
WiELD-CAVE: Wireless Ergonomic Lightweight Device for use in the CAVE

Kelvin Parian, Joshua Hegie, Andrew Kimmel

Sergiu M. Dascalu, Frederick C. Harris, Jr.

Department of Computer Science and Engineering

University of Nevada, Reno

1664 N. Virginia St.

Reno, NV 89557, USA

{kelvinp, jhegie, akimmel, dascalus, fredh}@cse.unr.edu

Abstract: The goal of this project is to design a

wireless input device for the CAVE virtual reality

environment. The current solutions for this problem

are not adequate, due to their high cost and wired

nature. By eliminating these two problems, this team

hopes to develop a more widely useable device that

incorporates all of the functionality that other

solutions have included, and more. For ease of use,

the device will be housed inside a pair of gloves and

will wirelessly communicate to the CAVE. The

software driver that accompanies the device will

allow users to be able to define a series of hand

gestures, which will then execute a program assigned

to that gesture – essentially, this will allow users to

manipulate the CAVE using only their hands and this

device. Hopefully, the applications of this device will

eventually expand beyond the researcher

demographic to the general public.

Keywords: CAVE, Input Device, Wireless, Glove

1. Introduction

 Since the advent of computing technologies,

being able to interact with an electronic environment

has been the center focus of a plethora of research

projects. Doing things such as clicking and dragging

elements of the environment (i.e. through a mouse) or

inputting elements into the environment (i.e. through

the keyboard), was initially sufficient due to the

simplicity of the environment. However, with the

increasing popularity of virtual reality environments,

such simplistic interactive input devices are no longer

adequate. In order to take advantage of this more

“advanced” environment, a more intuitive device is

needed, and it is within this context that the project

takes place in.

The goal of this project is to design a wireless

ergonomic lightweight device (WiELD) that will be

used to interact with the CAVE [1] virtual

environment. The basic functionality of the device is

to allow users to wirelessly transmit “gestures” that

will be recognized by a driver on the base station and

subsequently translated into an “action” on the

CAVE screens. The device will be contained inside

of a glove in order to provide users with a familiar

interface for making the “gestures” (i.e. the gesture

where the user contacts the forefinger with the thumb

on the glove could translate into a “grab” action on

the CAVE).

Modeling the WiELD-CAVE device according

to the UML notation specified in [2] helped clarify

the project goals, along with making the

documentation of the project simpler and more

unified.

The key components of this project include: a

device with numerous inputs encapsulated in a glove,

wirelessly communicating with a base station using

an XBee [3] wireless chip, which acts as a wireless

RS232 transmitter, the device will be powered by a

rechargeable lithium ion battery, all of the inputs will

utilize force sensitive resistors, and the corresponding

driver for the device will translate a set of contacts

into the corresponding action in the CAVE.

Although there are several devices that are quite

similar to the WiELD gloves, the current

implementations of them are too expensive, wired to

the base station, and/or have a limited number of

recognizable gestures. By eliminating these

problems, this team hopes to develop a more easily

accessible, as well as a more usable, device, which

will retain all the functionality of its “predecessors”

along with additional functions.

The rest of this paper is structured as follows.

Section 2 presents the requirements specification of

the project. Section 3 presents the use case modeling.

Section 4 presents architectural design. Section 5

presents the detailed design. Section 6 presents

current status and future work. Section 7 presents our

conclusion. Section 8 presents the references.

2. Requirements Specification

Following standard software engineering

guidelines [4], the main functional and non-

functional requirements of WiELD-CAVE for both

the hardware and software sides are presented below.

2.1 Functional Requirements

The most important software and hardware

functional requirements of WiELD-CAVE are:

1. The system shall output processed inputs in the

form of VRPN [5] code.

2. The system shall provide users with the option of

saving their configuration of the device.

3. The system shall provide users with the option of

loading their previously saved configuration of

the device.

4. The system shall provide users with the option of

using a mouse to navigate through the system.

5. The system shall allow multiple sets of gloves to

be used simultaneously.

6. The system shall allow for software

synchronization of glove settings.

7. The system shall provide the status of the gloves.

8. The system shall provide a setting for secure

connection

9. The system shall provide a setting for adjusting

transmission power

10. The device shall communicate wirelessly with

the system.

11. The device shall be powered by rechargeable

batteries.

12. The device shall allow each glove to operate

individually.

13. The device shall have a display that indicates the

device’s status.

14. The user shall be able to calibrate the device.

15. The device may gracefully power down upon a

low battery status.

16. The device may have built-in motion tracking.

17. The device may have a built-in accelerometer.

2.2 Non-Functional Requirements

The most important software and hardware non-

functional requirements of WiELD-CAVE are:

1. The system shall be implemented using C++.

2. The system shall have a GUI implemented using

the QT windowing toolkit.

3. The system shall run on the GNU/Linux

operating system.

4. The device shall be programmed in C.

5. The device shall communicate using an Xbee

wireless communications chipset.

6. The device shall be implemented using a Cortex

microcontroller [7].

7. The device shall be encapsulated in a pair of

ergonomic gloves.

3. Use Case Modeling

The functionality of WiELD-CAVE has been

defined using use cases and scenarios as defined by

the formal modeling process presented in [1] (section

1 of this paper). The use case diagram, shown in

Section 3.1, captures the entire functionality of

WiELD-CAVE. This was done to help identify the

mechanisms through which the user would interact

with WiELD-CAVE. The use cases are compared to

the requirements listed in Section 2 using the

Requirements Traceability Matrix in Section 3.2.

3.1 Detailed Use Cases

Presented below are Use Cases for WiELD-CAVE. A

use case diagram is presented in Fig 5.

UC1. sendData - is the framework for collecting

and transmitting data back to the base station.

UC2. receiveData - is responsible only for

receiving data sent from the WiELD glove,

acknowledging that the data has been

received and passing the data on to the

processing function.

UC3. processData – takes the user generated inputs

and turns them into something the CAVE can

understand. The user initiates the data

processing via the sendData and receiveData

methods. The CAVE is the end destination

of this processed data.

UC4. finishData - is designed to ensure that all

input is received by the base station. If one

of the gloves has not sent its data yet, then a

request is sent to the missing glove to provide

the state of its contacts.

UC5. pollDevice - is a failsafe that can be called by

the receiver if a device has failed to send

data. It is the responsibility of this function

to respond to finish requests and handle all of

the cleanup associated with sending data.

UC6. turnDeviceOn - is invoked when the device is

turned off and the power button is pressed.

The device then has to power up the

microcontroller. Once this is done, the

microcontroller should power up all of the

peripherals as well as the Xbee wireless chip.

At this point the Xbee chip should connect

with the base station. After all of this is

complete, the device will be ready to send

data to the base station.

UC7. turnDeviceOff - is used to gracefully power

down one of the WiELD gloves. The user

initializes this by holding the power button

down for a set amount of time. The wireless

chip unpairs itself from the base station and

the microcontroller is powered down.

UC8. resetDevice - is initiated by the user when the

reset button on one of the WiELD gloves is

pressed. In the event that the hardware

becomes unresponsive, this function is

designed to power cycle the device. This

disconnects the wireless chip from the base

station and powers down the microcontroller.

Once everything is powered down,

everything is returned to the ON state.

UC9. coordinate - is invoked on the base station

when one of the devices sends its data. The

base station must read in 2 bytes from each

device and then combine all of this data into a

single numerical value. This is entered into

the VRPN driver, so that client programs can

access the status of the buttons on the gloves.

UC10. chargeBattery – is a function to allow the user

to recharge the battery in the WiELD glove.

This functionality is invoked by the user

removing the device from the glove and

placing it on the charging station. The device

will then enters a low power state and begins

charging. The microcontroller stays on to

control the display, and once the battery has

finished charging, the display turns off.

UC11. lowBattery – is invoked to gracefully power

the device down, causing the Xbee wireless

chip to disconnect from the base station. This

is done to prevent the chip from continuing to

send inaccurate data back to the base station.

The device has to watch the battery state and

once the battery is at or below a certain

threshold, the user gets a warning. If the

battery goes below a second threshold, the

device then powers down, disconnecting the

Xbee wireless chip from the base station and

powering down the microcontroller as well as

all of the peripherals. Time acts on this

because leaving the device on for any amount

of time causes the charge in the battery to

deplete.

UC12. showValue - is a functionality designed to

show programmers what value they need to

catch from the shared VRPN memory space.

The user can generate input on one or more

WiELD device and see the value that the

program will place into the VRPN memory

space.

UC13. changeSetting - is designed to allow a user

working at the base station to modify the

firmware on the transmitters, changing things

such as the transmission strength or

enabling/disabling encryption.

UC14. modSetting - is the glove interface to

changeSetting. This must block the device

from transmitting, update the data and then

re-enable the device.

UC15. calibrateDevice - is used to let the user to

calibrate how sensitive the inputs are. This

will change the triggering threshold for the

analog to digital converter, making it higher

or lower, based on user preference.

3.2 Requirements Traceability Matrix

The Requirements Traceability Matrix, detailed

below (Requirements are in the left most column),

shows how the use cases match up with the

requirements listed in section 2.

Fig 1: Requirements Traceability Matrix

4. Architectural Design

The layered architecture is one in which all data is

passed through a series of hierarchical layers. A brief

description of each subsystem utilized in WiELD-

CAVE is as follows:

C++ Libraries: WiELD-CAVE’s driver is

implemented using C++.

C Libraries: WiELD-CAVE’s firmware will be

implemented using C.

Qt: The driver GUI for WiELD-CAVE is handled

through Qt windowing toolkit libraries and Qt

framework.

Help System: A series of documents along with

informative error messages which will ass

user in trying to fix any problems encountered

Main Window: The main window displays the status

of the gloves in an easy to read format.

LCD: The LCD on the gloves shows the current

device status and is located directly on the glove.

Gloves: Utilizes force sensitive resistors, as well as

analog-to-digital circuitry in order to translate user

input to digital logic.

5. Detailed Design

The class diagram for WiELD-CAVE, presented

according to the specifications laid out in

included in Figure 6. This diagram

classes in WiELD-CAVE as well as most of the

major functions. All of the Qt variables a

have been omitted in order to preserve room;

however, this does not adversely affect the content of

the diagram.

6. Current Status and Future Work

Currently, there is a working prototype of the

WiELD-CAVE gloves. Both gloves ha

sensors installed and is communicating with

wireless base station. The software driver

receive and interpret the data, as well as relay it to the

VRPN server in the CAVE.

Future work includes building the motion

tracking into the WiELD-CAVE glove

accelerometers and small gyros. Currently we are

using video tracking through IR cameras and

markers. The circuitry can be further m

that the main control unit can be built into the gloves

instead of being enclosed in an armband.

6.1 Hardware Screenshots

 Figure 2 shows the current implementation of

the WiELD-CAVE gloves. On the fingertips are the

force sensitive resistors. Figure 3 is a snapshot of the

inner circuitry of the armband enclosure

Luminary ARM Cortex controller board is the analog

to digital conversion circuitry. Not pictured is the

interface from the glove itself to the enclosure, which

is currently implemented as a ribbon cable with

A series of documents along with

will assist in the

encountered.

The main window displays the status

The LCD on the gloves shows the current

located directly on the glove.

Utilizes force sensitive resistors, as well as

digital circuitry in order to translate user

CAVE, presented

according to the specifications laid out in [1], is

This diagram lists all the

CAVE as well as most of the

major functions. All of the Qt variables and functions

n order to preserve room;

however, this does not adversely affect the content of

Currently, there is a working prototype of the

have all of the

sensors installed and is communicating with the

The software driver is able to

data, as well as relay it to the

Future work includes building the motion

CAVE glove using

Currently we are

using video tracking through IR cameras and

can be further minimized so

that the main control unit can be built into the gloves

sed in an armband.

2 shows the current implementation of

CAVE gloves. On the fingertips are the

is a snapshot of the

inner circuitry of the armband enclosure, behind the

Luminary ARM Cortex controller board is the analog

Not pictured is the

nclosure, which

is currently implemented as a ribbon cable with

sufficient wires to send all of the data, for all nine of

the inputs, to the controller.

Fig 2: WiELD-CAVE Glove

Fig 3: WiELD-CAVE Transmitter for Glove

6.2 Software Driver Screenshot

 Figure 4 shows the connection status part of the

driver, which updates in real time as the gloves’

status changes.

Fig 4: WiELD-CAVE Driver GUI

sufficient wires to send all of the data, for all nine of

CAVE Glove

CAVE Transmitter for Glove

shows the connection status part of the

driver, which updates in real time as the gloves’

CAVE Driver GUI

Fig 5: Use Case Diagram

7. Conclusion

The WiELD-CAVE device which has been

presented in this document is a unique, cost effective

solution to intuitively interacting with the CAVE

environment. WiELD-CAVE provides a high degree

of flexibility in what can be taken as an input, as well

as allowing developers to define what the device is

supposed to do. The driver is light weight, requiring

very little memory, and features a GUI that is simple

to understand and intuitive to use.

There are nearly endless possibilities for

expansion and improvements in the device. For

example, with a little bit of modification, the

WiELD-CAVE device could be used in gaming to

interact with in-game objects. Other input

architectures, such as DirectX, could be used as a

backend for the device, allowing a much larger install

base to use the WiELD gloves. System cross-

compatibility should also be accounted due to the

initial driver being limited to Linux distributions.

These improvements will allow WiELD-CAVE to be

used in more computing environments outside of

virtual reality and the CAVE.

8. References

[1] W. Sherman and A. Craig, Understanding

Virtual Reality: Interface, Application and

design, Morgan Kaufmann, 2003.

[2] J. Arlow and I. Neustadt, UML 2.0 and the

Unified Process: Practical Object-Oriented

Analysis & Design, Addison-Wesley, 2006.

[3] Getting Started with ZigBee and IEEE

802.15.4, Daintree Networks Inc., 2004-2008

[4] I. Sommerville, Software Engineering,

Addison-Wesley, 8
th
 Ed., 2006.

[5] R. M. Taylor II, T. C. Hudson, A. Seeger, H.

Weber, J. Juliano, and A. T. Helser, VRPN: A

device-independent, network-transparent VR

peripheral system, ACM Symposium on Virtual

Reality Software and Technology (2001).

[6] Dalheimer, Matthias Kalle, Programming

with Qt, O'Reilly, 2nd Ed., 2002

[7] S. Sadasivan, An Introduction to the ARM

Cortex-M3 Processor, ARM, 2006

Fig. 6: WiELD-CAVE class diagram

