
A Dynamic Multi-contextual GPU-based Particle System using Vector

Fields for Particle Propagation

Michael J. Smith+∗ Roger V. Hoang+∗ Matthew R. Sgambati+∗

Sergiu M. Dascalu+ Frederick C. Harris, Jr.+∗

Department of Computer Science and Engineering+ CAVCaM∗

University of Nevada, Reno Desert Research Institute

Reno, NV 89557 Reno, NV 89512

{mjs, hoangr, sgambati, dascalus, Fred.Harris}@cse.unr.edu

Abstract

Particle systems have long been used in scientific
visualizations. The advancement of graphics technol-
ogy has allowed for the computations of these sys-
tems to be performed on the graphics processing units
(GPUs). The parallelism offered by these devices al-
lows for a greater number of particles to be updated in
real-time. Scientists can immerse themselves in these
systems through the use of virtual reality. However,
the use of such environments with multiple screens and
multiple rendering contexts presents data synchroniza-
tion problems with respect to dynamic GPU data. We
present a solution to this problem and apply it to the
visualization of brownouts caused by helicopter down-
wash.
Keywords: Virtual Reality, GPU, Multi-Contextual

1 Introduction

Due to the loose sand, desert terrains are difficult
areas for helicopters to land. The downwash gener-
ated by rotors can cause the loose sand particles to be
lifted up into the air resulting in reduced visibility, en-
gine clogging, and unsafe flying conditions. Visualizing
these brownouts using virtual reality allows scientists
to better understand and study this phenomenon and
allows pilots to better prepare for such situations.

One such way to visualize this phenonmenon is to
use a particle system. By storing the forces generated
by the downwash in a vector field, we can visualize
the flow of sand particles through the air by subjecting
each particle to the forces of the wind field. While par-
ticle systems have tradionally been computed on the
CPU, the advent of the programmable shader and the
application of GPUs as massively data-parallel general
purpose processors have resulted in the migration of

these calculations onto the GPU, allowing for a much
larger number of particles to be visualized while main-
taining real-time framerates.

Not only has the increase in computing power al-
lowed real-time particle systems to grow in complex-
ity, it has also allowed these visualizations to be used
in virtual reality (VR) environments. The use of VR
and 3D user interfaces allows a user to more intuitively
examine and manipulate 3D data such as vector fields;
additionally, realistic visualizations of these dust sim-
ulations can be used to prepare helicopter pilots to
respond to brownout conditions.

While both GPU-based particle systems and virtual
reality technology can contribute to the effectiveness
of dust simulations and visualizations, integration of
the two can be non-trivial. A VR system such as
the a CAVE consists of multiple screens that must
be synchronized. Each screen is usually rendered to
by a separate GPU with its own separate video mem-
ory. Due to the random nature of particle systems,
the particle data in video memory must be kept syn-
chronized between all GPUs to ensure that particles
traveling from one screen to another remain consis-
tent. With a large number of particles or a large num-
ber of GPUs, the bandwidth costs of transferring these
computations between components may outweigh any
benefit to be gained from using these systems.

In this paper, we present a solution to this problem
by replicating all GPU-based computations using the
same random variables. This ensures that all of the
results will be consistent across all rendering contexts.
The remainder of this paper is structured as follows:
Section 2 discusses the background and related work of
GPU particle systems; Section 3 outlines our approach
to the problem; Section 4 details the implementation
of our prototype; Section 5 presents our results and
Section 6 closes with conclusions and future work.



2 Background

2.1 Virtual Reality

The ability to immerse oneself in an application or
simulation has interested both scientists and engineers
alike. Virtual reality works towards this goal. In ad-
dition to depth information normally provided by vi-
sualizations flatly displayed on desktop monitors, the
visual aspects of virtual reality also present the user
with stereoscopic depth cues by rendering a slightly
different image to each eye [13].

Within the realm of virtual reality systems, multi-
screen environments, such as CAVE (see Figure 1) and
large wall displays, are typically connected to more
than one graphics pipe. Pipes can be connected to
different graphics cards and hence different render-
ing contexts. In order to ensure that an image re-
mains consistent across all rendering contexts, the data
within these contexts must be synchronized.

Figure 1: Four-sided FLEX CAVE.

2.2 GPU Offloading

With games and visualization driving the evolution
of graphics processors, the fixed functionality of the
rendering pipeline once offered has been steadily re-
placed by the introduction of programmable pipeline
components called shaders. These shaders not only
allow the GPU to be used for more elaborate graph-
ical effects but also allow it to be used for more gen-
eral purpose computations. By storing general data as
texture data, user-programmed vertex and fragment
shaders can transform the GPU into a highly data-
parallel multiprocessor [10]. Figure 2 illustrates the
flow of graphics data from the CPU to the GPU in
a typical graphics application and highlights areas of
user-programmability.

While a large number of fragment shader instances
can be executed on the GPU in parallel, each instance
can only output a single fragment of data. Newer
GPUs insert another programmable component be-
tween the vertex and fragment stages called a geome-
try shader [8]. This type of shader is capable of emit-
ting a variable number of vertices. Along with the in-
troduction of this shader type, these newer GPUs also
introduce the ability to stream this variable size out-
put to a vertex buffer object, a one-dimensional array
of video memory [5][9].

2.3 GPU Particle Systems

Particle systems have long been used to model phe-
nomena with no particularly well-defined surfaces [11].
A cloud of particles is instead used to model the vol-
ume that the phenomenon inhabits. In general, parti-
cle systems are implemented with five stages that are
performed at each time step.

• New particles are created.

• Parameters for newly created particles are initial-
ized.

• Particles that have existed past their assigned life-
times are destroyed.

• Existing particles are transformed by some update
function.

• Particles are rendered onto the screen.

Depending on the type of phenomenon being mod-
eled, a high degree of parallelization can be achieved.
Creation, updating, and destruction of particles all es-
sentially operate on large arrays of independent data
that can be acted upon by multiple processes or
threads simultaneously. Rendering is inherently par-
allel due to the nature of graphics processor design.

Even if every stage of a particle system can be par-
allelized, the cost of communication can become the
new bottleneck in the system. As the rendering phase
consists of sending graphics data from main memory
to a video card, the graphics bus can quickly limit the
amount of particles that can visualized per frame. To
ameliorate this situation, recent developments in par-
ticle systems have seen a shift of all computation to
the GPU. This shift not only relieves the load on the
graphics bus but also exploits the highly data-parallel
nature of the GPU.

One such GPU particle system is the UberFlow sys-
tem described in [2]. Particle data is stored as 2D tex-
tures and updated by rendering these data textures
over another set of data textures, overwriting them in
the process. The textures are then swapped for the



Figure 2: The graphics pipeline [7].

next update cycle. The number of particles is stati-
cally limited by the size of the texture with the par-
ticle emission and death rates dictated by this limit
in conjunction with particle lifetimes. Particles that
die simply reset themselves. Particles are rendered by
essentially recasting the texture data as a vertex array
and streaming this array through a render program.

A similar approach is described in [3]. Particle data
is again stored in textures and double-buffered for up-
dating. Particle creation and destruction, however, is
done in a different manner. Indices to every texel not
inhabited by a living particle are maintained by the
CPU. Particle destruction is monitored by both the
CPU and GPU; upon death, the CPU adds the texel
index back to its pool of free indices. Particles are
created on the CPU and sent down to the GPU by
rendering points at these free locations. Rendering is
performed by asynchronously copying the texture data
into a vertex array.

While [2] forces the creation of a new particle upon
the death of another and [3] must use the CPU to
maintain particle creation and destruction, a technique
described in [4] allows for emitters to emit indepen-
dently while moving all computation to be performed
on the GPU. Particle data along with emitter data is
double-buffered in vertex buffer objects. Data is up-
dated by streaming the vertex buffers through a geom-
etry shader. Any data that will persist past the update
is streamed back out with updated values. Emitters
that emit particles during an update stream an extra
vertex out containing data for the newly created par-
ticle. The output of the geometry shader is streamed

into another vertex buffer object that can be directly
used to render the particles and/or used as input for
the next update cycle.

3 Design

As discussed, the use of GPU-based particle systems
provides considerable advantages for creating real-time
immersive simulations and visualizations. However,
the use of these particle systems in conjunction with
VR systems presents a unique problem. The multi-
contextual nature, that is, the fact that there are mul-
tiple sets of video memory of VR systems combined
with the random nature of particle systems requires
that either the computations for all particles are done
on a single machine and distributed out, or the compu-
tations are replicated for each rendering context. Our
solution to the problem takes the latter approach.

To achieve such a system all contexts are updated in
lock-step. That is, all contexts must be updated to a
particular time step before continuing to the next step.
Within each time step, each context is updated using
the exact same delta time and random variables; as a
result, all particle data should be exactly the same for
all contexts.

4 Implementation

To allow the emission computations to also be per-
formed on the GPU, the particle system was imple-
mented using geometry shaders and vertex streamout.



Particle and emitter data is stored into a vertex buffer
object, then streamed through a geometry shader. The
geometry shader determines wheter a particular “ver-
tex” is a particle or an emitter and updates it accord-
ingly. All live objects are steamed out from the ge-
ometry shader and into another vertex buffer object.
Particles that have expired after this update do not get
streamed out again; additionally, emitters stream out
not only themselves but also any particles that they
emit.

When particles are emitted they are given a random
initial position, velocity and lifetime (see Figure 3).
This randomness must be controlled in order to keep
the particle data consistent between contexts. To do
so, we generate a large set of random numbers at ini-
tialization time. This same set of numbers is stored in
a texture for each context. Also during initialization,
every emitter is given a set of texture coordinates that
it uses to fetch values from the random texture. Dur-
ing each update step, each context is given the same
randomly generated texture transformation matrix to
shift all of the coordinates of the random texture re-
sulting in a new set of random values being fetched by
the geometry shader.

Figure 3: Particle emission [11].

Particle motion is dictated by a 3D user-generated
vector field [1]. The vector field is maintained in video
memory as a 3D texture. When the geometry shader
updates a particle, it uses the particle’s current posi-
tion to look up the appropriate voxel in the 3D texture.
It then applies the force stored in that voxel to the par-
ticle. Hardware-accelerated interpolation can be used
to obtain a more realistic force vector.

Particles are rendered by streaming the particle data
into another geometry shader. If the data is deter-
mined to be a particle then the geometry shader con-

structs a textured billboard and streams it out to be
rendered; otherwise, nothing is streamed out. In order
to create more realistic looking dust without overusing
an expensive pixel shader to do so, deferred shading is
used instead [6]. Rather than rendering a colored im-
age of a particle to the visible framebuffer, data such
as the density and normals of each particle is accumu-
lated in a separate framebuffer. This data is then used
to composite a dust layer over the rendered scene. The
pixel shader that composites this image uses this data
to perform lighting and blending computations.

5 Results

A prototype was implemented using OpenGL and
its shader language GLSL. The VR environment was
handled through the use of FreeVR, a virtual reality
library [12]. The prototype was run on the four screen
CAVE-like system at the Desert Research Institute.
The system driving the virtual environment consists
of four quad-core Xeon processors, 48 GB of RAM,
and a NVIDIA Quadroplex FX 5600 Model IV with
two GPUs rendering to four screens.

Figure 4 shows the result of the prototype run-
ning on multiple screens with a rendering context per
screen. The yellow line highlights the edge where the
two displays meet. As evidenced by the image, parti-
cles that move between the two displays form a con-
sistent image to the user.

Figure 4: Particles moving across two contexts.

Figures 5 and 6 visualizes the vector field stored in
a 3D texture. Larger arrows represent forces of greater
magnitude. Figure 7 shows the paths of various par-
ticles as they are propagated through the vector field.

Figure 8 shows the final prototype with a helicopter
model and a user-generated vector field. The user
uses a tracked wand device to maneuver the helicopter
by tilting the wand to control the speed of the rotor
blades. Dust emission rates increase as the helicopter



Figure 5: A vector field.

Figure 6: Several slices of the vector field.

approaches the ground, as do the forces in the vector
field.

In terms of performance, the system was able to ren-
der a particle system consisting of over 300,000 parti-
cles. When viewed from afar, the system was able to
run at 65 FPS. When immersed in the particle sys-
tem, the framerate drops to between 15 and 20 FPS
due to the system becoming fill-rate limited. It would
be expected that the framerate would increase dras-
tically on a machine where one GPU were dedicated
to each rendering context in order to avoid potentially
expensive context switches.

6 Conclusions and Future Work

We have presented a method for simulating and
visualizing GPU-based particle systems in a multi-
contextual environment. By replicating computations

Figure 7: Particle paths through the vector field.

in lock step for each rendering context, a consis-
tent system was visualized across multiple screens.
Through the use of the GPU, the number of particles
that could be simulated and visualized at interactive
framerates was significantly increased.

Our prototype implements this solution and allows
for a vector field to be visualized through the use of a
particle system. While the vector field used in the pro-
totype was a static user-generated one, the system is
capable of using collected field data or simulated data
to drive the system. In addition, although the pro-
totype was intended to visualize a dust system, mod-
ifications to the rendering components of the system
can be performed in order to visualize other phenom-
ena, such as air flow and fluid simulations. Further-
more, our GPU-based solution allows for a much larger
particle system. Even with greatly increased particle
emission rates, there was a negligible decrease in sys-
tem performance.

As our system is merely a prototype at this point in
time, several improvments can be made. In order to
increase the realism of the particle flow, collision detec-
tion must be implemented not only with static objects
such as the terrain but also dynamic objects such as
the helicopter itself and other particles. Additionally,
a real-time air flow simulation can be implemented.
As the particle computations and vector field already
reside on the GPU, a fluid simulation should also be
performed on the GPU, again, replicating all inputs to
ensure that the resultant field is also consistent across
all rendering contexts.

Several improvements can also be made to increase
the visual fidelity and responsiveness of the system.
As the particles are rendered using billboards, inter-
section edges with other objects in the scene are highly
visible. Techniques such as using soft particles can



Figure 8: A helicopter-generated particle system.

ameliorate this problem. To increase the performance
of the system, optimizations such as separating emit-
ters and particles into separate data structures can be
done in order to decrease the amount of redundant
branching that is currently performed within the up-
date geometry shader.

Acknowledgements

This work was funded by the STTC CAVE Project
(ARO# N61339-04-C-0072) at the Desert Research In-
stitute.

References

[1] Travis L. Hilton and Parris K. Egbert. Vector
fields: an interactive tool for animation, modeling
and simulation with physically based 3d particle
systems and soft objects. In Computer Graphics
Forum, pages 329–338, Aire-la-Ville, Switzerland,
1994. Eurographics.

[2] Peter Kipfer, Mark Segal, and Rüdiger West-
ermann. Uberflow: a gpu-based particle en-
gine. In HWWS ’04: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, pages 115–122, New York,
NY, USA, 2004. ACM.

[3] Lutz Lata. Building a million particle system. In
Proceedings of the Game Developers Conference
2004, 2004.

[4] Microsoft. ParticleGS Sample. http://msdn2.

microsoft.com/en-us/library/bb205329(VS.

85).aspx (Accessed April 23rd, 2008).

[5] Microsoft. Stream-Output Stage (Direct3D
10). http://msdn2.microsoft.com/en-us/

library/bb205121(VS.85).aspx (Accessed
April 23rd, 2008).

[6] Nicholas Francis, Over The Edge Entertainment.
Deferred Particle Shading, Cooler Looking Smoke
For Games. http://unity3d.com/blogs/nf/

(Accessed April 23, 2008).

[7] NVIDIA. Cg toolkit user’s man-
ual. http://developer.download.nvidia.com/
cg/Cg_2.0/2.0.0015/CgUsersManual.pdf, Jan-
uary 2004.

[8] Nvidia Corporation. OpenGL Geometry Shader
4 Extension. http://developer.download.

nvidia.com/opengl/specs/GL_EXT_geometry_

shader4.txt (Accessed April 23, 2008).

[9] Nvidia Corporation. OpenGL Transform Feed-
back Extension. http://developer.download.

nvidia.com/opengl/specs/GL_NV_transform_

feedback.txt (Accessed April 23rd, 2008).

[10] John D. Owens, David Luebke, Naga Govin-
daraju, Mark Harris, Jens Krger, Aaron E.
Lefohn, and Timothy J. Purcell. A survey of
general-purpose computation on graphics hard-
ware. Computer Graphics Forum, 26(1):80–113,
2007.

[11] William T. Reeves. Particle systems–a tech-
nique for modeling a class of fuzzy objects. In
SIGGRAPH ’83: Proceedings of the 10th annual
conference on Computer graphics and interactive
techniques, pages 359–375, New York, NY, USA,
1983. ACM Press.

[12] William R. Sherman. Freevr. http://www.

freevr.org/(AccessedApril23,2008).

[13] William R. Sherman and Alan B. Craig. Under-
standing Virtual Reality. Morgan Kaufmann Pub-
lishers, San Francisco, CA, USA, 2003.


