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ABSTRACT
Recent advances in next generation sequencing are provid-
ing a number of large whole-genome sequence datasets stem-
ming from globally distributed disease occurrences. This of-
fers an unprecedented opportunity for epidemiological stud-
ies and the development of computationally efficient, robust
tools for such studies. Here we present an analytic approach
combining several existing tools that enables a quick, ef-
fective, and robust epidemiological analysis of large whole-
genome datasets. In this report, our dataset contains over
4, 200 globally sampled Influenza A virus isolates from mul-
tiple host type, subtypes, and years. These sequences are
compared using an alignment-free method that runs in lin-
ear time. This enables us to generate a disease transmission
network where sequences serve as nodes, and high-degree
sequence similarity as edges. Mixing patterns are then used
to examine statistical probabilities of edge formation among
different host types from different global regions and from
different localities within Southeast Asia. Our results reflect
notable amounts of inter-host and inter-regional transmis-
sion of Influenza A virus.

Categories and Subject Descriptors
E.1 [Data]: Graphs and networks

General Terms
Measurement

1. INTRODUCTION
As technology advances, we are incrementally presented with
new combinations of increased computing power and larger
numbers of complete genomic sequences. Computing hard-
ware has so far adhered to Moore’s law, which states that
the number of transistors on a circuit board doubles ap-
proximately every two years. This has resulted in rapid and
consistent improvements in processing speed and memory
capacity [17]. At the same time, developing methods in se-
quencing technology (Next Generation Sequencing) promise
to continue to provide faster and cheaper methods for se-
quencing entire genomes [10, 9]. The combination of ad-
vances in sequencing and computing means that more se-
quences and processing capabilities are constantly becoming
available to researchers.

Epidemiological studies are poised to benefit substantially
from such advances. The application of genomic sequence
data to epidemiological discovery is becoming increasingly
feasible with the current growth in genomic sequence data.
Several collections of pathogenic subspecies genomes have
and will continue to become publicly available. The In-
fluenza A virus, upon which this study is based, has been
particularly well sampled. The pandemic potential of In-
fluenza coupled with its high distribution across the globe
has resulted in a high rate of sampling, analysis and surveil-
lance [2]. The National Institute of Allergy and Infectious
Diseases’s Influenza Virus Resource website currently houses
over 70,000 influenza viral sequences spanning multiple host
species, decades, subtypes and geographic locations [19].
Advances in computational methods which combine high
throughput processing capabilities and increasing data set
sizes are now the largest challenge to analysis of pathogenic
genomic information this[4]. Our work addresses this de-
veloping area of research by presenting a graph theoretic
approach to approximating and examining possible disease
transmission using networks derived from whole genomic se-
quence comparisons.



Current applications of genomic data to disease networks
are based on phylogenetic tree inferences. These include
phylogenies derived from multiple sequence alignments[11]
and more recently, Bayesian phylogeography[8]. Because of
computational and/or structural constraints, phylogenetic
trees do not encompass the amount of data available and
required to characterize complex networks or detailed trans-
mission patterns[4, 15, 11]. In contrast, graph based ap-
proaches may bypass many of the computational and struc-
tural restrictions associated with phylogenetic trees and may
be used to investigate very large and comprehensive data
sets.

Here, we build a disease network graph from a large set of
subspecies, Influenza A virus whole genomic sequences. We
utilize the majority of Influenza A virus whole genome sets
which are publicly available from the Influenza Virus Re-
source database[19]. In this graph, each sequence is viewed
as a node, and edges are drawn between nodes which ex-
hibit high degrees of similarity using a string comparison
method. The goal here is not to approximate the compre-
hensive evolutionary history among a group of sequences,
but to more simply develop a graph representation with se-
quences as nodes and strong degrees of similarity as edges.
Because each node is associated with a geographic location,
such a representation may provide an approximation of the
transmission route of a disease through a series of geograph-
ically distributed hosts. The underlying assumption is that
a strong degree of sequence similarity indicates the best es-
timate of transmission between hosts from which each se-
quence was collected.

We base our sequence similarity measures on a string com-
parison algorithm where the strings are whole genomic nu-
cleotide sequences. Whole sequence similarity scores based
on string comparison algorithms are particularly attractive
in the case for the analysis of RNA viruses such as In-
fluenza A virus, which mutate rapidly [15, 5] and are rel-
atively small. Small sequence sizes reduce computation re-
quirements. Furthermore, high mutation rates create a po-
tentially traceable micro-evolutionary pathway through se-
quence comparisons [8].

Once a graph is generated from similarity measures, it opens
up a number of possible analytical approaches based on
graph theory and statistics. As the graph represents a pos-
sible disease transmission network, questions pertinent to
disease transmission may be addressed with simple existing
methods. For example, transmission across global regions
or across host types may be examined with mixing pattern
analysis [12] to study global circulation routes and inter-
species transmission (‘host jumping’).

In this report we develop a method to build and exam-
ine a network based on sequence similarity of influenza A
genomes. We examined mixing patterns across several ge-
ographic regions of interest and across four hosts groups
including wild avian, domestic avian, human, and swine.
These analyses address the current need for a more detailed
understanding of global influenza circulation [15, 11] and
of circulation in Southeast Asia [16]. Southeast Asia has
been suggested as a global seeding network producing each
year’s seasonal epidemic strains in more temperate global

regions. The first documented cases of the ‘bird flu’, H5N1
also originated in Southeast Asia where it crossed the species
border between human and avian hosts [3]. Recent human
infections with avian subtypes H7N7 and H9N2 have been
identified as well in China [7].

2. METHODS
2.1 Genomic Sequence Data
We obtained genomic sequences of influenza isolates from
the Influenza Virus Resource [19]. Data included 4,228 com-
plete influenza A genomes collected between 1999-2009.
When acquired from the database, each sequence is anno-
tated with information describing host species, collection lo-
cation, collection date, subtype, and other types of ancillary
information. For descriptors of region (country of origin)
and host type, we derive class types and assigned samples
one class type for each descriptor. All of the represented host
types included Human, Domestic Avian, Wild Avian, Swine,
Mammal, Environment, or Unknown. The Domestic Avian
class included all viral samples from hosts labeled chicken,
turkey, duck, or goose. Samples from hosts labeled by wild
bird species, such as “mallard”, or “Egret” were considered
Wild Avian. The Mammal class was broad and included
all non-human and non-swine mammals, including species
such as horse, civet and tiger. The dataset also included 61
different subtypes and 58 countries.

Influenza genomes exist in eight discontinuous segments un-
like the more common contiguous stranded model of genetic
material found in larger organisms. Sequence data were sep-
arated into eight groups associated to the genomic segments,
and each group was examined individually. Individual re-
sults were combined to derive overall network relationships.

2.2 Sequence Comparison Method
Sequence comparisons comprise the first major computa-
tional step in the methodology we present here. Given a set
of genomic sequences of size N , an N×N matrix containing
distance scores is computed between all sequence pairs. In
this report, N = 4, 228, thus our choice of sequence compar-
ison method was dictated by both computational speed and
accuracy.

We used a k -mer based comparative algorithm which runs
in linear time with respect to sequence lengths. A k -mer
is a nucleotide word of length k, where k is an integer and
k > 0. Due to the small alphabet size of all genomic se-
quences {a, c, g, t}, there exist only 4k possible nucleotide
words for any integer value assigned to k. A genomic se-
quence need only be parsed once to determine the number
of times that each possible k -mer appears. Methods for
comparing two sequences based on k -mer occurrences are
generally performed on a word by word basis. Thus, the dif-
ference between 2-mer profiles of sequences A and B is the
sum of differences between occurrences of all possible 2-mers
{aa, ..., tt} in each profile.

2.2.1 d2k Distance
The sequence comparison method that we utilize here is a
derivation of the k -mer based, d2k (‘d squared’) distance de-
scribed in [18]. The d2k distance between two sequences is the
sum of squared differences between the 4k pairwise k -mer



counts in each sequence. Count based k -mer comparisons
reflect differences in both sequence length and composition
among different infA strains.

Computing the d2k distance between two sequences (A and
B) is presented in [18] as

d2k(A,B) =

4k∑
i=w

pw (cw (A)− cw (B))2 (1)

where k is a fixed integer word length, cw(A) and cw(B) in-
dicate counts of k -merw in sequences A and B, respectively,
and pw is a weight associated with each k -mer.

2.2.2 Presence/Absence Weighting
In previous work [1], we compared influenza genomic se-
quences using observed to expected ratios of k -mer frequen-
cies [14], and restricted the computation of distance to those
k -mers that exhibited variation of presence and/or absence
across sequences. These were k -mers present in at least one
sequence and absent in at least one other sequence in the
data set. We found that this method, when restricted to
the subset of k -mers exhibiting presence/absence variation,
classified sequences from the same epidemic as most similar.
Lineage specific occurrences k -mers may be a reflection of in-
herited point mutations which cause measurable differences
in k -mer counts and their presence or absence.

In this analysis, we also restrict our comparison to a sub-
set of k-mers. A simple weighting scheme was derived in
which weights are used to limit comparisons to k-mers which
exhibit presence/absence variation among our entire set of
sequences. Any k-mer that is absent in one sequence and
present in one sequence is assigned a weight of value 1; all
other k-mers are assigned a weight of 0. Then if pw repre-
sents the weight for word w and cw,i the count of word w in
sequence i, i ∈ N , then pw in Equation 1 is given as

pw =

 1 if
∑N

i cw,i > 0 and
∏N

i cw,i = 0

0 else
(2)

2.2.3 Accuracy
We examined the performance of the d2k comparison mea-
sure by comparisons with ClustalW, a standard multiple
sequence alignment tool [6]. In small randomly selected se-
quence sets, we determined which sequence pairs were the
most similar using the d2k measure, and using the maximal
ClustalW pairwise alignment scores.

Ten iterations of comparisons using randomly selected sets
of 20 sequences we conducted per flu segment. Any nearest
neighbor sequence pair found using d2k distances which was
also a nearest neighbor pair using the ClustalW alignment
scores was considered an accurate pair. Conversely, any
nearest neighbor pair formed using d2k distances which was
not formed using ClustalW was considered inaccurate. Ac-
curacy scores were computed as the ratio of accurate verses
inaccurate pairs. These scores were averaged over each iter-
ation for each segment.

We also examined the accuracy scores to select the best in-
teger value for k. Accuracy scores were computed for values

of k ranging from 4 to 10. Our goal was to develop a fast
and accurate sequence comparison method. Average accu-
racy was computed as the average score across the eight
segments, as reported in Table 1.

Table 1: Average accuracy scores

k s1 s2 s3 s4 s5 s6 s7 s8 ave
4 0.79 0.89 0.78 0.80 0.84 0.84 0.82 0.90 0.83
5 0.89 0.97 0.91 0.90 0.97 0.93 0.94 0.96 0.93
6 0.97 0.97 0.93 0.90 0.98 0.95 0.94 0.96 0.95
7 0.98 0.98 0.95 0.90 0.98 0.93 0.96 0.95 0.95
8 0.97 0.98 0.96 0.90 0.98 0.92 0.95 0.95 0.95
9 0.98 0.97 0.95 0.91 0.98 0.92 0.95 0.96 0.95
10 0.98 0.97 0.94 0.90 0.98 0.91 0.95 0.97 0.95

As seen in Table 1, the highest overall accuracy measure
achieved with varied word lengths was 95%. This value was
found in comparisons where k = 6, and was not improved
with increasing word lengths. Using this value for k, accu-
racy scores among individual segments ranged from 90% to
97%. For this reason, we computed distance measures using
k -mers of length six. Using this value of k, the computation
time per segment was approximately 15 minutes.

2.3 Edge Graphs
From each of the N × N distance matrices computed for
each flu segment, we derived a N × N edge graph Gseg,
where seg = 1, ..., 8. For each segments sequence in a given
sample, sseg,i, i ∈ N , there exists at least one nearest neigh-
bor, sseg,j , j ∈ N , j 6= i such that the distance score com-
puted between sequences sseg,i and sseg,j is the minimal,
non-diagonal entry in the ith row of the N × N distance
matrix computed for segment seg. This distance score was
considered minimal so that any other sequence sseg,k, k ∈ N ,
k /∈ {i, j} which also showed this distance score from sseg,i
was also considered a nearest neighbor. Edges were added
between each sequence and its nearest neighbor(s) in edge
graphs by setting all nearest neighbor pair entries to 1.

As the notion of similarity is not symmetric, these edges
were not bi-directional. Edges here represented transmission
events between sequence hosts, and as we did not approxi-
mate the direction of transmission, we viewed the edges as
undirected. Thus upon adding an edge to position (i, j), an
edge was also added at position (j, i).

Table 2 displays the average degree for each segment specific
graph. The segments with the lowest degrees were 1, 4, 6
while the highest degrees were found for segments 7 and 8.
A lower degree indicates fewer overall nearest neighbor pairs
and a higher level of sequence variability.

A summed N × N graph G was then created by summing
all pairwise edges across all segments:

∀i, j ∈ N, Gi,j =

8∑
seg=1

Gseg,i,j (3)

This graph G contained the sum of edges between all sam-
ples, where edges represented segment specific links. Thus,
the maximum number of edges recorded at any position (i, j)
was 8. A score of 8 at position (i, j) would indicate that



Table 2: Average degree per segment

segment average degree
1 3.66
2 7.72
3 5.68
4 3.35
5 6.2
6 4.44
7 9.88
8 9.0

sample j was a nearest neighbor to i in all segment specific
graphs 1 through 8.

It is of interest to note that a number of sequence pairs ex-
hibited a bi-directional similarity, with the a nearest neigh-
bor of i = j and a nearest neighbor of j = i. These sequence
pairs demonstrate a much stronger notion of similarity than
pairs with only uni-directional minimal distance, and their
connection was thus designated by two edges in the (i, j)
and (j, i) entry of matrix G. The number of total edges was
computed by summing the lower diagonal entries of G.

3. NETWORK CHARACTERISTICS
3.1 Mixing Patterns
Quantifying the mixing patterns of a network is performed
by examining edge distributions among different node types
of interest. If edges are approximations of transmission
among individual hosts, then examining edges across region-
ally distributed host types may offer insight into more gener-
alized global transmission through larger host populations.
Such transmission patterns may be discovered using mix-
ing patterns, which are described in detail in [12]. Mixing
patterns describe the frequency of edges between nodes of
different types in a network.

Here we examined mixing patterns between the host classes
wild avian, domestic avian, human, and swine and across
globally distributed regions and regions specific to South-
east Asia. Global regions included North America, South
America, Africa, Europe, Asia, Oceania, and the Middle
East. Regions within Southeast Asia included China, In-
donesia, Vietnam, Thailand, Laos and Malaysia/Singapore.
These analyses were accomplished by deriving two-way mix-
ing matrices based on regional and host type classes. Thus,
each sample collected from a region of interest and a host
type of interest was considered as part of a group described
by region and host type. Note that not all 4,228 samples of
our dataset were members of these groups. All samples were
used in generating over all network characteristics such as
the total number or edges and the total number of nodes,
but mixing patterns described in the following were only
examined between select groups.

For studying mixing patterns among T node types, a T × T
mixing matrix E is used to measure edge numbers between
different types. This provides a reduction in dimensionality
as there are generally less node types than nodes in a net-
work. This mixing matrix E is then normalized by dividing
each entry by the total number of undirected edges in the
summed graph G(eq.3). Thus, each matrix entry contains

the percentage of the total number of edges in the overall
network which are found between nodes of each type being
examined.

For each node type, the conditional probability that a node
of one type is connected to a node of a different or similar
type may then be computed [13]. Assume types a, b, then
given a node of type a, the probability that it is directly con-
nected to a node of type b is written as P (b|a). To compute
P (b|a) ∀b ∈ T from E, each entry in the ath row is divided
by the total percentage of edges connecting to nodes of type
a in the overall network (eg.3).

Because data were not evenly distributed among groups,
we required a method for examining bias among edge types
which took this clustered distribution of sample types in to
account. We compared the observed occurrence of inter-type
edges to what would be expected in a network of random
edge formation. We considered the ratio pab/papb, where
pab represents the frequency of edges between types a and b,
pa and pb represent individual frequencies of each node type
in the entire network. If pab is notably greater than papb,
a bias may be indicated. Because edges were undirected in
this analysis, there was no assumed order of node pairs and
pab = pba.

3.1.1 Global/Host Mixing Patterns
Table 3 lists conditional edge formation between different
sample types based on their global region and host type. Ta-
ble 3 indicates a notable amount of mixing across host types.
For example, in the North American region, the P(Wild
Avian|Domestic Avian)=34%. Similarly, in the North Amer-
ican samples, P(Domestic Avian|Domestic Avian)=50%.
This indicates that given any sequence sampled from a do-
mestic avian species in North America, the probability that
that sequence forms and edge with another domestic avian
sequence is 50%. The probability that the sequence forms
an edge with a wild avian sequence is 34%.

Transmission across global regions as well as host types is
represented in Table 3 as well. P(Asia, Domestic Avian|
South America, Domestic Avian) is equal to 1.00. This
means that all samples collected from domestic avian species
in South America formed and edge with domestic avian sam-
ples from Asia.

Table 4 shows a list of inter-group mixing patterns with
observed/expected edge frequencies greater than 1. Ra-
tios greater than 1 are of interest because they indicate a
probability of mixing much greater than expected by chance
alone. For example, mixing between human South American
strains and human European strains occurs at a rate more
than three times expected in a randomly generated graph.
Similarly, the wild and domestic avian strains within Eu-
rope are five times more likely to be mixing than by chance
alone. Most of the edge relationships in this table are be-
tween avian and avian or human and human node types
which differ in their regions of origin. The exception to this
is the higher than expected edge frequency between North
American Wild Avian and North American, Human.

3.1.2 Southeast Asian/Host Mixing Patterns



Table 3: Global Regional/Host Mixing
P (b|a) values for 2-way mixing among host types and global regions. Only relations with values greater than 0.001 are shown.
Host type abbreviations, WA = Wild Avian, H = Human, DA = Domestics Avian, S = Swine. Region abbreviations, NA =
North America, SA = South America, AF = Africa, EU = Europe, O = Oceania, ME = Middle East

b
NA SA AF EU AS O ME

WA H DA S H DA WA DA WA H DA S WA H DA S WA H DA WA H DA

a

NA

WA 0.40 0.532 0.002

H 0.894 0.045 0.008 0.048 0.004

DA 0.34 0.007 0.5 0.014

S 0.0513 0.065 0.787 0.004 0.012 0.065

SA
H 0.646 0.217 0.016 0.12

DA 1.00

AF
WA 0.25 0.187 0.064 0.187 0.187 0.063 0.063

DA 0.947 0.02 0.007 0.002 0.015 0.01

EU

WA 0.002 0.005 0.005 0.021 0.349 0.002 0.502 0.015 0.053 0.002 0.029

H 0.585 0.002 0.08 0.079 0.004 0.24 0.009

DA 0.002 0.002 0.002 0.174 0.008 0.739 0.011 0.044 0.001 0.003 0.002

S 0.961 0.039

AS

WA 0.005 0.009 0.333 0.022 0.6 0.013 0.002

H 0.444 0.077 0.031 0.002 0.435 0.005 0.007

DA 0.002 0.001 0.004 0.009 0.145 0.016 0.773 0.02 0.001 0.001 0.002

S 0.007 0.003 0.014 0.006 0.017 0.002 0.108 0.727 0.102 0.001

O

WA 0.047 0.209 0.721

H 0.019 0.002 0.003 0.003 0.972

DA 0.04 0.013 0.0132 0.066 0.013 0.132 0.026 0.408 0.289

ME

WA 1.000

S 0.825 0.079 0.048 0.016 0.032

H 0.006 0.017 0.003 0.003 0.019 0.015 0.939

Table 4: Global/Host Bias. Edge bias between types, only values > 1 are listed, (numbers) indicate number of samples of
each type.

type a type b pab/papb
Oceania, Domestic Avian ( 3 ) Oceania, Wild Avian ( 5 ) 87.50

Middle East, Wild Avian ( 1 ) Middle East, Domestic Avian ( 54 ) 11.80

Europe, Human ( 29 ) Asia, Human ( 232 ) 5.59

Europea, Wild Avian ( 30 ) Europe, Domestic Avian ( 82 ) 5.04

South America, Human ( 125 ) Europe, Human ( 29 ) 3.47

South America, Human ( 125 ) Asia, Human ( 232 ) 3.19

North America, Human ( 1609 ) South America, Human ( 125 ) 2.47

Africa, Wild Avian ( 2 ) Europe, Wild Avian ( 30 ) 2.12

North America, Human ( 1609 ) Europe, Human ( 29 ) 1.97

South America, Domestic Avian ( 1 ) Asia, Domestic Avian ( 383 ) 1.88

Asia, Wild Avian ( 73 ) Asia, Domestic Avian ( 383 ) 1.74

North America, Wild Avian ( 218 ) North America, Human ( 312 ) 1.60

North America, Human ( 1609 ) Asia, Human ( 232 ) 1.43



Table 5: Southeast Asian Regional/Host Mixing
P (b|a) values for 2-way mixing among host types and Southeast Asian region. Only relations with values greater than 0.001 are
shown. Host type abbreviations, WA = Wild Avian, H = Human, DA = Domestics Avian, S = Swine. Region abbreviations,
CH = China, IN = Indonesia, VI = Vietnam, TH = Thailand, LA = Laos, ML/S = Malaysia and Singapore.

b
CH IN VI TH LA ML/S

WA H DA S WA H DA S WA H DA S WA H DA S DA H DA

a

CH

WA 0.08 0.015 0.72 0.084 0.015 0.007

H 0.209 0.002 0.002 0.003

DA 0.077 0.011 0.732 0.054 0.007 0.001 0.002

S 0.02 0.121 0.619 0.016 0.002

IN

WA 0.111 0.889

H 0.014 0.002 0.971 0.013

DA 0.002 0.026 0.026 0.947

S 0.241 0.759

VI

WA 0.011 0.011 0.079 0.023 0.854 0.023

H 0.077 0.154 0.154 0.154 0.077 0.385

DA 0.003 0.003 0.013 0.015 0.053 0.001 0.894 0.001 0.006 0.004

S 0.054 0.243 0.081 0.622

TH

WA 0.004 0.004 0.017 0.358 0.036 0.581

H 0.076 0.004 0.004 0.011 0.072 0.166 0.181 0.011

DA 0.001 0.006 0.01 0.028 0.374 0.059 0.522

S 0.011 0.947

LA DA 0.007 0.007 0.01 0.007 0.017 0.921

ML/S
H 0.021 0.002 0.089

DA 0.444

Table 6: Southeast Asian Edge Bias
Edge bias between types, only values > 1 are listed, (numbers) indicate number of samples of each type.

type a type b pab/papb
Indonesia, Swine ( 2 ) Vietnam, Wild Avian ( 4 ) 37.10

Indonesia, Wild Avian ( 1 ) Indonesia, Domestic Avian ( 23 ) 29.50

Thailand, Wild Avian ( 18 ) Thailand, Domestic Avian ( 31 ) 23.20

Vietnam, Wild Avian ( 4 ) Vietnam, Human ( 1 ) 21.20

Vietnam, Swine ( 2 ) Thailand, Domestic Avian ( 31 ) 15.70

Vietnam, Wild Avian ( 4 ) Vietnam, Domestic Avian ( 67 ) 12.00

Vietnam, Swine ( 2 ) Thailand, Wild Avian ( 18 ) 10.60

Indonesia, Swine ( 2 ) Vietnam, Domestic Avian ( 67 ) 6.95

Vietnam, Human ( 1 ) Thailand, Domestic Avian ( 31 ) 6.83

Thailand, Human ( 12 ) Thailand, Domestic Avian ( 31 ) 5.47

Vietnam, Swine ( 2 ) Thailand, Human ( 12 ) 5.29

Vietnam, Human ( 1 ) Thailand, Wild Avian ( 18 ) 4.71

China, Wild Avian ( 13 ) China, Domestic Avian ( 143 ) 4.51

Thailand, Wild Avian ( 18 ) Thailand, Human ( 12 ) 3.73

Vietnam, Human ( 1 ) Thailand, Human ( 12 ) 3.53

Indonesia, Wild Avian ( 1 ) Indonesia, Human ( 44 ) 1.93

China, Wild Avian ( 13 ) China, Swine ( 41 ) 1.83

China, Human ( 71 ) Malaysia/Singapore, Human ( 11 ) 1.63

Vietnam, Wild Avian ( 4 ) Laos, Domestic Avian ( 16 ) 1.32

Vietnam, Human ( 1 ) Vietnam, Domestic Avian ( 67 ) 1.26

China, Domestic Avian ( 143 ) Malaysia/Singapore, Domestic Avian ( 1 ) 1.18



Table 5 shows conditional edge type probabilities among dif-
ferent host types only within the region of Southeast Asia.
These results are similar to those for globally distributed re-
gions in that notable levels of edge formation among different
types and localities are found. For example, P(Indonesia,
Domestic Avian| Indonesia, Wild Avian) = 90% and
P(Thailand, Domestic Avian| Vietnam, Swine) = 62%.

Notable observed to expected frequency ratios of edges
among different types are listed in Table 6. Unlike the ma-
jority of edges being found among similar host types in
global regions (Table 3), this table lists a higher number
of inter-host type edges. The highest scoring edge type in
this table is between Indonesia Swine and Vietnamese Wild
Avian samples. This may reflect a relatively high amount of
host jumping in this region.

4. MAXIMAL CLIQUES
We also examined the connectivity structure of the network
graph to study inter- and intra-group transmission by look-
ing at the maximal cliques formed by edges. A maximal
clique is a maximal subset of vertices such that every pair
of vertices is connected by an edge. In the flu transmission
graph, a maximal clique represented a set of sequences that
were all of minimal distance to one another. Thus a maxi-
mal clique of sequences may represent a very closely related
set.

Although maximal cliques were relatively small size in our
network, ranging from 2 to 58 vertices, a number of mix-
ing patterns were evident. Regional mixing patterns as de-
scribed by the cliques were limited to human strains. More
specifically, a number of maximal cliques exhibited strong
inter-group mixing of human strains collected in North Amer-
ica, South America, and Asia. These were the only inter-
regional transmission patterns reflected by the maximal
cliques. Additional maximal cliques presented very strong
intra-regional connections within each of these three regions.
Higher than expected levels of transmission between humans
across these regions were also reflected in Table 3.

5. DISTANCE THRESHOLDS
One of our goals in this research is to develop a more biolog-
ically meaningful notion of transmission by incorporating
distance score thresholds. The minimal k -mer count of a
sequence across all others may be quite large, and in such
cases, it may be more meaningful to assign no neighbors,
and thus no transmission, from that sequence. For example,
the mean pairwise distance of segment 1 data was 2, 260,
and its mean intra-group (Global Region/Host) pairwise dis-
tance was 1, 290. Nearest-neighbor distances ranged from 0
to 1, 848, with mean of 59.

To establish a more stringent notion of similarity (trans-
mission), a threshold can easily be instated in the nearest-
neighbor definition: the nearest neighbor of node ni is njonly
if the distance between ni and nj is minimal and less than
distance threshold d. We are examining the effects of differ-
ent values of d with larger complex datasets and randomly
generated data.

6. CONCLUSION
The tools and methods described here provide a computa-
tionally efficient and robust method to derive a graph from
similarity scores among whole-genome sequences. Sequence
similarity is computed in linear time, which is optimal in
cases of very large datasets. A graph is easily generated
from these comparisons, and then examined with simple
graph theoretic approaches. Many graph based approaches
are amenable to analysis of very large data sets.

In our example, graph based analysis enabled us to exam-
ine regional influenza transmission patterns among differ-
ent host types. We considered transmission among host
types including wild avian, human, domestic avian, and
swine with respect to global regions and with respect to
localities in Southeast Asia. We detected a considerable
amount of transmission across host types and regions in both
cases. Host jumping in Southeast Asia seemed more preva-
lent when compared to global results. However, this may be
an artifact of sampling bias and/or the fact that we did not
examine host specific transmission within any other local-
ized regions.

The graph representation allowed us to determine condi-
tional probabilities of edges forming among different node
types, as well as look at stronger notions of connectivity us-
ing the maximal clique approach. Quantifying these types
of connections may form the basis of predictive transmis-
sion models. In conjunction with adequate sampling, these
methods may prove a useful tool in tracking and managing
current and future disease outbreaks of many types.
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