
The C++ Hybrid Imperative Meta-Programmer: CHIMP

John L. Kenyon, Frederick C. Harris Jr., Sergiu M. Dascalu
University of Nevada, Reno

Department of Computer Science and Engineering
1664 N. Virginia St., Reno, NV 89557
{jkenyon,fredh,dascalus}@cse.unr.edu

Abstract

Neither the C nor the C++ languages support reflection
and their meta-programming capabilities are very limited.
Both of these problems can be addressed by adding a pre-
processing step, which can analyze and modify the code
before it is passed to the actual compiler. By using this
method, we can simplify many typical C/C++ tasks without
having to change the languages at all. In order to inves-
tigate this, we have created CHIMP, a meta-programming
tool that demonstrates the concept and can be used to ex-
plore the full capacity of the proposed programming tech-
nique. This paper presents CHIMP and demonstrates the
benefits of this kind of meta-programming by applying it to
a frequently encountered XML problem.

1 Introduction

One of the goals of a programmer is to produce as much
functionality as possible in the limited timeframe of the
working day. For this reason, there is a perpetual arms race
to develop new programming languages, integrated envi-
ronments, and platforms, each designed to make the task
of programming easier, faster, more reliable, and less repet-
itive. However, for various practical and historical reasons,
C and C++ remain very popular, despite their age and lack
of modern features. Various attempts have been made to up-
date the language, such as buiding new languages based on
C/C++, extending the language through use of non-standard
compilers, or using the existing templating system in C++ in
creative ways. This paper proposes an alternative approach
tentatively entitled Imperative Meta-Programming (IMP).

Imperative meta-programming is a two step technique
for meta-programming. First, we inspect the contents of the
target source code to get information about variables, types,
and, most importantly, members and methods of classes and
structs. Then we feed this information as a parameter into
a template engine (like PHP or ASP, not like the C++ tem-

plate system!). The template engine allows us to automati-
cally generate large amounts of code based on the structure
and content of existing structures, and it enables us to do
so without having to change the C/C++ compilers and lan-
guages definitions. In order to develop the imperative meta-
programming idea, we have created the tool called CHIMP.
CHIMP is written in Python and uses various other open
source components.

The remainder of the document is laid out as follows:
Section 2 covers related work and similar tools to CHIMP,
Section 3 explains what imperative meta-programming is
and how we implemented CHIMP, Section 4 presents the
application of CHIMP to an XML serialization problem,
and Section 5 draws the conclusions of the paper and ex-
plains future work.

2 Related Work

2.1 Meta-Programming

Typical programming is the act of writing code which
will be translated into an executable program. Meta-
Programming is the “art” of writing code that will generate
new code, which will in turn be translated into an executable
program. Meta-Programming is an old idea, and is already
used in C through the preprocessor [14] and in C++ through
template meta-programming [4]. Programs like yacc [13]
and lex [6] are also meta-programmering tools, as they take
an input language and generate C code as an output.

The motivation behind meta-programming is to relieve
the programmer of having to write repetitive or complex
code, where a simple description in a meta-language can
be expanded to a large and complex block of code in a tar-
get language. A simple example of this comes from the
basic usage of C++ templates. Because of C++’s strict typ-
ing, if one writes a container class, it will only be able to
contain the type that it was written for. If one want a con-
tainer for another data type, one would effectively need to
copy and paste the whole container class, but then change

every instance of the data type. This is a pointless waste
of programmer’s time, and is simplified greatly by the C++
template system [14].

As such, template meta-programming is a powerful
meta-programming technique. It has been used to great ben-
efit in the Boost libraries [4]. However, there are various
constraints on the C++ template engine, and several draw-
backs to using it. The main obstacle to using template meta-
programming stems from the fact that it is hard to use. Most
programmers learn to program with imperative languages,
like C or Python. However, template meta-programming
is predominantly a declarative programming model, which
is counter-intuitive to most programmers. This is evident
by the general obscurity of Prolog in our modern language
market. This declarative approach leaves many program-
mers guessing as to how it will actually behave. With suf-
ficient training and experience, it can become obvious and
intuitive. However, most students in the field of Computer
Science are given an emphasis on imperative, object ori-
ented, and functional programming.

Additionally, template meta-programming does not di-
rectly support reflection. Some attempts have been made to
add reflection support to C++ template meta-programming.
Many of them have the flaw that they require the user to ex-
plicitly list class members a second time, in a preprocessor
macro [1]. This kind of redundancy in the class definition is
undesirable, since it offers an opportunity for inconsistent
definitions which will cause errors to occur. Ideally, there
should be exactly one definition of each component.

2.2 Reflection

The second major gain from the proposed imperative
meta-programming approach is that it allows reflection. Re-
flection is the common name for an object’s awareness of
its own members and methods. This is a powerful feature,
since it offers the programmer a lot of options for intelligent
programming techniques. A prime example of reflection in
action is the pickle module in Python [10]. In the Python
programming language, any object can be serialized to a
string or a file, regardless of its contents or inheritance tree.
This is done without requiring the user to intervene and de-
fine serialization operations. Instead, Python looks at the
contents of the objects and does a recursive traversal of all
members, dumping each to a string or stream [10].

Since the C++ standard does not offer any reflection, at-
tempts to add it often require stretching the language def-
inition. There have been several attempts to do this. In-
spective C++ is a C++ compiler, based on the GCC source,
which seeks to add compile time reflection to the C++ lan-
guage [12]. It does this by exposing reflective information
to the C++ template system. While this does leave the lan-
guage mostly intact, it still changes the language slightly.

Additionally, it requires the developer to use the template
meta-programming technique, which has various faults ad-
dressed before.

In contrast to these attempts, one goal of imperative
meta-programming is to work with existing compilers as
they are. Changes to the C++ language are a particularly
bad idea since it would violate a well established standard,
and it is very difficult to overcome the momentum that an
old standard has. Additionally, it would require a fork of
an existing compiler or an entirely new compiler, and either
of these would be difficult to maintain. Thus, for practical
reasons, sticking to established compilers such as GCC is
key to our approach.

2.3 Code Generation

A code generator is a tool that will generate source code
based on some input parameters, such as Yacc [13], Lex [6],
Redwood [16], or COGENT [2].

The most similar tool to our idea is the development tool
called CodeSmith [3], an extremely powerful code genera-
tion tool. CodeSmith uses the same web style template sys-
tem that we are using in CHIMP. It allows users to generate
massive amounts of C# or VB.NET code based on the con-
tents and definitions of SQL databases and tables, or based
on an XML schema[3]. One drawback is that CodeSmith
was designed for the .NET plaftorm, and not for general
use with C and C++. Additionally, it does not add any re-
flective mechanism to the languages, most likely because
the languages it support already have reflection as a built-in
feature.

3 Imperative Meta-Programming

The imperative meta-programming technique uses a
powerful preprocessor for the target language, in this case:
C++. The technique starts with a metacode file, which is
primarily composed of the target language, with a few meta-
code elements added in. These metacode elements are then
processed and either evaluated or removed, resulting in a
new file completely composed of the target language. From
here the compilation process can procede normally. For the
remainder of the document, we assume that C++ is the tar-
get language.

The two stages of the IMP preprocessor are analysis and
application. The analysis phase collects information about
classes, and the application phase executes logical struc-
tures included in the form of metacode.

3.1 Application Phase

The application phase is fairly straight forward and can
be used without the code analysis. For this, one only needs

a template engine, much like the ones used for web develop-
ment (PHP, ASP, ERB, etc.). Just like web development, we
are going to have a lot of static content (HTML in web de-
velopment, C++ with CHIMP), with small bits of dynamic
content that are generated by the template language. Fig-
ure 1 shows these similarities by comparing PHP code em-
beded in HTML, along with some equivalent CHIMP code
embedded in C++.

1 <html>
2 <head><title></title></head>
3 <body>
4 <?php print "Hello web!"; ?>
5 </body>
6 </html>

1 #include <iostream>
2 using namespace std;
3
4 int main()
5 {
6 cout << "{% print "Hello C++" %}";
7 cout << endl;
8 };

Figure 1. PHP embedded in HTML and CHIMP
embedded in C++

These two side by side examples should clarify the basic
idea, that we can embed logic directly in C++ code, with-
out interfering with C++ syntax. This allows us to perform
some very complex actions to generate repetitive or tricky
code.

It is fairly easy to see how the web style template engine
is used. In this case, we are using a modified version of
the Jinja template engine, although there are several other
template engines that were considered. Python has many
popular template engines, such as Kid [15], PSP, Spyce, and
Cheetah [9] [8]. Cheetah was strongly considered, since
it claims that in addition to being used as a web template
engine, it is also being used to generate C++ game code [9].
After some additional research, the Jinja template engine
was selected for the CHIMP prototype.

Jinja is a template engine written in Python for the Pocoo
project [11]. However, Jinja is nicely decoupled from the
project, and so lent itself to use in CHIMP. Jinja started as a
clone of the Django template engine, and so has similar de-
fault delimiters and syntax. Another advantage of the Jinja
project is that it is very easy to override the default interme-
diate code generation step, by simply inheriting from the
PythonTranslator object, and specifying one’s own new
class in its place at run time. Thus, it is easy to write a
program to strip Jinja commands from the file without hav-
ing to modify any of the Jinja code base. The ability to write
the strip function is pivotal to its use in the IMP paradigm.

3.2 Analysis Phase

While the ability to generate code procedurally does help
in some cases, we are still limited by the naive nature of the
application phase. We can produce much more useful code
if we provide the application phase with more information
about the code itself. Lets look at some simple repetitive
tasks that are sensitive to existing code. One such exam-
ple is a common function for debugging called DumpTo-
Screen. We will create a struct and then write a C++ func-
tion that dumps its entire contents to stdout.

The DumpToScreen function example in Figure 2 is
a perfect example of tedious, repetitive code. It is bor-
ing for programmers to write, it is often written for ev-
ery important struct/class in a program, and it is sensi-
tive to changes in the original struct. If one were now to
add a new member to ExampleStruct, like int variable; ,
the programmer would now need to go down to the
DumpToScreen function for this struct, and add the line
cout << ” variable : ” << ptr->variable << endl; . This is a

cumbersome process, and it is an error prone one as well.
If the struct were much larger, with many nested types, and
there were many functions to dump the object to file in
XML, or in YAML, or in JSON, or raw text, then one would
need to go through all of these functions and fix them. This
would be a vastly time consuming and tedious processes.

1 struct ExampleStruct{
2 int a;
3 float b;
4 long double c;
5 };
6
7 void DumpToScreen(ExampleStruct *ptr)
8 {
9 cout << "ExampleStruct :" << endl;

10 cout << " a : " << ptr->a << endl;
11 cout << " b : " << ptr->b << endl;
12 cout << " c : " << ptr->c << endl;
13 cout << endl;
14 }

Figure 2. C++ Code for the DumpToScreen
function

What we really want to do, is be able to generate the
DumpToScreen function dynamically, based on the con-
tents of the ExampleStruct definition. A pseudocode exam-
ple would look something like Figure 3. In that case, we
assume we can iterate over the members of the target struct.

C++ does not support any form of reflection, and thus
cannot tell what members and methods an object might
have. However, if we have a C++ parser that can look at
the code first and provide this information to our template
engine, then our IMP approach would be able to write code
equivalent to that shown in Figure 3.

In Figures 4 and 5 we address this problem with a com-

1 struct ExampleStruct{
2 int a;
3 float b;
4 long double c;
5 };
6
7 void DumpToScreen(ExampleStruct *ptr)
8 {
9 PRINT name of ExampleStruct

10 FOR each member of ExampleStruct
11 PRINT member name : member value
12 }

Figure 3. PseudoCode for the DumpToScreen
function

plete C++ program. The program shown in Figure 4 is
written in CHIMP metacode, and takes advantage of in-
formation gathered in the analysis phase to generate code
based on the contents of ExampleStruct. This code is sen-
sitive to the contents of struct definition, one could add as
many members or change the types of any members, and
the source code would be updated appropriately after the
next compilation. This is very powerful because the Dump-
ToScreen function is now almost immune to human neg-
ligence, and will match the struct definition instead of the
users code.

In particular, we have removed the need for redundant
information about ExampleStruct. When logic like this is
hard-coded it effectively amounts to a second copy of the
ExampleStruct definition. However, redundant definitions
of data objects lend themselves to falling out of sync, which
almost always causes problems. This problem is circum-
vented by removing the redundant information that would
have been stored in the hardcoded copy of the DumpTo-
Screen function.

To analyze the C++ code we need a C++ parser. This is
by far the most complicated step in the process, and so we
decided to use GCC-XML. GCC-XML will parse a C++ file
and read all information about the top level objects into an
XML file [5]. These objects include: types, structs, classes,
members, methods, functions, parameters, and global vari-
ables. Source code is not included in the XML output, but is
parsed, and as such the entire file must be valid C++ code.

4 XML Interfaces with CHIMP

One of the more tedious tasks in C++ programming is
serializing and deserializing complex objects. Most mod-
ern languages support very clever serialization techniques,
such as Python’s Pickling library, as well as C#’s Serial-
izeXML module. Unfortunately, C++ has no such library,
so programmers must constantly re-write the tedious code
to serialize and de-serialize objects. One of the more popu-
lar file formats for serialization is the XML format. In the

1 #include <iostream>
2 using namespace std;
3
4 {% macro MetaDumpToScreen obj -%}
5 void DumpToScreen({@ obj.name @} *ptr)
6 {
7 cout << "{@obj.name@}" << endl;
8 {% for name in obj.members -%}
9 cout << " {@ name @} : "

10 << ptr->{@ name @} << endl;
11 {% endfor %}
12 }
13 {% endmacro -%}
14
15 struct ExampleStruct{
16 int a;
17 float b;
18 long double c;
19 };
20
21 void DumpToScreen(ExampleStruct *ptr);
22 {@ DumpToScreen(ast.structs[’ExampleStruct’]) @}
23
24 int main()
25 {
26 ExampleStruct e;
27 DumpToScreen(&e);
28 return 0;
29 }

Figure 4. C++ metacode for DumpToScreen,
written for CHIMP

following examples, CHIMP is used to automate the pro-
cess for simple classes.

For this purpose we used the LibXML++ library, created
by the Gnome group [7]. It provides a convenient object-
oriented interface to parsing and creating XML files, and
provides XPath capabilities, which is used to parse the files.
This example is a limited proof of concept, and as such it
only handles primitive types (int, float, etc.), STL strings,
and member objects. For simplicity it does not handle ar-
rays, pointers, STL lists/vectors, or STL maps. These types
will be addressed in a later release.

Writing the code to convert a class to an XML file is
fairly simple, but it is still tedious and repetitive. For out-
puting XML code, using a library such as LibXML++ may
seem excessive, but it gives us a guarantee that the out-
put is valid XML. So our goal is to make a few macros
that can handle all of the library operations to create the
XML document and write it to a file. These macros are
placed in a separate file, called “ToXML.cmf”, where the
cmf extension is short for “CHIMP Macro File.” The main
file is called “XML example 01.mcpp”, with the exten-
sion “mcpp” short for “Meta C Plus Plus.” Figure 6 presents
a partial listing of the file.

In order to properly produce XML, we have two func-
tions, toXML and toXML. The first, toXML, is a wrapper
function that provides a clean interface, and the toXML
function is a recursive function. The toXML macro is shown
in Figure 7 and the toXML macro is shown in Figure 8.

1 #include <iostream>
2 using namespace std;
3
4 struct ExampleStruct{
5 int a;
6 float b;
7 long double c;
8 };
9

10 void DumpToScreen(ExampleStruct *ptr);
11 void DumpToScreen(ExampleStruct *ptr)
12 {
13 cout << "ExampleStruct" << endl;
14 cout << " a : " << ptr->a << endl;
15 cout << " c : " << ptr->c << endl;
16 cout << " b : " << ptr->b << endl;
17
18 }
19
20 int main()
21 {
22 ExampleStruct e;
23 DumpToScreen(&e);
24 return 0;
25 }

Figure 5. DumpToScreen generated from
metacode

Reading data from an XML file is a lot harder then writ-
ing it to an XML file. In this case, the value of using
an XML library really shines, since the effort of writing a
parser for context free grammars is a lot of work. However,
despite the help from LibXML++ library, the process of get-
ting data out of an XML document and into a live C++ class
is still a very mundane process that we can avoid if we use
a CHIMP macro. Similar to the previous example, the code
shall be separated into a metacode file and a source code file
with a few metacode directives. Please see Figures 9 and 10
for the macros fromXML and fromXML.

1 struct simple
2 {
3 simple() : a(42),b(13), c("c"),d(10.0f/6.0f) {}
4 int a;
5 string b;
6 float c;
7 {@ proto_toXML() -@}
8 };
9 {@ make_toXML(’simple’) @}

Figure 6. XML example 01.mcpp : A sample
C++ class and the metacode for XML

5 Conclusions and Future Work

Through use of CHIMP, we have automated several tasks
that are both common and tedious. We have demonstrated
how we can produce a C++ program where the code de-
scribes what we want to accomplish instead of what the
language requires. The primary examples shown here were

1 {% macro proto_toXML -%}
2 public:
3 int toXML(string fname);
4 int _toXML(xmlpp::Element *lroot);
5 {% endmacro -%}
6
7 {% macro make_toXML objname %}
8 {% set obj = ast.classes[objname] %}
9 int {@ obj.name @}::toXML(string fname)

10 {
11 xmlpp::Document doc;
12 xmlpp::Element *enode;
13 enode = doc.create_root_node("{@obj.name@}");
14 _toXML(enode);
15 doc.write_to_file(fname,"ISO-8859-1");
16 }

Figure 7. ToXML.cmf : Metacode to write an
XML serialization function

17 int {@ obj.name @}::_toXML(xmlpp::Element *lroot)
18 {
19 stringstream conv;
20 xmlpp::Element *enode;
21 xmlpp::TextNode *tnode;
22 {% for name,member in obj.members.items() -%}
23 {% if not member.compound -%}
24 conv.str("");
25 conv << {@ name @};
26 enode = lroot->add_child("{@ name @}");
27 tnode = enode->add_child_text("quiet");
28 tnode->set_content(conv.str());
29 {% elif member.compound -%}
30 enode = lroot->add_child("{@ name @}");
31 {@ name @}._toXML(enode);
32 {% endif -%}
33 {% endfor %}
34 }
35 {% endmacro %}

Figure 8. ToXML.cmf (continued): Metacode
to write an XML serialization function

for producing XML, however this is only one of many
things that can be done with imperative meta-programming.
We have developd various other working examples us-
ing CHIMP to produce code to interface with MySQL
databases, interface with the LUA scripting engine, and
implement a run time reflection mechanism. Examples of
these have not been shown here due to space constraints.

In summary, we have shown how the proposed impera-
tive meta-programming Technique can be used to revitalize
and extend an existing language without having to modify
that language’s definition or compiler at all. Additionally,
it can substantially reduce the amount of tedium in coding
common tasks and patterns. Furthermore, the basic usage
of such systems is reasonably easy to learn because of its
similarity to web development.

In using CHIMP it has become clear that the
Jinja/Django template language is fairly limited compared
to the full power of a language such as Python. At present,
we are working on a new template system based more
closely on the PSP model, with a few variations that make it

1 {% macro proto_fromXML %}
2 public:
3 int fromXML(string fname);
4 int _fromXML(xmlpp::Element *lroot);
5 {% endmacro %}
6 {% macro make_fromXML objname %}
7 {% set obj = ast.classes[objname] %}
8 int {@ obj.name @}::fromXML(string fname)
9 {

10 xmlpp::DomParser parser;
11 xmlpp::Document *doc;
12 xmlpp::Element *root;
13 parser.parse_file(fname);
14 if(!parser){
15 return 0;
16 }
17 doc = parser.get_document();
18 root = doc->get_root_node();
19 _fromXML(root);
20 }

Figure 9. FromXML.cmf : Metacode to write
an XML deserialization function

more effective and easier to use with C++. This will allow
us to harness the full power of Python in our templates. Es-
pecially interesting is the ability to have a template function
generate an external file, such as an XML DTD or schema.
Alternatively, one could read external data sources, such as
an XML file or a MySQL database, and generate code based
on their contents or description.

Near future work includes finalizing the documentation
and making the CHIMP tool and its working examples
available online.

References

[1] G. Attardi and A. Cisternino. Reflection support by means
of template metaprogramming. Lecture Notes in Computer
Science, 2186:118–128, 2001.

[2] F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu.
Automatic code generation from design patterns. IBM Sys-
tems Journal, 35(2):151–171, 1996.

[3] CodeSmith. Codesmith tools.
http://www.codesmithtools.com/, 2007. [last access
March 2008].

[4] A. Gurtovoy and D. Abrahams. The
boost c++ metaprogramming library.
http://www.boost.org/libs/mpl/doc/index.html, 2002.
[last access February 2008].

[5] Kitware. Gcc-xml. http://www.gccxml.org/, January 2007.
GCC-XML was developed by King, Brad at Kitware [last
access February 2008].

[6] M. E. Lesk and E. Schmidt. Lex - a lexical analyzer gener-
ator. http://dinosaur.compilertools.net/lex/index.html, 2008.
[last access February 2008].

[7] Libxml++. http://libxmlplusplus.sourceforge.net/, January
2007. Developed by Ari Johnson, Christophe de Vienne and
Murray Cumming [last access February 2008].

[8] A. Martelli, A. Ravenscroft, and D. Ascher. Python Cook-
book. O’Reilly Media, Inc., March 2005.

21 int {@ obj.name @}::_fromXML(xmlpp::Element *lroot)
22 {
23 xmlpp::Element *enode;
24 xmlpp::Node *node;
25 string temp;
26 {% for name,member in obj.members.items() -%}
27 {% if not member.compound -%}
28 {% if member.type == "std::string" -%}
29 node = lroot->find("{@ name @}")[0];
30 enode = dynamic_cast<xmlpp::Element *>(node);
31 if(enode)
32 {
33 temp = enode->get_child_text()->get_content();
34 {@ name @} = temp;
35 }
36 {% else -%}
37 stringstream s_{@name@};
38 node = lroot->find("{@ name @}")[0];
39 enode = dynamic_cast<xmlpp::Element *>(node);
40 if(enode)
41 {
42 temp = enode->get_child_text()->get_content();
43 s_{@name@}.str(temp);
44 s_{@name@} >> {@ name @};
45 }
46 {% endif -%}
47 {% elif member.compound -%}
48 node = lroot->find("{@ name @}")[0];
49 enode = dynamic_cast<xmlpp::Element *>(node);
50 if(enode)
51 {
52 {@ name @}._fromXML(enode);
53 }
54 {% endif -%}
55 {% endfor %}
56 }
57 {% endmacro %}

Figure 10. FromXML.cmf (continued): Meta-
code to write an XML deserialization function

[9] M. Orr and T. Rudd. Cheetah - the python-powered template
engine. http://www.cheetahtemplate.org/, 2001. [last access
February 2008].

[10] Python Software Foundation. Python programming lan-
guage. http://www.python.org/, January 2007. Webpage,
Python was developed by Guido van Rossum and the Python
Software Foundation [last access February 2008].

[11] A. Ronacher and the Pocoo Team. Jinja templates.
http://jinja.pocoo.org/, January 2007. [last access February
2008].

[12] H. Singh. Introspective c++. Master’s thesis, Virginia Tech,
2004.

[13] A. B. L. Stephen C. Johnson. Yacc: Yet another compiler-
compiler. http://dinosaur.compilertools.net/yacc/index.html,
2008. [last access February 2008].

[14] B. Stroustrup. The C++ Programming Language. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2000.

[15] R. Tomayko. Kid language specification. http://www.kid-
templating.org/language.html, 2005. [last access February
2008].

[16] B. T. Westphal, F. C. Harris, and S. Dascalu. Snippets: Sup-
port for drag-and-drop programming in the redwood envi-
ronment. J. UCS, 10(7):859–871, 2004.

