
Ringermute: An audio data mining toolkit

Marcel A. Levy Sergiu M. Dascalu Frederick C. Harris, Jr.
Department of Computer Science and Engineering

University of Nevada
Reno, NV 89557
mlevy@unr.edu

Abstract
This paper presents Ringermute, an application designed
to support audio feature recognition and machine learn-
ing, from the training and testing to the deployment
phase. By choosing from a combination of feature ex-
traction routines provided by plug-ins, a researcher can
quickly produce files for input to standard data mining
tools. The best combination of feature-extraction and
classifier plugins can then be used to drive a near-real-
time application for further testing or production use.
Keywords: Audio, Feature Recognition, Classifier

1 Introduction

Context-aware computing and communication is a rela-
tively recent area of research. The goal is to produce
systems and applications that modify their behavior in
response to changes in the physical or social environment
of the primary user or users [27]. These systems consist
of sensors and one or more controllers, which can oper-
ate according to behavioral models of variable complexity
[15]. Context-aware computing can be seen as a marriage
of machine learning with human-computer interaction.

Sensor design is one of several challenges in the field.
Tasks that humans find intuitive (face recognition, for ex-
ample) are still more difficult for machines and can only
be done in a narrower range of circumstances, or force
larger tolerances for error. Even recognizing the ring of a
phone over the sound of conversation or music—a trivial
task for most humans—is difficult for a machine [16, 34].
But such real-world sensors are crucial to providing ma-
chines with the same context that supports successful hu-
man interactions.

Most sensors, and particularly those that operate on
audio or video, are given noisy and unpredictable input.
While Digital Signal Processing (DSP) is a mature field of
research, most of its algorithms are straightforward math-
ematical transformations and are frequently designed for
human decision support, and do not necessarily obviate
the need for further analysis. The problem is essentially
a machine-learning problem, in that machines are faced
with second-order input from DSP algorithms that varies
in its complexity. For example, an office environment may
be generally quiet and simple to segment into periods of

distinct activity types, perhaps even on the basis of vol-
ume alone. However, a restaurant, factory floor or even
the passenger compartment of an automobile present far
more challenging environments. In these cases, spectrum
analysis will get us only so far.

Voice recognition has long been a fruitful area of re-
search and development, but audio sensing in support
of context-aware systems is relatively less sophisticated.
While data mining tools are plentiful, audio feature recog-
nition is still an evolving area of research, and very few
audio tools are designed with the needs of machine learn-
ing in mind. Even ignoring the vast majority of tools
that are designed for music or multimedia production,
most audio analysis tools are focused on DSP, and not
machine learning tasks.

This paper presents Ringermute, a tool designed to sup-
port audio feature recognition and machine learning, from
the training and testing to the deployment phase. By
choosing from a combination of feature extraction rou-
tines provided by plug-ins, a researcher can quickly pro-
duce files for input to standard data mining tools. The
best combination of feature-extraction and classifier plug-
ins can then be used to drive a near-real-time application
for further testing or production use.

The problem of audio event and scene classification, and
the current state of research, is summarized in Section 2.
The intent and scope of the Ringermute system is dis-
cussed in more detail in Section 3, and the implementation
is covered in Section 4. Two usage scenarios are outlined
in Section 5. The results of the project and avenues for
future research are found in Section 6.

2 Ringermute Design

While the world certainly does not lack for excellent audio
tools [4, 6, 22] or machine-learning applications [33, 35],
there does exist a need for an application that:

∙ Allows researchers to apply machine-learning tech-
niques to live and stored audio data without having
to first learn how to use audio and digital signal pro-
cessing libraries.

∙ Allows researchers to develop new feature-extraction
or classifier plug-ins that are based on existing code,
without having to learn much about the preexisting
code.

∙ Allows the rapid creation of an application based on
the results of experimental data, without even requir-
ing compilation.

∙ Is flexible enough to allow further modification and
additions.

It may seem that a tool such as MATLAB [17] would
suffice to perform research on audio context problems.
Although such tools are useful and have a place in the re-
search, their primary limitation is that they were not de-
signed to deliver usable applications in an interactive con-
text, particularly for live audio. And while Waikato Envi-
ronment for Knowledge Analysis (WEKA)’s tool set [33]
is well-adapted to constructing cross-platform applica-
tions, the audio framework and feature selection is up
to the researcher to provide. Yet the problems of au-
dio input and sound file formats are not so complex that
they necessitate re-inventing the wheel. And the fields
of auditory context and Computational Auditory Scene
Recognition (CASR) provide a rich set of features stable
enough to be considered standard as well. The intent is to
allow the rapid creation of audio context widgets as con-
ceived by Dey, Abowd and Salber, either at the sensor or
Interpreter level [10].

2.1 The Framework

The functionality of Ringermute is contained in three
applications: The service (rimuservice), the sta-
tus monitor (rimutaskbar) and the feature-extractor
(rimuextract). rimutaskbar serves as the user’s GUI
interface to the system. It allows the user to view, edit
and save settings, start or stop rimuservice, and start
rimuextract within a GUI context. It also displays the
current rimuservice activity state. rimuservice is the
engine that is responsible for acquiring the raw audio data
(either from hardware input or a sound file), and acti-
vating data-processing modules (called Listeners) on the
data in turn. The service is also tasked with writing out
any data to a file or files. rimuextract is a command-
line tool that extracts features from a series of audio files
and combines them into a single Attribute-Relation File
Format (ARFF) file. The relationship between the three
applications is seen in Figure 1.

rimuextract

rimutaskbar

rimuservice

Extracts features from audio files

Primary user interface
Saves settings
Starts/stops rmuservice
Calls rimuextract in GUI context
Manages notifications

Feeds audio input to Listeners
Saves audio and/or features
Sends notification messages to rimutaskbar

Figure 1: Ringermute components and their interaction.

2.2 The Central Repository

The key data structure is the central repository, also
called Ringermute Central. At its core it is a hash ta-
ble of pointers to objects containing data (usually arrays
of various types). Ringermute service places each frame
of audio data in the repository for use by the Listeners,
which are responsible for managing the data in their own
namespaces. If a Listener requires historical data (the
last N frames, for example), it is responsible for keeping
this data as well. The Ringermute service only promises
to provide the original audio data, and to trigger the Lis-
teners whenever the data changes.

2.3 Listeners

All data-processing and feature extraction (except for the
original raw audio data) is performed by Listeners. A set
of standard Listeners is provided with Ringermute, and
provides basic audio processing, including spectral analy-
sis. But the design of Ringermute is such that third-party
modules could easily be written to replace the basic func-
tions. As can be gathered by the description, Listeners
are a relatively straightforward implementation of the Ob-
server pattern [11, 12]. A graphic representation of the
Listener interface can be seen in Figure 2. Another key
point to make is that Ringermute Listeners are designed
to be loaded as dynamic plug-ins at runtime. As such,
they are required to provide several informational rou-
tines that tell Ringermute what data they provide, and
what data they depend on. This helps Ringermute deter-
mine in which order to alert the Listeners.

Exported by DLL

wxString _ListenerName
wxString _ListenerDescription
RingermuteListener GetListener()

The RingermuteListener class
(All Listeners inherit from this class)

Public:

SetSettings(RMSettings)
virtual Update(RingermuteListenerPost)
virtual Ringermute_ListenerInfo GetListenerInfo()

Private:�

virtual InitializeWithSettings()

These provide the human-readable
attributes for display by the Taskbar.

Used by both the Service and Taskbar
to instantiate the Listener.

Used by both the Service and Taskbar
to pass settings to the Listener.

Called by SetSettings(), uses the settings
to set up internal structures.

The primary function, called by the Service
when new audio data is available.

The ListenerInfo structure describes the data
provided and options accepted by the Listener.

Figure 2: The Ringermute Listener specification.

3 Ringermute Implementation

Ringermute’s primary components have been imple-
mented in C/C++, using several open-source, cross-
platform libraries. One basic requirement for Ringermute
was that it run on the three major desktop applications
found in research environments: Microsoft Windows, Ap-
ple Mac OS X, and Unix/Linux. Several alternatives
were considered, including Java and Python. Mindful of
Knuth’s caution against premature optimization [14], it
was felt that the need for responsive and near-real-time

audio analysis, especially when functioning as part of a
larger context-aware framework, required better perfor-
mance from the start. While Java has made great strides
over the past decade in speed comparisons with C/C++,
it is unfortunately still true that it performs at a disad-
vantage [31, 32]. Python, although it is a more rapid de-
ployment tool than C/C++ and performs nearly as well
as Java [25], was eliminated from consideration by its rel-
ative obscurity: more people have had experience with
C/C++ or Java than with Python. Another advantage
of C/C++ is that byte-code based runtime engines can
be embedded within the Ringermute engine. This would
allow Listeners to make use of the Java-based WEKA [33]
machine learning library, for example.

3.1 Audio Input

Given that each major platform implements its own audio
API (and in the case of Linux, several different APIs over
the years), it was essential to find robust cross-platform li-
braries in order to read audio data from both a live source
and recorded files. As it happens, only two open-source li-
braries are robust enough, under active development and
available on the required platforms: Portaudio [24] and
libsndfile [9].

Portaudio Portaudio [24] is an open-source library de-
signed to provide access to the audio hardware on a wide
range of platforms, including Microsoft Windows, Apple
Mac OS X, several Unix variants and BeOS. It is used by a
number of applications, most notably the Audacity sound
editor. Portaudio is usually run under a multi-threaded
callback scheme, but can be run as single-threaded pro-
cess with blocking I/O. This is how it has been imple-
mented in the Ringermute service, since it only needs to
worry about audio input during its execution.

Libsndfile Since Portaudio does not provide for audio
data input from stored files, libsndfile has been used for
sound file input and output. Like Portaudio, it is a free,
open-source library that runs on a wide range of hard-
ware and operating system combinations. It is capable
of reading and writing standard audio formats such as
WAVEform audio format (WAV), Audio Interchange File
Format (AIFF) and the Sun Unix Audio (AU) file format.
Additionally, it can read and write non-audio formats
such as the MAT file format used with the open-source
MATLAB-compatible numerical application Octave [18],
and the file format used by the Hidden Markov Model
toolkit HTK [13].

3.2 Graphic User Interface (GUI) Ele-
ments

Although the primary application is designed to run as
as a background service, a user interface has been de-
veloped to allow the user to start and stop the service,
control which modules are run, and access settings for

each module. The Ringermute status monitor runs as a
“system tray” application, and displays an icon in the
Microsoft Windows Taskbar, the Macintosh OS X Dock,
or in the area specified by freedesktop.org’s System Tray
protocol [23], which is supported by both GNOME and
KDE. This design allows the status monitor to indicate
whether the Ringermute service is active, access the set-
tings menu, and also display notifications in a relatively
unobtrusive manner. Examples of similar applications in-
clude Google Desktop Search and Microsoft AntiSpyware.

Both the primary Ringermute settings (Figure 3) and
the settings for each individual plug-in module (Figure 4)
are accessed by using “tabbed” windows, which use the
metaphor of physical folder or workbook tabs to separate
the settings values. The individual plug-in modules do
not access the GUI interface directly, but instead indi-
cate to Ringermute what properties are user-controlled.
This allows plug-in authors to contribute features without
having to learn GUI toolkit routines.

Figure 3: The Ringermute interface.

Figure 4: The Ringermute plug-in property interface for
the EAC pitch-detection plug-in.

wxWidgets Much of Ringermute’s functionality has
been implemented using the wxWidgets library, a free,
open-source, cross-platform toolkit in use since 1992 [28].
Aside from providing a rich API for GUI applications,
wxWidgets also includes several features that made it
useful for the Ringermute project. Both the service and
status monitor make use of its cross-platform dynamic
library features to load the plug-in modules. Settings in-
formation for the Ringermute application and the plug-in
modules are handled by a cross-platform configuration
framework: Under Microsoft Windows, the information

is saved to the Registry, and within *.ini files under Mac
OS X and Unix/Linux platforms.

3.3 Command-line and Background Ap-
plications

Both rimuextract and rimuservice are fundamentally
similar in that they provide a context for Listeners to op-
erate. Their primary difference is the context in which
they in turn operate: rimuextract is designed to run
from the command-line and takes existing audio files as
input, while rimuservice is designed to run in the back-
ground and take live audio as its input. Both applications
derive their primary functionality from the Ringermute
Central structure mentioned in Section 2.2.

Ringermute Extractor At the moment, rimuextract
is a fairly simple application. It accepts a list of audio
files as individual arguments, and transforms these into
a single file containing the features extracted from the
audio file, where each line contains the features from a
single audio window. The width of the audio window
is set using the rimutaskbar application. rimuextract

makes use of the libsndfile [9] library to read the existing
audio files, and also makes use of several classes from the
wxWidgets library. Although rimuextract is designed to
run as a command-line application, rimutaskbar allows
the user to invoke it within a GUI shell as a convenience
feature.

Ringermute Service Since rimuservice runs as a
background process, it runs in a different environment
than rimuextract. Within Mac OS X and Unix systems
rimuservuice is to run as a daemonized process. This is
usually done by forking the process and killing off the par-
ent, so that the newly “orphaned” process is “adopted” by
the init process. On the Windows platform, the applica-
tion runs as a Windows Service instead. At present, only
the Windows version has been implemented. A service
control API has been written that abstracts the primary
interface (start, stop, restart), and concrete subclasses are
used to implement platform-specific functionality—this is
a fairly canonical example of the Bridge [12] design pat-
tern.

4 Ringermute Usage

The marriage of context-awareness with audio scene and
object recognition makes for a somewhat confusing com-
bination of problems, many of which are still outstanding.
The overriding issue is the lack of context standards on
any platform, let alone platform-independent standards
for gathering, reporting and acting on context. This, in
part, is why Ringermute is designed the way it is. Al-
though it is by no means a “context server,” it does ex-
pose some basic notification functions to its context and
recognition plugins. Similarly, while it does not include
the breadth and depth of audio analysis functions that

other systems, such as Music AI Research SYstem for
Analysis and Synthesis (MARSYAS) [30] do, it compen-
sates by integrating its recognition features in the GUI.
The goal was not to create the perfect application for re-
searchers or users, but to fit the general needs of both
groups. In this way it allows promising recognizers to be
quickly used in a real-world setting, while also automat-
ing some of the tedium of preparing audio for data mining
and machine learning. Since Ringermute was designed for
two main categories of usage, we will explore them both
in this section.

4.1 Feature Extraction and Training

The first step is to gather the audio. Ringermute ac-
cepts audio input from the underlying sound API, and
can simultaneously save the audio and extract features
to an ARFF file. In most cases, the researcher will have
recorded audio separately and perhaps prepared it with
a tool such as Audacity [6]. In this case, we start with
one or more audio files. These will usually be WAV files,
but Ringermute is capable of reading all the formats and
encodings supported by the open-source library libsnd-
file. rimuextract is a command-line tool that takes the
names of audio files as its arguments. Using the central
Ringermute settings file, it extracts audio features using
the Listener plug-ins mentioned earlier and saves the fea-
tures to a combined ARFF file. This file consists of a
header section that describes the number and data types
for each exemplar. This is followed by the data for each
exemplar, one per line, in comma-delimited format. The
@RELATION line names the dataset, the @ATTRIBUTE
lines specify the number and types of the data fields, and
the @DATA keyword indicates the end of the header. The
exemplars follow, one per line, with comma-separated at-
tributes.

In order to make this file useful for machine learning
applications such as WEKA, we must include not only
features, but a class, such as “phone ringing.” By con-
vention, this is the last field or “attribute” in the list of
features. For each audio file, rimuextract will search
for an accompanying text file that contains the start and
stop times for the class in question. For example, if a
given audio file is named “example.wav”, rimuextract

will search for a text file named “example.txt” or “ex-
ample.wav.txt.” This text file contains lines that have a
floating point number followed by :

(start|begin|stop|end)[␣<string>]

This is the same format used by Audacity to save its
track-labeling feature, so Audacity can be used to visually
mark start and stop points for the desired object or scene.
The Ringermute Taskbar settings interface (Figure 3) can
be used to determine which features are extracted from
the file, and can also be used to extract the features with-
out using the command line (Figure 5).

Once the ARFF file has been generated, we have a set
of exemplars to use for training or evaluation. For exam-

Figure 5: File-chooser window launched from Ringermute
taskbar.

ple, WEKA provides a comprehensive interface for data-
mining, analysis and experimentation. Figure 6 demon-
strates some of WEKA’s visualization capabilites, applied
to a Ringermute-generated ARFF file. In the figure, we
are seeing a visualization of the resulting error rate after
training an artificial neural net on a data set. Given that
the Ringermute project grew out of a phone-recognition
problem, we have written a small neural-net trainer in
C++ that accepts ARFF files with a variable number of
numeric input attributes and a single numeric output at-
tribute indicating whether a phone is ringing. The ARFF
file was generated using the Ringermute system, and the
resulting neural net is used by the Ringermute PhoneLis-
tener plug-in. This illustrates the power of the Ringer-
mute toolset, in that the output from the PhoneListener
can then be used as an extracted feature, either with live
audio input or pre-recorded audio files. This allows for
stepwise refinement as the actual output from the plugin
is compared to the expected output, and any improve-
ments to the neural net can be implemented by simply
replacing a configuration file.

4.2 Interactive Usage

As previously mentioned, Ringermute is not a complete
context server solution, and in interactive mode is in-
tended to be used as a more sophisticated sensor. The
Ringermute Listener plug-ins are responsible for taking
data from a central repository, processing it in some way
(by calculating a spectrum or applying a neural net, for
example), and then leaving output for subsequent plug-
ins. External actions and notifications are intended to
be performed by Listeners themselves, including action-
specific Listeners that only perform actions based on the
work of previous Listeners. For example, a useful plugin
would be one which paused a given media player if a given
sound event was detected.

However, some notification routines are built into the
system. The main interactive input loop is run as a Win-

Figure 6: Error visualization in WEKA of results of train-
ing of an artificial neural net on ARFF file generated by
rimuextract.

dows service or Unix daemon process, and can commu-
nicate with the taskbar interface via Dynamic Data Ex-
change (on Windows) or sockets (on Unix) if a GUI pop-
up window is needed. Basic SMTP and HTTP notifi-
cation is also built into the system as a convenience for
plug-in authors.

In any event, the first step for basic interactive usage is
to launch rimutaskbar, the Ringermute taskbar applica-
tion, right-click on the icon and and select the “Settings”
option from the resulting pop-up window.

The resulting view can be seen in Figure 3. For the sake
of demonstration, let’s say we are interested in live phone
detection. Since the phone detection plug-in depends on
the EAC pitch-detection plug-in, we want to make sure
it is active as well. Figure 7 demonstrates the main plug-
in activation list. This shows which plug-ins have been
detected, and which ones have been activated.

Figure 7: Ringermute plug-in list.

We see that the EAC pitch-detection plug-in is active.
The properties window for this plug-in was previously
shown in Figure 4. We now turn to the properties window
for the phone-detection plug-in, shown in Figure 8. We
can see that it allows the user to determine both which
neural net file to use, and the tolerance level to use when
detecting phone rings. In this case, the neural net file is in

the format used by the Fast Artificial Neural Network Li-
brary (fann). Tolerance refers to the output of the neural
net, on a floating-point scale of 0.0 to 1.0, and a tolerance
of 0.8 means that any output exceeding 0.8 means a phone
ring is present. This allows the user to roughly tune the
detection algorithm while the application is running.

Figure 8: Properties window for the phone-detection
plug-in.

Once the settings have been saved, the user starts the
Ringermute listening service with the “Start listening”
option on the taskbar, and the service begins taking
the audio input and calling the plug-ins. If the phone-
detection plug-in’s output exceeds the tolerance level, it
indicates to other plug-ins that a phone was detected. At
present it also instructs the taskbar to pop up a notifica-
tion window—not an ideal action, but suitable for demon-
stration purposes. This notification can be disabled in the
properties window.

5 Conclusions and Future Work

The primary niche for Ringermute is sensor design. Be-
fore systems can make higher-level decisions about phys-
ical or social context, they must first sense more basic
phenomena and objects. While calendar data stored in-
side the computer is trivial to read, the desk calendar next
to the computer is not, and yet this may contain useful
context information as well.

We have seen where Ringermute fits into the spectrum
of context-aware research and applications – it is a toolkit
that addresses some of the issues involved in audio object
and scene recognition, particularly in concert with ma-
chine learning and data mining applications. It has been
designed to integrate with users in their natural environ-
ment: The graphical user interface. The combination of
a plug-in interface with feature extraction allows for the
refinement of recognition plug-ins by testing them on live
and pre-recorded audio, but also allows their output data
to be used as input by subsequent plug-ins, either to per-
form external actions or additional analysis.

5.1 Similar Projects and Existing Tools

MARSYAS MARSYAS is an existing framework de-
signed to support audio analysis research [30]. As such, it

is not a single application, but includes several command-
line applications useful for audio analysis. It shares some
goals and features with Ringermute. The predominant
metaphor is one of a pipeline, similar to the UNIX concept
of pipes, and MARSYAS. Since it is a framework, it is
designed to be used by a number of different applications,
but no single included application contains all the features
in the Ringermute design. Since it has a larger collection
of audio feature extraction routines, MARSYAS is an ex-
cellent tool to use in the creation of Ringermute plug-ins.
The primary difference, then, between Ringermute and
MARSYAS is that Ringermute is designed to be a user-
friendly, graphical “control panel” for auditory context-
awareness research. MARSYAS is a general-purpose li-
brary and framework for auditory analysis in general.

Sound Ruler Sound Ruler is an application that has
been developed to meet the needs of bioacoustics re-
searchers [4, 22]. It operates on recorded sound files, and
allows the user to recognize and label audio sequences
(such as animal calls), either manually or automatically.
It offers a large feature set, including the display and
graphing of audio data in various forms, including both
the time and frequency domains.

One of SoundRuler’s most interesting features is the
ability to automatically recognize audio sequences. It
does so with a correlation technique: Given an exam-
ple of the sequence, it seeks to find sequences that match
the exemplar’s envelope. While this is certainly useful in
the context of animal calls, it does not allow for recogni-
tion over a general class of sequences: the general class
of bullfrog calls, for example, versus the specific class of
European tree frog Hyla arborea. In addition, the recog-
nition algorithm does not appear to be robust enough to
recognize all calls individually. Finally, the algorithm it-
self and the included audio features are not designed to
be extensible by others: The application itself is a mono-
lithic one. However, it demonstrates the utility of sound
analysis applications in general.

CLAM On the other end of the spectrum from Sound
Ruler, C++ Library for Audio and Music (CLAM) [1, 2]
is a framework for audio signal processing. Along with
classes and routines for input, processing and analysis,
CLAM provides such ancillary functions as data serializa-
tion and visualization. Data types range from low-level
signal components to higher-level units of analysis, such
as phrasing and segmentation [3]. While it provides a
wide range of components and features for digital signal
applications, CLAM is not an application as such. Nei-
ther is it simply a library, in that it provides a conceptual
model along with its library functions [1]. A key difference
between CLAM and Ringermute, aside from the features
CLAM offers, is that CLAM requires more effort to in-
stall and deploy in an application. It has been designed
to meet the widest range of audio applications, not just
context-aware computing. As such it is certainly possible
to make use of CLAM’s features within the context of a

Ringermute Listener.

Audacity Strictly speaking, Audacity [6] is a sound
editing application, and so on first glance may not com-
pare very well to Ringermute at all. However, aside from
its obvious utility in preparing sound files for analysis,
it includes several analysis visualization features in the
program itself, and supports extension through a plug-in
interface. Aside from waveform visualization, Audacity
includes a spectrum view and a pitch-detection visual-
ization based on work by Tolonen and Karjalainen [29].
Given its feature set, Audacity is a natural candidate to
provide supporting features to the Ringermute project—
one problem that Ringermute does not solve directly is
the issue of labeling sound segments for training purposes.
Audacity’s interface allows manual labeling, and Aubio,
a separate audio labeling project [5, 20, 21], can create
label tracks automatically based on audio signal events,
such as the beginning of musical notes.

5.2 Future Improvements

Even though Ringermute is a working and usable tool,
there are many opportunities for future refinement. For
example, although Ringermute has been built with cross-
platform libraries, it has only been developed and tested
on the Windows platform. The immediate goal is to pro-
duce working executables for the Linux and Mac OS X
platforms as well. Documentation, particular API docu-
mentation for those seeking to build Ringermute Listen-
ers, is lacking as well.

Plug-in Dependencies More sophisticated use of
plug-ins would require the system to be aware of plug-
in dependencies – at the moment plug-ins are loaded and
activated in the order they are discovered by the operating
system (alphabetical, in the case of Windows). Plug-ins
already provide “provision” information to the system by
enumerating the configuration. Adding dependency in-
formation and handling would be a fairly simple task.

RRDtool Integration RRDtool is an open-source sys-
tem for logging and graphing time-series data [19]. Be-
sides a library and command-line tools, it also offers bind-
ings for many popular languages, including Python, Perl
and Ruby. Using RRDtool as the data store in Ringer-
mute would allow plug-ins to make use of a wider range of
existing applications and libraries designed for time-series
data.

Multithreading In its current form, Ringermute per-
forms blocking reads on the audio input, and must wait
for all the plug-in modules to execute before reading an-
other input window. A multi-threaded version would si-
multaneously read audio input to a buffer and execute a
plug-in loop. Modules that were not dependent on the
execution of earlier modules could run simultaneously.

This sub-project would require modification of the data-
writing portion as well.

Scripting Interface Although the plug-in model al-
lows cooperation by researchers without requiring knowl-
edge of GUI or audio libraries, it still requires a separate
compilation step for each platform. An ideal situation
would be to allow researchers to write plug-ins that can
be run on multiple platforms. Audacity, for example, al-
lows the use of plug-ins written in the audio synthesis
language Nyquist [8], which contains some features use-
ful in analysis applications. Many languages are designed
to be easily incorporated into C/C++ applications: For
example, existing gaming engines use languages such as
Python and Lua.

Mobile Devices Aside from the office or workgroup
scenarios, the mobile environment offers the largest set
of interesting applications for context-aware comput-
ing [26, 7]. It also offers a new set of challenges to re-
searchers, although these barriers are rapidly disappear-
ing with the advent of cheaper and more powerful mo-
bile devices. Even so, another project would be to adapt
Ringermute to the technical limitations and requirements
of mobile devices, such as a the PocketPC or Palm OS.

References

[1] Xavier Amatriain. An Object-Oriented Metamodel

for Digital Signal Processing. PhD thesis, Pompeau

Fabra University, 2004.

[2] Xavier Amatriain, Pau Arum, Maarten de Boer,

David Garca, Miquel Ramrez, Xavier Rubio, and En-

rique Robledo. Clam: C++ library for audio and

music. http://www.iua.upf.es/mtg/clam/.

[3] Xavier Amatriain, Pau Arum, and Miguel Ram-

rez. Clam, yet another library for audio and mu-

sic processing? In OOPSLA ’02: Companion of the

17th annual ACM SIGPLAN conference on Object-

oriented programming, systems, languages, and ap-

plications, pages 46–47, New York, NY, USA, 2002.

ACM Press.

[4] M. A. Bee. Sound ruler acoustical analysis: a free,

open code, multi-platform sound analysis and graph-

ing package. Bioacoustics, 14:171–178, 2004.

[5] Paul Brossier. Aubio: A library for audio labelling.

http://aubio.piem.org/.

[6] Matt Brubeck, Joshua Haberman, and Dominici

Mazzoni. Audacity: Free audio editor and recorder.

http://audacity.sourceforge.net.

[7] Brian Clarkson, Nitin Sawhney, and Alex Pentland.

Auditory context awareness via wearable comput-

ing. In Proceedings of the 1998 Workshop on Per-

ceptual User Interfaces (PUI’98), San Francisco, CA,

November 1998.

[8] Roger B. Dannenberg. The implementation of

nyquist, a sound synthesis language. Computer Mu-

sic Journal, 21:71–82, 1997.

[9] Erik de Castro Lopo. libsndfile. http://www.mega-

nerd.com/libsndfile/.

[10] Anind K. Dey, Gregory D. Abowd, and Daniel Sal-

ber. A conceptual framework and a toolkit for sup-

porting the rapid prototyping of context-aware ap-

plications. Human-Computer Interaction, 16:97–166,

2001.

[11] Eric Freeman, Elisabeth Freeman, Kathy Sierra, and

Bert Bates. Head First Design Patterns. O’Reilly

Media, Inc., 2004.

[12] Erich Gamma, Richard Helm, Ralph Johnson, and

John Vlissides. Design Patterns. Addison-Wesley

Professional, 1995.

[13] Htk speech recognition toolkit.

http://htk.eng.cam.ac.uk/.

[14] Donald E. Knuth. Computer programming as an art.

Communications of the ACM, 17(12):667–673, 1974.

[15] Ajay Kulkarni. A reactive behavioral system for the

intelligent room. M. eng. thesis, MIT, Cambridge,

MA, 2002.

[16] Marcel Levy. Ringermute: Automated phone detec-

tion and response. Unpublished poster produced as

part of coursework for CS790q at the University of

Nevada, Reno, 2004.

[17] Matlab. http://www.mathworks.com/.

[18] Gnu octave. http://www.octave.org/.

[19] Tobias Oetiker. Rrdtool.

http://oss.oetiker.ch/rrdtool/. Last Accessed

10/23/2009.

[20] J. P. Bello P. Brossier and M. D. Plumbley. Fast la-

belling of notes in music signals. In Proceedings of the

5th International Conference on Music Information

Retrieval (ISMIR 2004), Barcelona, Spain, October

2004.

[21] J. P. Bello P. Brossier and M. D. Plumbley. Real-time

temporal segmentation of note objects in music sig-

nals. In Proceedings of the International Computer

Music Conference (ICMC 2004), Miami, Florida,

USA, November 2004.

[22] Marcos Gridi Papp. Sound ruler acoustic analysis.

http://soundruler.sourceforge.net/, August 2004.

[23] Havoc Pennington and Mark McLough-

lin. System tray protocol specification.

http://freedesktop.org/Standards/systemtray-spec,

November 2004.

[24] Portaudio - portable cross-platform audio api.

http://www.portaudio.com/.

[25] Lutz Prechelt. Technical report 2000-5: An empirical

comparison of c, c++, java, perl, python, rexx, and

tcl for a search/string-processing program. Technical

report, University of Karlsruhe, 2000.

[26] Nitin Sawhney. Situational awareness from environ-

mental sounds. Technical report, Speech Interface

Group, MIT Media Lab, June 1997.

[27] B.N. Schilit, D.M. Hilbert, and J. Trevor. Context-

aware communication. IEEE Wireless Communica-

tions, Volume 9, Issue 5:46–54, October 2002.

[28] Julian Smart, Robert Roebling, Vadim Zeitlin, Va-

clav Slavik, Stefan Csomor, and Robin Dunn. The

wxwidgets library. http://www.wxwidgets.org/.

[29] T. Tolonen and M. Karjalainen. A computationally

efficient multi-pitch analysis model. IEEE Trans-

actions on Speech and Audio Processing, Vol. 8(No.

6):708–716, November 2000.

[30] George Tzanetakis and Perry Cook. Marsyas: a

framework for audio analysis. Organised Sound,

4(3):169–175, 1999.

[31] Rodrigo Vivanco and Nicolino Pizzi. Computa-

tional performance of java and c++ in processing

fmri datasets. In OOPSLA ’02: Companion of the

17th annual ACM SIGPLAN conference on Object-

oriented programming, systems, languages, and ap-

plications, pages 100–101, New York, NY, USA,

2002. ACM Press.

[32] Rodrigo A. Vivanco and Nicolino J. Pizzi. Scientific

computing with java and c++: a case study using

functional magnetic resonance neuroimages. Soft-

ware: Practice and Experience, 35(3):237–254, 2004.

[33] Weka machine learning project.

http://www.cs.waikato.ac.nz/ ml/index.html.

[34] Brian Westphal and Jim King. A genetic algorithms

based automatic phone-ring detection system. Un-

published paper produced as part of coursework for

CS790k at the University of Nevada, Reno, 2003.

[35] Ian H. Witten and Eibe Frank. Data Mining. Morgan

Kaufmann, 2000.

