
C A V E M A ND E R: C reating 3-D Command-and-Control
Scenarios for the C A V E Automatic V irtual Environment

 Muhanna1
Muhanna

Sermsak Buntha2 Sohei Okamoto1 Michael J.1
McMahon, Jr.

Sergiu Dascalu1 Frederick C.1
Harris, Jr.

1 Department of Computer Science and Engineering

University of Nevada, Reno, USA
{muhanna, okamoto, mcmahon, dascalus,

fredh}@cse.unr.edu

2 Department of Weapons and Tactics
Royal Thai Navy Academy, Thailand

serm34@gmail.com

Abstract — Command-and-control training scenarios represent
interactive exercises in efficient and timely decision making.
Most often, maximizing the realism and impact of these
scenarios requires the commanders be presented with as much
relevant information as possible. While 2-D media are quite
capable of presenting scenario information, 3-D media are able
to present and relate that information in greater quantity and
more meaningfully. Towards this end, we have created
C A V E M A ND E R – a framework, API , and set of tools for
developing immersive 3-D command-and-control scenarios in
the Cave Automatic V irtual Environment (C A V E). This paper
presents the main features of C A V E M A ND E R , focusing on the
application of a software engineering process to develop
artifacts (i.e., simulation scenarios) under our design-build-
execute approach. This development sequence is illustrated
using software engineering diagrams, a graphical user
interface wizard developed as a part of C A V E M A ND E R to
simplify use, and actual generated artifact file contents.

Keywords — CAV E ; CAV E MAND ER; Command-and-Control;
GUI Wizard; Software Engineering; Visual Design; VR.

I . IN T R O DU C T I O N
Command-and-control – or C&C – is an interactive

exercise in which commanders must interpret all information
for a given scenario and, based upon that information, reach
reasonable conclusions in an efficient, effective, and timely
manner [1]. Computers are increasingly taking on a central
role in these scenarios, replacing large tactical glass boards
or vertical paper charts to more effectively represent and
convey the situation to the commander [2]. 2-D media (e.g.
wall projectors and/or monitors), however, remain the
predominant conveyances of scenario information [3] [4].
These computer-assisted representations of information still
suffer from some inherent limitations, including: difficulties
understanding, assessing, and relating geometrical
parameters, delays in interpreting various data visualizations,
and reduced awareness of the C&C situations [5] [3]. To
improve C&C scenarios and address these issues, the Cave
Automatic Virtual Environment (CAVE) was selected to
represent the scenario information [1] – the advantages of
using a third dimension in data visualization [6], combined
with the rewards introduced by the immersive element of
virtual environments [7], make the CAVE an excellent
choice for representing C&C scenario information.

Several software tools and libraries are currently
available to create virtual reality applications. CAVELib [8],
for example, is a cross-platform application programming
interface (API), used to develop virtual reality applications
for various systems, including the CAVE. Originally
developed at the University of Illinois in Chicago, CAVELib
is now commercially owned by Mechdyne Corporation.

FreeVR [9] is an API that is used, primarily, to develop
CAVE-based applications. This system provides an interface
to utilize multiple devices available in virtual reality
environments. VR Juggler [10] is a virtual reality application
API that supports the execution of a virtual reality
application on any display device using various input devices
without the need to change or recompile the source code.
CoVE [11] is a cross-platform toolkit built on Open Scene
Graph that supports multi-user collaboration and multi-
tasking efforts.

Quest3D [12] is a real-time 3-D engine and development
platform that is intended to be used for developing software,
3-D web pages, and virtual reality simulators through visual
interfaces. Equalizer [13] is a cross-platform toolkit designed
to optimize parallel rendering while remaining sufficiently
scalable to execute on various system configurations.
Equalizer allows an application to dynamically adjust
configuration at runtime, adapting to multiple processors or
graphics cards, or utilizing computing cluster resources
without any modification to the core code. Avango [14] is a
scene graph based framework for developing virtual reality
applications, where the node functionality is extended to
provide additional dataflow and network communication.

CaveUT [15] is a modification of the Unreal Tournament
2004 game engine, adapted to run on CAVE-like systems.
Unreal Tournament 2004 is a network-based game engine
wherein the server maintains the master copy of the virtual
world and each user is considered a client connected to the
server, each with a different view. Each user’s view is based
on the position of their head, allowing realistic view shifting.
Utilization of the game engine as the basis of the virtual
world allows the production and rendering of realistic
models of avatars and objects in the scene, as well as real-
time interaction amongst users in the virtual world.

The above systems, as well as others [16], naturally have
both common and distinguishing features; each focuses on
developing virtual reality applications, yet each adds its own
unique set of features and functionality. CAVEMANDER is
similar to these systems in that it provides tools and
functionality to create virtual environment applications.
However, compared with other approaches (mostly focused
on offering comprehensive API support), CAVEMANDER
also applies a software engineering methodology and
provides a set of tools to create a structured, easily extensible
development system. Furthermore, besides a specialized API
built on top of FreeVR [9], CAVEMANDER’s set of
available resources include a graphical user interface wizard,
which simplifies the creation of C&C scenarios that enable
immersion in the virtual environment of the CAVE.

The remainder of the paper is organized as follows:
Section 2 presents the motivations behind CAVEMANDER,
including a brief overview of its main components. Section 3
describes, in detail, the CAVEMANDER software
development methodology. Section 4 demonstrates the
system using the included graphical wizard interface to
quickly create a C&C scenario. Section 5 indicates several
potential directions for future work, concluding with a
summary of developments in the CAVEMANDER system.

I I . C A V E M A ND E R
CAVEMANDER has been developed to achieve several

goals. Firstly, CAVEMANDER is targeted toward advancing
the state-of-art in the development of C&C simulations by
utilizing the CAVE – one of the most modern environments
for experiencing and integrating new software engineering
and human-computer interaction solutions. CAVE and
associated technologies have been, and continue to be, in a
state of rapid research and development [17]. Second,
CAVEMANDER is intended to fill the gap between software
development methods and software designed specifically to
build CAVE-based applications. Third, CAVEMANDER
seeks to contribute to the limited pool of CAVE-supporting
resources, adding tools and reusable code to advance CAVE
software development efforts worldwide. Lastly,
CAVEMANDER provides a structured methodology and
toolset-based foundation for future research and development
of C&C simulation scenarios using the CAVE.

The CAVEMANDER approach consists primarily of a
systematic software engineering method for a specialized
software platform that includes a set of software resources
[1]. The following sections focus on CAVEMANDER’s
software architecture, scenario development methodology,
software artifacts, and GUI-based wizard.

I I I . M E T H O D A C T I V IT I ES A ND A R T I F A C TS
An overview of the activities involved in using

CAVEMANDER is presented in Figure 1 in the form of a
UML activity diagram [18], indicating both activities and the
artifacts generated by those activities. The activity flow
illustrates the steps required to generate a scenario using
CAVEMANDER; the artifacts generated and passed
amongst each step show the flow of those objects [19]. The

four primary activities are: 1) scene definition, 2) simulation
build up, 3) scenario creation, and 4) scenario execution.

A scene is a collection of mobile and/or fixed unit types
(e.g. tanks, supply bases, vehicles) and environmental factors
(e.g. visibility and weather) related to a C&C scenario. A
scene is defined by specifying the units and/or environmental
factors involved, as well as any parameters or commands
related to them. A simulation adds the software
implementation of items involved in a scene. Specifically, it
is a set of classes associated with the unit types included in a
scene, such as the ClassTank or the ClassSupplyBase.
Finally, a scenario is a customized instance of a simulation.
Here, the concrete types provided by the simulation are
combined with specific values that are applied to the
environment and units. In other words, instances of the unit
types, along with specific parameters and environment
variables, are defined to create the scenario. For example, a
specific scenario might include three tanks and two supply
units, each having specific parameters, all working in an
environment in which the visibility is no more than five
miles.

Figure 1. Overview of CAVEMANDER main activities and artifacts

In terms of the software development process, Scene
Definition is a high-level design activity; Simulation Build-
Up, however, is an implementation / coding, activity. In this
step, existing/reusable code is integrated with new,
customized code, to produce an executable software
package: SimScene. Scenario C reation and Execution,
however, are considered both design artifacts (in terms of
describing the C&C situation) and implementation artifacts
(as it executes in the CAVE).

A. Scene Defintion
Scene Definition is the first step in creating an

executable scenario application. Users must either utilize an
existing scene (optionally modifying it) or create a new
scene. The scene definition activity is composed of three
sub-activities: Scene Concept Definition, Unit
Specification, and Environment Specification. Scene
Concept Definition involves providing a text description of
the scene (e.g. “A land C&C simulation” or “Naval
operations”).

The remaining two activities can be carried out in-
parallel. Unit Specification entails defining the available
models, properties, and commands for each unit type.
Similarly, Environment Specification embodies the
declaration of environmental factors and their properties. The
result of this activity is the creation of an XML scene file,
which contains the description of all elements that make up
the scene (i.e. unit types and environmental factors).

B. Simulation Build-Up
During Simulation Build-Up, executable code is

generated for the scenario - this code is contained in the
package SimScene. As with the Scene Definition step, users
must either use an existing simulation code package
available from the CAVEMANDER system (optionally
modifying it) or create a new one. Both cases involve code
generation, requiring knowledge of a programming language.

Simulation Build-Up is divided into six sub-activities.
First, an XML scene file – generated in the previous step –
must be selected. Second, the classes needed to implement
the unit types in the scene are either written or retrieved from
the exiting CAVEMANDER library. Third, the classes
needed to implement the environmental factors of the scene
are either written or retrieved from the existing
CAVEMANDER library. Fourth, the programmer includes
all these implementation classes in the main simulation
package: SimScene. Fifth, the programmer provides an
update function for each time-step of the simulation. Finally,
the code created in this activity is compiled and linked to the
CAVEMANDER library, resulting in an executable file
consisting of all elements that make up the scene.

C . Scenario Creation
Scenario C reation is the specification of the initial states

and property values of the units and environmental properties
of a specific scenario. As with the prior steps, users must
either use an existing scenario (optionally modifying it) or
create a new one. First, the concept of the scenario is
specified as a text string (e.g. “Transporting supplies to front
line units”). Second, the individual units in the scenario (not

simply their types), their values (IDs), and their initial
locations are specified. Third, the initial environment
property values are specified. Fourth, the scenario is loaded
on the client (CAVE) for later execution. The result of this
step is an XML file containing the necessary property
settings for all elements that make up the scenario.

D . Scenario Execution
In this activity, the resources required or generated for

the simulation are loaded on the server and the client
(CAVE) for execution. The user has the option to slow
down, speed up, pause, resume, and stop the simulation.
Support for a playback feature that allows reversing the
progression of a scenario is included in the design of
CAVEMANDER, however, the implementation of this
feature is part of our future work plans.

I V . USE R IN T E R F A C E W I Z A RD
ServGUI – the CAVEMANDER Wizard – is intended for

novice users [17]. Using this wizard, ServGUI enables
graphical scene definition, scenario creation, and scenario
execution. In other words, ServGUI provides a visual tool
that gives the user the ability to create software artifacts
without the need to write code.

The user can interact with the ServGUI wizard by
creating a scene or a scenario and running a simulation
scene, playback, or communication hub. Figure 2 shows the
type tab of the ServGUI wizard during the creation of a
military scene. Here, the user is a adding a Hummer vehicle
to the scene. They will then be able to define several
properties and commands for the Hummer using the prop
and cmd tabs, respectively. Figure 3 shows the user adding
an attack command to the hummer using the cmd tab. Using
the env tab, the user is able to provide several environmental
factors for the scene.

Figure 2. The type tab of the ServGUI wizard during the Scene Defnition

activity

Once the scene is defined, it is saved as an XML file for use
in simulation building, as shown in Figure 4.

Figure 3. The cmd tab of the ServGUI wizard during the Scene Definition

activity

Figure 4. Example of a scene artifact (XML file)from the Scene

Definition activity

In the simulation build up software activity, the user
assigns specific properties to each element of the scene.
Figure 5 depicts the unit tab of the ServGUI wizard while the
user is applying a different value for each of the Hummer
properties. The specified values will be added to the
simulation tree, which can be easily visualized by the user in
the right-hand side of the user interface tab. Using this
activity and the supported GUI, the user is also able to

provide different values for environmental factors (e.g.
visibility, temperature, wind speed, etc.).

Figure 5. The unit tab of the ServGUI wizard during the Simulation

Build-Up activity

In addition, the ServGUI wizard provides a tool that
allows the user to visualize and interact with a simulation
scenario during execution. This can be seen in Figure 6
where the user loads a scenario, executes it, and observes the
values of the simulation elements and commands.

Figure 6. CAVEMANDER GUI for running scenarios

Figure 7 and Figure 8 show an example of a running
simulation scenario built using CAVEMANDER. Figure 7
shows the scenario running in the FreeVR CAVE simulator
[9], whereas Figure 8 shows the running scenario inside a 4-
wall CAVE at the Desert Research Institute in Reno,
Nevada.

V . F U T UR E W O R K A ND C O N C L USI O N
CAVEMANDER has shown promising results during

development, with significant potential for use by
researchers, application developers, and other CAVE users
[1]. It introduces a state-of-the-art software engineering
approach to build C&C applications in the CAVE through

the use of a visual GUI wizard that can effectively produce
several software artifacts in the construction phase of such
applications.

We have identified several potential directions for future
work that could enhance the current CAVEMANDER
system and related tools. First, new and more complex
military and non-military simulations / application scenarios
need to be developed. Second, several additional, enhanced,
and well-tested sets of software resources should be
provided. Third, we plan to conduct usability studies with
focus on creating immersive C&C training scenarios. Finally,
we intend to further investigate other potential process and
architectural improvements. More details about the
CAVEMANDER approach, related tools and applications,
including a complete C&C scenario, can be found in [1].

Figure 7. Sample Scenario Execution State in FreeVR CAVE simulator

Figure 8. Sample Scenario Execution State in a 4-Wall CAVE

The focus of this paper has been on presenting the
process and tools provided by CAVEMANDER to design
and develop applications for the CAVE. These advances are
significant, showing (amongst other points) that a novice
user can visually design and build software artifacts that take
an essential role in the construction phase of a CAVE-based
system. In this way, CAVEMANDER takes a notable step
toward providing non-expert computer programmers the
ability to build simulation scenarios that run in the CAVE,
thus allowing them to conduct VR immersive training
sessions and research studies with reduced effort.

A C K N O W L E D G M E N T
This work was made possible through the support

provided by NASA grant #NNX07AT65A via a sub-award
and with cost share provided by the Nevada System of
Higher Education: NSHE-08-51 and NSHE-08-52.

R E F E RE N C ES
[1] Buntha, S. CAVEMANDER: An Approach and Software Platform for

Building Command-and-control Applications in CAVE, PhD
Dissertation, University of Nevada, Reno, 2009.

[2] Nacenta, M. A., Sakurai, S., Yamaguchi, T., Miki, Y., Itoh, Y.,
Kitamura, Y., Subramanian, S., and Gutwin, C. E-conic: A
Perspective-Aware Interface for Multi-Display Environments. In
Procs of the 20th Annual ACM Symp. on User Interface Software and
Technology, Newport, RI, USA, 2007, ACM, pp. 279-288.

[3] Funke, G. J., and Galster, S. M., The effects of Spatial Processing
Load and Collaboration Rechnology on Team Performance in a
Simulated C2 Environment. In ECCE '07: Proceedings of the 14th
ACM European Conference on Cognitive Ergonomics New York,
NY, USA, 2007, ACM, pp. 37-43.

[4] Dudfield, H., Macklin, C., Fearnley, R., Simpson, A., and Hall, P.,
Big is Better? Human Factors Issues of Large Screen Displays with
Military Command Teams. In Proceedings of The Second IEEE
International Conference on People in Control Human Interfaces in
Control Rooms, Cockpits and Command Centres, 2001, pp. 304-309.

[5] Mancero, G., Wong, W., and Amaldi, P., Looking but Not Seeing:
Implications for HCI. In ECCE '07: Procs. of the 14th European Conf.
on Cognitive Ergonomics, NY, USA, 2007, ACM, pp. 167-174.

[6] Sowndararajan, A., Wang, R., and Bowman, D. A., Quantifying the
Benefits of Immersion for Procedural Training. In IPT/EDT '08:
Procs. of the 2008 Workshop on Immersive Projection Technologies/
Emerging Display Technologiges, NY, USA, 2008, ACM, pp. 1-4.

[7] Schuchardt, P., and Bowman, D. A. The benefits of Immersion for
Spatial Understanding of Complex Underground CAVE Systems. In
VRST '07: Procs. of the 2007 ACM Symposium on Virtual Reality
Software & Technology, New York, USA, 2007, ACM, pp. 121-124.

[8] Mechdyne Corporation. CAVE Software, April 2010. Accessed at
http://www.mechdyne.com/integratedSolutions/software/products/CA
VELib/CAVELib.htm.

[9] Sherman, W. R. FreeVR Homepage, March 2010. Accessed at
http://www.freevr.org/.

[10] VR Juggler. The VR Juggler Suite, April 2010. Accessed at
www.vrjuggler.org.

[11] Open Tech, Inc. CoVE - An Open Source Virtual Reality Toolkit,
February 2010. Accessed at http://cove.opentechinc.com.

[12] Act-3D B.V. Quest 3D: Visual 3D Development Software, April
2010. Accessed at http://www.quest3d.com.

[13] Eilemann, S., Makhinya, M., and Stalder, C. Equalizer: Parallel
Rendering, March 2010. Accessed at www.equalizergraphics.com.

[14] Avango. Avango, April 2010. Accessed at http://www.avango.org/.
[15] Jacobson, J., Renard, M. L., Lugrin, J.-L., and Cavazza, M., The

CaveUT System: Immersive Entertainment Based on a Game Engine.
In ACE '05: Procs. of the 2005 ACM SIGCHI Intl. Conf. on
Advances in Comp. Entertainment Technology, 2005, pp. 184-187.

[16] Kreylos, O., and Billen, M. I. 3D-Visualizer: Interactive Gridded Data
Volume Visualization Software, March 2010. Accessed at
http://keckcaves.org/software/VISUALIZERCG/index.html.

[17] Buntha S., Muhanna, M., Dascalu, S., Harris, F. C., and Okamoto, S.,
A GUI Wizard for Developing Command-and-Control Applications
in CAVE, Procs. of the 4th IASTED Intl. Conf. on Human-Computer
Interaction, St. Thomas, US Virgin Islands, USA, 2009, pp. 301-308.

[18] Arlow, J., and Neustadt, I., UML and the Unified Process: Practical
Object-Oriented Analysis and Design, 2nd Edition, Addison-Wesley,
Boston, MA,USA, 2005.

[19] Sommerville, I., Software Engineering, 8th Edition, Addison-Wesley,
Boston, MA, USA, 2006.

