Technology: New
Generations, pages 233–238, 2006.

[6] Chen Lei, Lu Shiyong, and J. Ram. Compressed
pattern matching in dna sequences. In Computa-

tional Systems Bioinformatics Conference, pages 62–
68, 2004.

[7] D.J. Lipman and W.R. Pearson. Rapid and sensitive
protein similarity searches. Science, 227:1435–1441,
1985.

[8] mpiBLAST. mpiblast: Open-source parallel blast.
http://www.mpiblast.org/, NCBI, 2008.

[9] Sara Nasser, Adrienne Breland, Frederick C. Harris,
and Monica Nicolescu. A fuzzy classifier to taxonom-
ically group dna fragments within a metagenome. In
North American Fuzzy Information Processing Soci-
ety, pages 1–6, 2008.

[10] NCBI. National center for biotechnology informa-
tion. http://www.ncbi.nlm.nih.gov/, NIH, 2007.

[11] Edmund Pillsbury. A history of genome sequenc-
ing. Technical report, Yale University Bioinformatics,
2001.

[12] Mihai Pop, Steven L. Salzberg, and Martin Shumway.
Genome sequence assembly: Algorithms and issues.
IEEE Computer, pages 47–54, July 2002.

[13] M.R. Rondon, P.R. August, A.D. Bettermann, S.F.
Bradly, T.H. Grossman, M.R. Liles, KA Loia-
cono, BA Lynch, IA MacNeil, C Minor, CL Tiong,
M Gilman, MS Osburne, J Clardy, J Handelsman, and
RM Goodman. Cloning the soil metagenome: a strat-
egy for accessing the genetic and functional diversity
of uncultured microorgansims. Applications Environ-
mental Microbiology, 66:2541–2547, 2000.

[14] Thomas Royce and Rance Necaise. A parallel algo-
rithm for dna alignment. Crossroads, AMC Student
Magazine, 9(3):10 – 15, 2003.

[15] JL Stein, TL Marsh, KY Wu, H Shizuya, and EF De-
Long. Characterization of uncultivated prokaryotes:
isolation and analysis of a 40-kilobase-pair genome
fragment from a planktonic marine archaeon. Jour-
nal of Bacteriology, 178:591–599, 1996.

[16] Rognes T. Paralign: a parallel sequence alignment
algorithm for rapid and sensitive database searches.
Nucleic Acids Research, 29(7):1647–52, 2001.

[17] Jeff Wallace, Gregory Vert, and Sara Nasser. An effi-
cient method for compressing and searching genomic
databases. In High Performance Computing and Sim-
ulation, pages –, 2007.

[18] Barry Wilkinson and Michael Allen. Parallel Pro-
gramming: Techniques and Applications Using Net-
worked Workstations and Parallel Computers. Pren-
tice Hall, 2nd edition, 2004.


