

A GUI WIZARD FOR DEVELOPING

COMMAND & CONTROL APPLICATIONS IN CAVE

Sermsak Buntha Muhanna Muhanna Sohei Okamoto Sergiu Dascalu Frederick C. Harris

Department of Computer Science and Engineering

University of Nevada, Reno

{buntha, muhanna, okamoto, dascalus, fredh}@cse.unr.edu

ABSTRACT

Command and control systems have gained an

increasingly vital role when it comes to displaying

information about operational situations. In such

situations, pictures have traditionally been presented on

2D media, rather than 3D displays. CAVEMANDER is a

software platform that we created to improve the

visualization and immersion of presenting command and

control situations inside the CAVE. This paper describes

a proposed GUI wizard used to develop command and

control applications in CAVE based on the software

architecture of CAVEMANDER. The wizard supports

designing and creating command and control simulation

scenes and scenarios. Details of the wizard’s interface and

functionality as well as a case study of a simulation

scenario are provided in the paper.

KEY WORDS

CAVE, command & control, GUI wizard, human-

computer interaction, simulation, software engineering,

virtual reality.

1. Introduction

Traditional paper- and glass-based approaches are still

being used in some command and control (C&C)

applications in different countries around the world.

Unfortunately, these traditional displays are usually

inconvenient and may lead to late results, which decrease

their usability for commanders. More enhanced 2D

displays are being largely used to present pictures of the

operational C&C situations, such as computer monitors

and wall-mounted screens. Such displays have several

limitations as well. Displaying too detailed, excessive

information pertaining to a C&C situation, for example,

can decrease the awareness and performance of the

commanders [1]. As pointed out by Aoki, the complexity

and multiplicity of interactive regions in Combat

Information Centers can create problematic situations for

the decision makers [2]. Also, reducing the amount of

information displayed to the commander can result in the

loss of the essential ones. Thus, the C&C software

developer's dilemma can be described as finding the best

solution for displaying the right data at the right time,

without overwhelming the commander with an excessive

amount of information [3].

To find answers for such a dilemma, several approaches

have been investigated and suggested by researchers.

Information filtering, for example, is one of the methods

to handle large information flows but several issues still

exist [4]. A good context model can possibly estimate a

set of relevant pieces of information [5] [6]. However, the

estimated result cannot be relied on by a critical system,

such as a C&C system. Another study suggested a method

using a perspective-aware interface that can be used to

enhance multi-display environments [7]. However, while

users move their focuses from one screen to another, their

train of thought might be lost [8]. Furthermore, it has been

shown that using large display screens can provide better

situation awareness [9]. Some studies have pointed out

that large screen displays improve the situation awareness

and the assessment of the situation during C&C activities

[10] [11]. The benefits of 3D images have been indicated

by numerous research studies as well. In [12], for

example, authors showed that immersive environments

can significantly improve the trainees' performance in

complex procedures. 3D visualizations for air traffic

control have shown an improvement in the awareness of

the relative position between aircraft-aircraft or aircraft-

airspaces landmarks [13].

CAVEMANDER was originally proposed in the [3]

dissertation to overcome the challenge of finding a

solution for displaying the right C&C data at the right

time, while keeping the commander aware of all the

essential parts of a situation. CAVEMANDER is a

software platform that can be used to create C&C

applications to be run in CAVE. It includes several

reusable server and client software components, including

a graphical user interface called ServGUI Wizard.

ServGUI Wizard, described in this paper, has the main

role to enable the creation of simulation scene and

scenario descriptors in XML format that can be used by

other CAVEMANDER software components. It makes

the process of creating scenes and scenarios efficient and

effective, and supports three of the four CAVEMANDER

method activities: scene definition, scenario creation, and

scenario execution.

The paper, in its remaining part, is organized as follows:

Section 2 describes the main components of the

CAVEMANDER’s architecture, Section 3 presents an

overview of the CAVEMANDER approach, Section 4

explains in detail the ServGUI Wizard component of the

CAVEMANDER, Section 5 provides an example of a

simulation scenario created using the ServGUI Wizard

and executed in CAVE, and Section 6 points to several

directions of future work and concludes the paper.

2. CAVEMANDER Architecture

The CAVEMANDER software platform is based on the

client-server software architecture. The server acts as an

information and service provider that communicates with

the clients, sending them required pieces of information.

The clients request and use services and information from

the server. The main subsystems of the CAVEMANDER

architecture are the Server and the Client, as shown in

Figure 1.

The Server has several components, including the

CommHub, the Playback, the LOG database, the

SimScene, and the ServGUI Wizard. ServGUI Wizard is a

core component of the CAVEMANDER architecture, and

is described in detail in Section 4. The other core

component of the Server is the SimScene, which consists

of a set of reusable software resources, including C&C

unit descriptor classes, templates, and API command

functions. To allow the instructors and the trainees to

review and analyze C&C scenarios performed in CAVE,

the Playback and the Log components are included in the

Server core component. The CommHub is a software

component that allows connecting the CAVE with real-

world C&C applications via telephone lines, wireless

connections, and other communication media.

Figure 1: CAVEMANDER Architecture

The Client, on the other hand, has two main software

components, ActCAVE and ActPC. These components

are used to run simulation scenarios on CAVE and,

respectively, on regular personal computers.

3. CAVEMANDER Approach

The software engineering approach of constructing

CAVE-based C&C simulations consists of several

activities, as illustrated in Figure 2. As shown in this

figure, three main activities have to take place in a

specific sequence in order to execute a scenario. The first

activity is to define a scene. Here, the user is given the

ability to either create a new scene or modify an existing

one. The ServGUI Wizard is used in this activity to create

a scene XML file based on the different property values

of the scene entered by the user. The process of creating a

new scene includes defining a scene concept (e.g., is this

scene for a land military C&C or is it for a naval surface

operation?), creating the scene’s unit types along with

their specifications, and defining the scene’s environment

factors. The second activity is to build a simulation,

which results in creating a code included in the SimScene.

This code can be either built from scratch or reused from

a previously written code of an existing simulation

available in the CAVEMANDER platform.

Figure 2: Overview of the CAVEMANDER Approach

The third activity is to create a scenario. This activity

must be performed in order to create the simulation’s first

associated scenario. This activity, however, becomes

optional if the user decides to use an already existing

suitable scenario. The process of this activity starts by

defining the configurations of the scenario (concept

description, log file name, communication port number,

name of the scene with which the scenario is associated,

and the terrain on which the scenario will run). Once the

configuration of the scenario is defined, the scenario’s

units, their ID values, and their initial locations need to be

specified. Initializing the scenario’s environment factors

is the last step of this activity. This activity is also

supported by the ServGUI Wizard to create a scenario

XML file, an artefact that contains a detailed description

of the scenario. After performing the three described

activities as needed, the user is able to begin a simulation.

This means that the resources created for the simulation

are loaded on the server as well as on the client (the

CAVE). During the simulation, the user has the

possibility to slow down, speed up, pause, and stop the

simulation.

4. The Server GUI Wizard

Figure 3 presents the use case diagram [14] of the

CAVEMANDER ServGUI Wizard component. The

Instructor (or, in UML terminology, the actor [15]) can

interact with this wizard by creating a scene, creating a

scenario, running a simulation, running a playback, or

running a communication hub. All these use cases are

further discussed with the support of several GUI

snapshots in the following subsections.

Figure 3: Use Case Diagram of the CAVEMANDER Wizard

Figure 4 depicts two user interface tab widgets for

selecting a task: the Construction tab and the Execution

tab. The Construction tab provides the user with button

widgets to create new scenes, create new scenarios,

modify an existing scene, and modify an existing

scenario. The Execution tab provides three button widgets

to run the server program. These buttons include the

Simulation, the Playback, and the Communication hub.

Clicking on any button on either the Construction tab or

the Execution tab will lead to a specific wizard window,

which is responsible for supporting the task related with

the clicked button.

Figure 4: Widgets for Task Selection

4.1 Wizard Functions to Define a Scene

For example, when the user clicks on the Create new

scene button, a window will be displayed, as shown in

Figure 5. Here, the user starts by providing a name and a

description of the scene. The user can then click on either

the right arrow button at the bottom-right side of the

window or on the type tab to go to the next tab, as shown

in Figure 6.

Figure 5: The Scene Concept Tab

The type tab gives the user the ability to create new unit

types to be included in the scene. For each unit type, the

user has to provide a unique name, select a 3D model

from an existing list of 3D models, and include the unit

type in the scene tree by clicking on the Save to scene tree

button. The user is provided with the ability to add, copy,

or remove as many unit types as needed by the use of

New, Copy, and Remove buttons located underneath the

scene tree widget.

Figure 6: The Scene Type Tab

Once done with creating the tree of unit types, the user

can provide properties for each unit type. This can be

done on the prop (properties) tab, as shown in Figure 7.

Each property must be given a unique name, a data type

(integer, oat, or string), an initial value, a maximum value,

and a minimum value.

Figure 7: The Scene Properties Tab

The next step for the ServGUI Wizard user is to provide

each unit type with the necessary commands related to it.

This can be done on the cmd (commands) tab, as shown in

Figure 8. The user has to give each new command a

unique name and a message type. Commands could have

one of the following three message types: cmd only (e.g.

stop), cmd+positions (e.g. moveTo 40, 60), or cmd+target

(e.g. attack tank02). After creating the unit types and

providing each unit type with its properties and

commands, the user can define the environment factors of

the scene on the env (environment factors) tab, as shown

in Figure 9. Each environment factor requires a unique

name, a data type, a default initial value, a maximum

value, and a minimum value. The user can add as many

environment factors as needed to be included under the

EnvFactors component of the scene tree displayed on the

right side of the Creating a new scene window.

Figure 8: The Scene Commands Tab

Figure 9: The Scene Environment Factors Tab

Finally, the user can save the scene tree to a scene file that

is generated as an XML scene file, as shown in Figure 10.

The extension for such files is “scn".

4.2 Wizard Functions to Define a Scenario

Creating a new scenario involves several steps as well.

The first step is to give the scenario a unique name and a

description, as shown in Figure 11.

The next step in creating a scenario is to provide the

configuration data of the scenario. Figure 12 shows the

config (configuration) tab, which gives the user the ability

to select a scene file from a list of existing files, select a

terrain file, provide a log file name to store

communication messages for playback purposes, and

provide a socket communication port number.

Figure 10: The Scene File Tab

Figure 11: The Scenario Concept Tab

Figure 12: The Scenario Configuration Tab

Figure 13 shows the unit tab. Here, the user can add all

the units involved in the scenario. For each unit, the user

has to provide a unique name, a unit type, and an ID

number of the commander in charge of that unit (this

allows CAVE simulation with more than one

commander). Also, if needed, the user has the ability to

change the initial value of each property.

Figure 13: The Scenario Units Tab

To customize each scenario, the user can also change the

initial value of each environment factor if needed, as

shown in Figure 14.

Figure 14: The Scenario Environment Factors Tab

As with the scene file, the user finishes creating a new

scenario by saving the scenario tree, to a scenario file that

is generated as an XML file, as shown in Figure 15. The

extension of such files is “sco”.

4.3 Running the Scenario

When a scenario is created and ready to be run, it can be

loaded from the Wizard's scenario window, as shown in

Figure 16. Once a scenario is loaded, the data

representing that scenario is displayed as a tree on the

right side of the window. The user can then manage the

execution of the simulation scenario by playing, pausing,

resuming, fast forwarding, rewinding, or stopping the

simulation. The simulation time is shown in seconds

elapsed from the start of the simulation. The user has the

ability to change the time scale by using either the fast

forward button or the spin box, which also indicates the

current time scale. Furthermore, sent and received

communication messages are displayed in the textbox at

the bottom-left side of the window and written into a log

file.

Figure 15: The Scenario File Tab

Figure 16: CAVEMANDER GUI for Running Scenarios

5. Simulation Scenario: A Case Study

To show an example of creating a simulation scenario

using the ServGUI Wizard of CAVEMANDER, we

developed a military C&C scenario, which can be used

for training in military operations inside the CAVE

system. The purpose of this scenario is to escort and

distribute supplies to frontline units. The scenario

includes three types of military units: Hummer, Tank, and

Truck. Each unit type has different abilities and

properties, where the Hummer has the highest speed and a

reasonable attack factor, Tank is the slowest vehicle but

has the greatest attack factor, and Truck has a moderate

speed and very low defence power but it is the only

vehicle that can carry supply.

Our two different platoons are stationing half mile away

from each other in frontline areas, and they are both

located about five miles from our base. Both of them are

short of supplies (e.g. food, water, ammunition, etc.),

where we estimate that the supplies will last only for five

days maximum. Thus, we need to deliver new supplies to

both platoons as soon as possible. However, our

intelligent units have identified the presence of enemy

forces in the surrounding area. We need to send two

trucks with supply loads to each platoon successfully,

avoiding the enemy force and reaching the frontline units

before they run out of supplies. If any of the trucks is

destroyed or does not deliver the supply load within the

given duration, the mission is considered to be failed.

According to the information provided by our intelligence

units, there are several enemy tanks patrolling the area

between our platoons and the base. Our strategy is to form

two convoys consisting of two tanks and two trucks full

of supply loads for each of the two platoons. Each convoy

travels independently to their designated platoon. We also

utilize three Hummer high mobility vehicles to search the

safety of the areas, securing the paths for the convoys.

For simplicity, only few of the many possible details

involved in scene definition are presented. Figure 17

shows a sample ServGUI Wizard snapshot from the scene

definition.

Figure 17: Sample GUI Snapshot from Scene Definition

During the next activity, scenario creation, specific values

are given to the unit types and their parameters, as well as

to the environment parameters involved in the scenario.

Figure 18 provides a sample snapshot from the many

possible detailed activities during the scenario creation

using the ServGUI Wizard. Once the scene is defined and

the scenario is created, the simulation is executed.

Samples of snapshots of selected states are shown in

Figures 19, 20, and 21. Figure 19 shows a view of the

initial state when the simulation begins inside the CAVE

system. All the tanks, hummers, and trucks are at their

base and initial positions.

Figure 18: Sample GUI Snapshot from Scenario Creation

Figure 19: Sample Scenario Execution State (Initial State)

Figure 20 displays the view when the scenario is in the

state of directing each convoy to follow the safe route to

the designated platoons, where two convoys are formed

with tanks and trucks, and start moving along the safe

route surveyed by the hummers ahead.

Figure 20: Sample Scenario Execution State (Moving Convoys)

Figure 21 shows another sample of a state of executing

the scenario inside the CAVE system. Here, the Hummer

encounters an enemy tank.

Figure 21: Sample Scenario Execution State (Hummer

Encounters an Enemy Tank)

6. Future Work and Conclusion

Although CAVEMANDER and, in particular, the

ServGUI Wizard component, has shown good and

interesting results for us and for other potential

researchers and developers, it represents only a stage in a

possible larger process of advancement for CAVE-

centered methodologies and related supporting resources

[3]. Several aspects of the ServGUI Wizard can be further

enhanced and developed, including the following.

An example of such enhancement is to allow for

displaying a snapshot of the scene or scenario being

created using the ServGUI Wizard. This might give users

the ability to get an immediate feedback about the scene

or scenario they are creating. Furthermore, conducting a

usability study [16] [17] that identifies the different

behaviour and interaction styles of using the wizard,

would have a great impact on enhancing it to better

understand the user’s needs. More C&C applications built

using the ServGUI Wizard will also help us enrich the

tool’s functionality.

ServGUI Wizard has been presented in this paper as one

of the main software resources of CAVEMANDER.

Overall, this GUI tool supports a better approach of

designing and developing applications for CAVE

systems, in particular C&C simulation scenarios. The

wizard presented in this paper is part of a recent

innovative and original approach for building C&C

applications in CAVE. Its utility and value come

especially from the fact that it supports end user

development of C&C applications. Such users may not

necessarily be computer experts, and may work in various

domains of activity, including the military, search and

rescue missions, or various medical fields.

Acknowledgements

This work was made possible through the support

provided by NASA grant #NNX07AT65A via a sub-

award and with cost share provided by the Nevada

System of Higher Education: NSHE-08-51 and NSHE-08-

52.

References

[1] Mancero, G., Wong, W., and Amaldi, P. Looking

but not seeing: implications for HCI. In ECCE '07:

Proceedings of the 14th European Conference on

Cognitive Ergonomics (New York, NY, USA,

2007), ACM, pp. 167-174.

[2] Aoki, P. M. Back stage on the front lines:

perspectives and performance in the combat

information center. In CHI '07: Proceedings of the

SIGCHI Conference on Human Factors in

Computing Systems (New York, NY, USA, 2007),

ACM, pp. 717-726.

[3] Buntha, S. CAVEMANDER: an approach and

software platform for building command and control

applications in CAVE, PhD Dissertation, University

of Nevada, Reno, 2009.

[4] Hanani, U., Shapira, B., and Shoval, P. Information

filtering: Overview of issues, research and systems.

User Modeling and User-Adapted Interaction, 11(3)

2001, 203-259.

[5] Brown, P. J., and Jones, G. J. F. Context-aware

retrieval: Exploring a new environment for

information retrieval and information filtering.

Personal Ubiquitous Computers, 5(4), 2001, 253-

263.

[6] Huang, X., and Huang, Y. R. Using contextual

information to improve retrieval performance.

Proceedings of the IEEE International Conference

on Granular Computing, Vol. 2, 2005, pp. 474-481.

[7] Nacenta, M. A., Sakurai, S., Yamaguchi, T., Miki,

Y., Itoh, Y., Kitamura, Y., Subramanian, S., and

Gutwin, C. E-conic: a perspective-aware interface

for multi-display environments. Proceedings of the

20th Annual ACM Symposium on User Interface

Software and Technology (Newport, Rhode Island,

USA, 2007), ACM, pp. 279-288.

[8] Grudin, J. Partitioning digital worlds: focal and

peripheral awareness in multiple monitor use.

Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (Seattle, Washington,

United States, 2001), ACM, pp. 458-465.

[9] Funke, G. J., and Galster, S. M. The effects of

spatial processing load and collaboration technology

on team performance in a simulated C2

environment. In ECCE '07: Proceedings of the 14th

European Conference on Cognitive Ergonomics

(New York, NY, USA, 2007), ACM, pp. 37-43.

[10] Dudfield, H., Macklin, C., Fearnley, R., Simpson,

A., and Hall, P. Big is better? Human factors issues

of large screen displays with military command

teams. Proceedings of the Second International

Conference on People in Control Human Interfaces

in Control Rooms, Cockpits and Command Centres

(IEEE Conf. Publ. No. 481) (2001), pp. 304-309.

[11] Emery, L., Catchpole, K., Macklin, C., Dudfield, H.,

and Myers, E. Big is better? Empirical results of an

assessment of command teams with large screen

displays. Proceedings of the Second International

Conference on People in Control Human Interfaces

in Control Rooms, Cockpits and Command Centres

(IEEE Conf. Publ. No. 481) (2001), pp. 86-91.

[12] Sowndararajan, A., Wang, R., and Bowman, D. A.

Quantifying the benefits of immersion for

procedural training. In IPT/EDT '08: Proceedings of

the 2008 Workshop on Immersive Projection

Technologies/ Emerging Display Technologies

(New York, NY, USA, 2008), ACM, pp. 1-4.

[13] Rozzi, S., Amaldi, P., Wong, W., and Field, B.

Operational potential for 3D displays in air traffic

control. In ECCE '07: Proceedings of the 14th

European conference on Cognitive ergonomics

(New York, NY, USA, 2007), ACM, pp. 179-183.

[14] Sommerville, I., Software engineering 8th edition,

Addison-Wesley, Boston, MA, USA, 2006.

[15] Arlow, J., and Neustadt, I., UML and the unified

process: practical object-oriented analysis and

design 2nd edition, Addison-Wesley, Boston, MA,

USA, 2005.

[16] Shneiderman, B., Plaisant, C., Cohen, M., and

Jacobs, S., Designing the user interface: strategies

for effective human-computer interaction 5th

edition, Addison-Wesley, Boston, MA, USA, 2009.

[17] Hollingsed, T. and Novick, D., G., Usability

inspection methods after fifteen years of research

and practice. Proceedings of the 25th annual ACM

international conference on design of

communication (El Paso, Texas, USA, 2007), ACM,

pp. 249-255.

