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Abstract—Approximating ‘real’ disease transmission net-
works through genomic sequence comparisons among
pathogenic isolates is increasingly feasible with the current
growth in genomic sequence data. Here, we derive a network
from over 4,200 globally distributed influenza A virus isolates
based on alignment-free sequence comparisons. We then em-
ploy network mixing pattern analysis to examine transmission
probabilities between isolates from different global regions, host
types, subtypes and collection years. While we can not use our
results to describe the complete global network of influenza A
virus, we present a novel analytical process. In addition, we
describe some of the characteristics of this subset of currently
available data. Most notable results are the high levels of inter
regional links and the important role that avian species seem
to play in non human global transmission.

I. INTRODUCTION

FRom a graph theoretic approach, a disease network may
be viewed as a vertex and edge graph where individuals

or groups are represented by vertices and their pairwise
transmissive potential is indicated by edges. Determining
‘real’ disease networks to characterize the spatial and tem-
poral structure of past epidemiological events can rely on
subjective data collection and/or require extensive research
[1]. Due to collection methods of the data required for
recreating disease transmission networks, resulting graphs
may be tree like [1], relatively small, and mis-representative
of the networks complexity.

Examining real networks in both the 1981 Hong Kong
SARS outbreak [2] and in the persistence of gonorrhea in
a localized community [3] led both teams of researchers
to similar conclusions regarding transmission network struc-
tures. Mainly that, in these cases, disease spread and per-
sistence were attributed to super spreaders. Super spread-
ers are small numbers of individuals who, by maintaining
disproportionately large numbers of contacts, are responsi-
ble for a disproportionately large number of transmission
events. These indicated that underlying interactions formed
scale-free networks [4]. However, much research in disease
network modeling has gone in the reverse route of applying
existing theoretical network types to derive characteristics
about diseases [5] [6]. Other approaches include dynamic
network creation through agent based computational models
[7], and estimating transmission links based on geographic
proximity [8] [9].
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In this report, we explore the potential for the use of
genomic sequence comparisons to approximate the topol-
ogy of real and complex disease networks. The use of
genomic sequences draws from an ever increasing supply
of data and computational power. At the same time, whole
genome comparison methods provide a quantitative approach
to represent evolutionary relationships. We assume in this
report that phylogenetic relatedness can imply approximate
transmission pathways through a population. As a network
graph, sequenced isolates are viewed as vertices and edge
relationships are drawn according to comparative sequence
scores. Whole sequence similarity scores are particularly
attractive in the case for the analysis of RNA viruses such as
influenza A, which mutate rapidly [10] and are relatively
small. While small sequence sizes reduce computations,
high mutation rates create a potentially traceable micro-
evolutionary pathway through sequence comparisons. Isolate
data also have the advantage of known collection locations.
These may then be converted to geographic coordinates for
each node to incorporate the important spatial component of
transmission networks.

In our experiments, we build a network from over 4,200
globally distributed influenza A virus isolates. In addition to
regional diversity, the dataset includes isolates from multiple
host species, subtypes, and a broad range of dates. We
infer isolate relationships from alignment free whole genome
sequence comparisons. This allows us to examine mixing
patterns between host species, geographic regions, subtypes
and collection years. Mixing patterns can indicate disease
transmission between samples from different classes such as
species type or region. In a broader sense, we present an ap-
proach to epidemiological exploration through the formation
of genomic networks.

In the following, section II presents an overview of current
knowledge and approaches to understanding influenza trans-
mission patterns through genomic data. Section III describes
the sequence data set we used and the alignment-free method
employed to derive sequence distance scores and resulting
contact networks. Section IV describes the derivation of
mixing patterns among different class types and results.
Section V provides a conclusion of findings and goals for
future work.

II. BACKGROUND

The Influenza A virus, upon which this study is based, has
been particularly well sampled. The pandemic potential of
Influenza coupled with its high distribution across the globe



TABLE I
DOMINANT CLASSES (≥ 0.1%) FOUND IN DATA SET

Descriptor class type (percent(%))
Region USA(51.5%), New Zealand (12.8%) China(5.3%), Italy(1.8%)
Host Class Human(65%), Avian(20.5%), WildAvian(7.8%), Swine(3.1%), Environment(2.7%)
Subtype H3N2(33.8%), H1N1(32.6%), H5N1(11.1%), H7N1(4.4%), H9N2(2.8%), H3N8(1.9%),H1N2(1.4%),

H7N3(1.4%), H6N1(1.3%), H4N6(1.2%)
Year 2009(17.9%), 2007(15.5%), 2005(14.2%), 2004(8.7%), 2003(7.9%), 2000(6.8%),2006(6.6%), 2002(6.5%),

2008(5.9%), 2001(5.7%), 1999(4.6%)

has resulted in a high rate of sampling, analysis and surveil-
lance [11]. The National Institute of Allergy and Infectious
Diseases’s Influenza Virus Resource website currently houses
over 70,000 influenza viral sequences spanning multiple host
species, decades, subtypes and geographic locations [12].

Much attention has been given to estimating the geo-
graphic transmission routes of influenza virus through both
human and avian populations. The overall global directional-
ity of the human host H3N2 subtype has most recently been
described as starting in East-Southeast Asia, then passing
to Oceania, and through North America and Europe to
South America [13]. Extensive seasonal global migration of
influenza A viral strains, as opposed to localized persistence
and re-emergence, has also been supported by research in
[14]. In [13], the majority of sequence comparisons were per-
formed antigenically rather than genetically. While antigenic
comparisons can track how the virus evolves with regards to
human host immunity, it focuses only on the functionality
of specific region(s) of the entire flu genome. In contrast,
whole genome comparisons may allow a finer level of dif-
ferencing as information representing all point mutations and
re-assortments are included in complete genomic sequences.

In addition to global circulation tendencies, much of the
focus on influenza A epidemiology has been in tracking the
origins of emergent subtypes. Methods are generally based in
the creation of phylogenetic trees. While phylogenetic trees
are basic networks in the form of tree graphs, this method-
ology is not designed to encompass the amount of data
available and required to characterize complex networks. In
[14], even though 900 complete genomes from the Northern
and Southern Hemispheres were compared with phylogenies,
these did not suggest a specific network of viral movement.
In similar studies attempting to characterize the movement
of flu viruses in North America [15], China and Southeast
Asia [16] [17] [18] [19] [20], India [21], Europe [22] [23] and
Africa [24], even smaller sample sizes are used and compared
via antigenic or phylogenetic tree comparisons. Consistent in
most studies is a call for increased surveillance of influenza
and more comprehensive data sets [14] [13]. Similarly, in
a recent influenza study conducted in [25], it is stated that
there has been “no rigorous measurement of viral diversity
across time, across space, and among subtypes” despite data
availability.

Here we utilize network theory to examine global in-
fluenza transmission. In contrast with phylogenies, complex
networks may be composed of multiple relationships between
samples, or vertices, and are not constrained by requiring

the delineation of each samples progenitor. Instead, we may
represent our data and all inter relationships as they are
measured and then search for network properties which may
emerge.

III. METHODS

A. Data Sets and Classes

We obtained genomic sequences of influenza isolates from
the Influenza Virus Resource [12]. Data included 4,228
complete influenza A genomes collected between 1999-2009.
When acquired from the database, each sequence is annotated
with information describing host species, collection location,
collection date, subtype, and other types of ancillary infor-
mation. For four descriptors including region (country of
origin), host type, subtype, and collection year, we derived
class types and assigned all samples one class type for each
descriptor. Distributions of the most dominant types are listed
in Table I. We considered all host species as either Human,
Domestic Avian, Wild Avian, Swine, Mammal, Environment,
or Unknown. The Domestic Avian class included all viral
samples from hosts labeled chicken, turkey, duck, or goose.
Samples from hosts labeled by wild bird species, such as
“mallard”, or “Egret” were considered Wild Avian. The
Mammal class was broad and included all non-human and
non-swine mammals, including species such as horse, civet
and tiger. The Human, Swine, Environment and Unknown
classes were clearly labeled and required no generalization.
The dataset also included 61 different subtypes and 58
countries which required no reclassification.

Influenza genomes exist in eight discontinuous segments
unlike the more common contiguous stranded model of
genetic material found in larger organisms. Thus, the full set
of sequences was divided into eight groups containing each
of the eight segments composing influenza genomes. Each of
these sets were compared separately, and then results were
combined to derive overall network relationships.

B. Genomic Comparisons

Minimizing computation time is one of the largest chal-
lenges when comparing many sequences of whole genomes.
To delineate a network containing N nodes, N (N − 1) /2
comparisons are required. Thus, it is necessary to utilize a
computationally efficient method for sequence comparisons
to create networks in which N ≈ 4200. Sequence com-
parison methods may be classified as alignment based or
alignment free. The complexity of alignment based methods
remains O

(
n2
)

where n = max sequence length. Alignment



TABLE II
ACTUAL AND PREDICTED COMPUTATION TIMES

N FFP BLAST MUMmer

2(act) 0.008s 0.051s 0.178s
10(act) 0.86s 51.2s 2m 55.2s
100(act) 3.49s 3m 27s 11m 47s

1000(pred) 1m 33.9s 5h 47m 53.4s 19h 49m 2.8s
4000(pred) 1h 33m 52.6s 91h 50m 23s 317h 19m 1.8s

free methods rely on the comparison of global sequence
statistics and can run on the order of O (n). Generally,
linear time methods are based on sequence-specific k-mer
distributions which reflect the frequency of k-length words
in any given sequence. Due to the small alphabet size
of all genomic sequences {a, c, g, t}, there exist only 4k

possible nucleotide words for any integer value assigned
to k. Comparing the relative frequencies of all possible k-
length nucleotide words is thus a computationally feasible
task for even relatively large values of k. Frequencies of all
existing k-mers differ among even closely related sequences
such that distinctions among related prokaryotic groups have
been determined based on this approach [26] [27] [28].

We utilized Feature Frequency Profiles (FFP), a k-mer
based formula described in [26] to derive distance matrices
between isolates. The FFP for a given sequence is a vector
of length 4k in which each entry contains the relative
frequency of each k-mer in that sequence. In summary, to
compare two genomic sequences (s1, s2), the FFP vector Fk

is computed for each sequence. Obtaining the FFP for a given
sequence first entails a linear time parsing to obtain counts
of each possible k-mer for a specified value of k, yielding
a count vector, Ck. The FFP profile Fk is then obtained by
normalizing each vector element in Ck by the total number of
k-mers found in a sequence such that, Fk = Ck/

∑4k

w=1 cw,k.
A measure of dissimilarity between two sequences can then
be computed as the sum of element-wise differences between
frequency profiles.

In order to compute element-wise differences, we uti-
lize the Jenson-Shannon (JS) Divergence, drawn from
information theory as in [26]. Let Pk and Qk rep-
resent FFP’s for s1 and s2 respectively and Mk =
(Pk + Qk) /2. The JS Divergence is then calculated as,
JSk (Pk, Qk) = (1/2)KL (Pk,Mk) + (1/2)KL (Qk,Mk),
where the Kullback-Leibler Divergence is KL (Pk,Mk) =∑4k

w=1 pk,w log2 (pk,w/mk,w). The value given to k in this
type of comparison need also be determined. In [26], a
method for determining the optimal range of k values for
a given dataset was proposed. This method was derived
from optimal word lengths used to distinguish books by
different authors and regarding different subjects using the
English language. We used the lower limit of this range
per segment data set, as smaller word length values allowed
slight increases in computational speed. The lower limit for
k is determined by the value at which increasing k does not
increase the number of k-length words found at least twice
in each sequence of the data set. Thus if N (k) is the total

number of distinct k-mers found to occur at least twice in
all members of a set of sequences, the lower limit of k may
be defined as k such that N (k) ≥ N (k + 1). This indicates
the maximum word length at which new functional words
are found, or the length of maximum word diversity.

An in house implementation of the FFP method allowed
rapid distance calculations so that it was feasible to derive all-
against-all comparisons of 4,228 complete sequences. Table
II provides real and predicted computation times relative
to sequence number for all against all comparisons using
FFP and two other commonly used applications for genomic
sequence comparison; BLAST [29] and MUMmer [30].
Predicted times were derived from linear interpolation based
on real time values. As seen in Table II, the predicted
computation time using the FFP method to compare 4,000
nodes is approximately 1.5 hours. In contrast, BLAST and
MUMmer were predicted to require over 91 and 317 hours
respectively to perform the same number of comparisons.

We compared the FFP method against BLAST to esti-
mate its accuracy for determining most similar sequence, or
minimal distance relationships among our data set. These
relationships form the basis of contact networks and are
described in more detail in the following section. From
each of the eight flu segment data sets, ten sequences were
randomly selected. Pairwise similarity and distance matrices
were computed using BLAST and FFP respectively. For each
of the ten sequences, the most similar sequence(s) within
the set of ten were determined according to both BLAST
and FFP scores. The most similar sequence(s) using BLAST
were those which exhibited the highest bit scores. The bit
score reflects the overall alignment of high scoring pairs in-
corporating gap penalties [31]. The most similar sequence(s)
using the FFP method were those determined by the minimal
computed Jenson-Shannon Divergence scores. For all ten
sequences, comparisons were then made between their most
similar sequences determined by each method. For example,
if s1 was most similar to s2 using the FFP comparison, and
also most similar to s2 according to the BLAST comparison,
this would account for a match. We repeated this for 200
random samples of size ten. The resulting average percentage
of matches was 20% - 30% across all segments. These results
indicate a need for more accurate and efficient comparative
approaches of subspecies viral isolates. It is the focus of our
current research.

C. Contact Networks

In epidemiological studies, a contact network is used to
indicate disease transmission between individuals. Here, we
derived contact networks based on minimal FFP sequence
distance scores. Thus, an edge indicating contact is drawn
between each sequence and all others exhibiting a minimum
relative score.

Separate contact networks were derived from distance
matrices for each of the eight flu segments. These took the
form of undirected N x N adjacency graphs G in which
indices Gij , are given the value of 1 to indicate minimal



TABLE III
AVERAGE DEGREE PER SEGMENT

segment k
1 6.96
2 11.41
3 10.31
4 6.09
5 11.29
6 8.0
7 18.47
8 16.14

differences between sequences i and j , i ∈ N, j ∈ N, i 6= j.
All other indices are marked with a 0.

For each sample i ∈ N , the minimum distance MINi

between i and all other samples j ∈ N was determined.
Then any sample j for which the computed distance between
samples i and j was equal to MINi was considered a
contact, and a value of 1 was assigned to Gij . This allowed
that each sample could be assigned more than one link if
the same minimum distance value was found with multiple
samples. Multiple links were observed in most cases. The
degree(k) of a vertex is the total number edges connecting
to it while the average degree (k) is the average of all vertex
degrees in a graph. Each flu segment specific adjacency graph
exhibited a high average degree, with values ranging from
6.09−18.74. Table III provides a list of the average degrees
of each segment contact network.

IV. MIXING PATTERN RESULTS

Mixing patterns describe the probability of connections
between vertices of different types in a network [32]. Mixing
patterns in our dataset were examined with regards to region,
host class, year and subtype. This was to examine our
network for indications of highly probable geographic trans-
mission routes, cross species transmission, subtype mixing
and carry over of genotypes between years. Thus for each
vertex of type i in a network, we compute the conditional
probability that its network neighbor is of type j, i.e. P (j|i).

To examine mixing patterns among vertex types, a mixing
matrix E is built where Eij contains the number of edges
connecting vertexes of type i to vertexes of type j. Because
our data were divided into eight distinct sets, each entry in
the resulting matrix Eij contained the sum of edges found
among all segments one through eight. A normalized mixing
matrix e is then derived where

Ē =
E
‖E‖

‖E‖ representing the sum of all elements in E. P (j|i) for
each vertex type i and all neighbor types j may then be
derived by P (j|i) = Ēij/

∑
j Ēij , as described in [32].

Entries in the matrix Ēij measure the link strength between
all class types of a given descriptor, e.g., country of origin,
host class. Mixing matrices and resulting conditional prob-
abilities among all class types were derived from contact
network graphs. Links among all eight segment matrices
were counted individually. This allowed that each link could

represent similarity between samples in a single segment,
independent of all others.

An assortativity coefficient was also calculated for each
mixing pattern analysis. Assortativity refers to the selectivity
of vertices in forming links within the same class. Using
assortativity measures, the prevalence of inter host species
transmission, “host-jumping” may be examined for example.
In [33], a method for deriving an assortativity coefficient (r)
is given as

r =
Trace

(
Ē
)
−
∥∥∥Ē2

∥∥∥
1−

∥∥∥Ē2
∥∥∥

More detail regarding this equation can be found in [33].
Thus a higher selectivity is reflected as r approaches 1 in a
given data set with regards to a specific descriptor. A value
close to 1 would indicate that vertices of a given type tend
to form links with only vertices of the same type.

In the following, we report both the assortativity and the
interclass (between class) mixing statistics for regional, host,
year and subtype groups in our global influenza dataset. Class
type relations are displayed as networks in which vertexes
represent classes and edges represent their conditional in-
terlinking probabilities. Edge widths are indicative of the
magnitude of these values. Tables listing conditional inter
class linking probabilities are presented as well.

A. Regional Mixing Patterns

Regional mixing patterns were derived to indicate global
geographic transmission patterns. Regional classes described
the country of origin among 58 countries for each sample.
Regional mixing patterns showed the lowest assortativity
out of all class groupings, with an r value of 0.678. Thus,
regional selectivity was notably less than 1.0 and several
links across geographic borders were found. The average
link strength between countries was 0.069 with a range of
values between 0.000026 to 1.0. Figure 1 shows an interclass
network displaying all inter-regional links that exceed the
average value of 0.069. There were close to one hundred
P (j|i) values which exceeded this average so we selected
a small subset of fifteen to report in Table IV. To report
countries with the highest number of inter-regional links,
values were ranked by degree(i).

B. Host Class Mixing Patterns

Host classes mixing patterns were examined to detect the
occurrence of cross host type transmission. The assortativity
coefficient for host class mixing patterns in our data set
was 0.789. This reflected selectivity for within class trans-
mission and also indicated a marked presence of inter host
transmission. The most linked classes were (not surprisingly)
Domestic and Wild Avian. It is worth noting as well that both
the Environment and Unknown classes are most prominently
linked to the Avian classes. This suggests the introduction
of influenza A in to the environment by avian species. The
average link strength between classes was 0.065 with a range
of values between 0.0000636 to 0.532. Figure 2 displays a



Fig. 1. Inter regional network

TABLE IV
STRONGEST INTER REGIONAL LINK VALUES

P (neighbor(j)|class(i)) P (j|i) degree(i)
P(USA|China) 0.289 34
P(Japan|China) 0.100 34
P(USA|Russia) 0.206 27
P(USA|Japan) 0.369 26
P(China|Japan) 0.098 26
P(USA|Italy) 0.402 25
P(Russia|Mongolia) 0.146 19
P(Mexico|Canada) 0.178 17
P(USA|Canada) 0.136 17
P(USA|Taiwan) 0.142 17
P(China|Taiwan) 0.073 17
P(Japan|Taiwan) 0.071 17
P(NewZealand|Australia) 0.150 16
P(USA|Colombia) 0.465 16
P(China|Colombia) 0.157 16

complete inter host network. Figure 3 displays only links
which exceed the average value. Figures 2 and 3 suggest a
strong role in non human global transmission attributable to
domestic and avian bird species. As most wild avian partake
in some form of migration, and domestic avian species are
broadly traded, this does not conflict with expected results.
Table V lists all higher than average inter class conditional
relationships.

C. Subtype Class Mixing Patterns

Of the 61 different subtypes in the dataset, the assortativity
coefficient of within subtype links was 0.96. While this
indicates a high degree of selectivity, inter subtype links were
found as well. The average inter subtype linking probability
was 0.057 and ranged from 0.0000118 to 1.0. There were

Fig. 2. Inter host network, all links

TABLE V
STRONGEST INTER HOST TYPE LINK VALUES

P (neighbor(j)|class(i)) P (j|i) degree(i)
P(Avian|WildAvian) 0.532 7
P(Avian|Unknown) 0.356 5
P(WildAvian|Avian) 0.223 7
P(Avian|Environment) 0.149 5
P(WildAvian|Unknown) 0.119 5
P(WildAvian|Environment) 0.112 5
P(Environment|Avian) 0.0726 7
P(Avian|Swine) 0.0811 6
P(Avian|Mammal) 0.0681 4

176 relationships found which exceeded the average value.
These inter subtype links are displayed in Figure 4 while
Table VI lists only the 15 top ranking relationships based
on the highest degree of vertices i and higher than average



Fig. 4. Inter subtype network



Fig. 3. Inter host network, filtered links

P (i|j) values.

D. Year Class Mixing Patterns

Mixing patterns between years, which ranged from 1999
to 2009, may indicate genotype persistence across successive
flu seasons. The assortativity coefficient among year classes
was 0.9. The average inter year link probability was 0.028
and ranged from 0.00015 to 0.308. Figure 5 displays links
with values above the average and Table VII lists the top ten
ranking inter year relationships. Interestingly, eight out of
the ten relationships listed in Table VII contain relationships
between successive years. The anomalies are links between
the pairs (2000,2003) and (2005,2007). These links are
visually defined in Figure 5. This may reflect at least partial
genotype persistence between years and/or flu seasons which
span successive years. However anomalous year pairings
merit further investigation.

V. CONCLUSIONS AND FUTURE WORK

Mixing patterns in a network can quantify how individ-
uals, or vertices, of different types exhibit network links.
This study describes a methodological approach for deriving
mixing patterns within a pathogenic genomic data set. It also
describes a novel approach to characterizing influenza dis-
ease networks. Examination of networks such as these may
provide insight into epidemiological characteristics such as

TABLE VI
STRONGEST INTER SUBTYPE LINK VALUES

P (neighbor(j)|class(i)) P (j|i) degree(i)
P(H5N2|H6N2) 0.083 31
P(H6N1|H6N2) 0.065 31
P(H4N6|H11N9) 0.064 31
P(H5N2|H11N9) 0.064 31
P(H5N3|H5N2) 0.085 29
P(H6N2|H5N2) 0.067 29
P(H5N8|H5N2) 0.063 29
P(H3N8|H4N8) 0.156 24
P(H4N6|H4N8) 0.102 24
P(H5N7|H10N7) 0.097 23
P(H3N8|H3N6) 0.151 20
P(H4N6|H3N6) 0.067 20
P(H6N1|H6N5) 0.175 19
P(H5N2|H6N5) 0.075 19

TABLE VII
STRONGEST INTER YEAR LINK VALUES

P (neighbor(j)|class(i)) P (j|i) degree(i)
P(2000|1999) 0.308 11
P(2005|2004) 0.224 6
P(2007|2006) 0.194 4
P(2002|2001) 0.117 9
P(2006|2005) 0.0912 10
P(2004|2003) 0.0858 7
P(2008|2007) 0.0729 5
P(2003|2002) 0.0619 8
P(2007|2005) 0.0606 10
P(2001|2000) 0.059 8
P(2003|2000) 0.0421 8

Fig. 5. Inter year network

viral movement and transmission though geographic regions
and through specific population groups.

Our results revealed high levels of selectivity (r ≥ 0.90)
for year and subtype groups. However, inter class links were
found for all classification schemas. This is suggestive of
a highly complex global transmission network, with several
aspects which can be examined independently and in more
depth.

The lowest assortativity measure among all classification
schemas was found in regional groupings with several highly
weighted links between the USA and countries such as
China, Russia, and Japan. However, this may result in part
from a large percentage of samples in our data set being
from the USA. Host class mixing patterns suggest a strong
role in global transmission through avian species, as these
host types showed heavily weighted links with all other
non human host class types. The mixing patterns among
subtypes were numerous although we did not draw any other
conclusions. Inter year mixing pattern resulted in the most
dominant links being between successive years, suggesting a
yearly progression of genotype evolution.

Future work will investigate the underlying network struc-
ture of influenza A in more evenly distributed data sets. It
will include directed, rather than undirected links to indicate
transmission from isolates collected at an earlier date to those
collected later. More broadly, we will examine how varied



approaches to each component of our study may affect result-
ing networks. Our current research involves the development
of fast comparison methods directed specifically towards
whole genome comparisons of subspecies viral sequences.
These methods include the selection of specific k-mer subsets
for better distinction among biological classes and may be
extracted from a given dataset at run-time. Subsets may
be determined by properties such as GC-rich content or
frequency distributions, for example. It is our goal to improve
upon the accuracy and robustness of these methods to allow
critical insight into the global influenza network.
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