
Multi-Resolution Deformation in Out-of-Core Terrain Rendering

William E. Brandstetter III1,2 Joseph D. Mahsman1 Cody J. White1

Sergiu M. Dascalu1 Frederick C. Harris, Jr.1,2

Computer Science and Engr.1 CAVCaM2

University of Nevada, Reno Desert Research Institute
Reno, NV 89557 Reno, NV 89512

{brandste,mahsman,cjwhite,dascalus,Fred.Harris}@cse.unr.edu

Abstract
Large scale terrain rendering in real-time is a well
known problem across the computer graphics commu-
nity which has garnered many solutions relying on dy-
namic level of detail changes to the terrain. These
algorithms typically fit into two categories: in-core
and out-of-core. Out-of-core algorithms usually re-
quire data to remain static, thus disallowing terrain
modification whereas in-core algorithms allow for de-
formation, but usually require updating of modified
data through a data hierarchy which can potentially
be a slow process. We present a solution for out-of-
core deformable terrain rendering in real-time.
Keywords: level-of-detail (LOD), deformable

1 Introduction

Terrain rendering is a highly researched area due to
demand from the military, scientific visualization, and
computer gaming communities. Even as advances in
graphics hardware continue to be released, these ap-
plications will always push the current technology to
the limit such that a brute force method will never be
practical. Level-of-detail (LOD) rendering algorithms
are one of the applications which continue to be de-
veloped to give the best visual representation of large-
scale landscapes in real-time.

The size of datasets is one of the major problems in
terrain rendering. First, brute force rendering is not
an option when dealing with large datasets, so a LOD
approach needs to be taken. Second, a large heightmap
takes up quite a bit of memory and thus out-of-core
(outside of system memory) rendering needs to be sup-
ported. The most common approach is to extract a
good view-dependent approximation of the mesh in
real-time. This is accomplished by storing data in
a specific hierarchical structure, in which terrain can
usually be categorized. Terrain can be represented in
many different data structures such as a triangulated
irregular mesh (TIN) [7], which gives the best approx-
imation, a regular grid, which uses somewhat more

triangles to represent a surface, quadtrees [13], binary
triangle trees [5], or directed acyclic graphs [9].

Refinement may take place on a per-triangle basis, or
tessellate aggregates of polygons. Some existing algo-
rithms refine the terrain every frame, having a “split-
only” approach. Others may merge and split from pre-
vious frames’ work. Refinement can be accomplished
using a nested-error bound metric, or as in [10] solely
the viewing position. Some terrain algorithms only
support in-core (inside of system memory) [5], while
others support out-of-core rendering [9] and dynamic
addition of procedural detail [11].

Since terrain data can consume such a large mem-
ory footprint, out-of-core algorithms often limit their
datasets to be static. Large amounts of terrain data
are usually processed in a way that leaves the geom-
etry optimal for video hardware and is not expected
to change. Dealing with an out-of-core terrain system
that handles dynamic updates of its height values is
not trivial. For the most part, the areas of the mesh
that need to be rendered stay in memory, while areas
that aren’t visible can be discarded to the hard-drive
until needed. With deformable terrain, updates to the
mesh could be made outside the viewing frustum, in
which case those areas would need to be loaded, up-
dated, and cached back to disk. If a hierarchy of LOD
mesh representations were preprocessed, then updated
data may need to be propagated up through the tree
or reprocessed altogether. The idea of dealing with
large amounts of data in a dynamic terrain algorithm
can quickly become unmanageable, thus when com-
bined with the first problem, a second problem of ter-
rain rendering is presented: dynamic terrain. There-
fore, presented here is an out-of-core terrain algorithm
which supports dynamic updates to the heightfield in
real-time, allowing for deformable terrain.

2 Selected Previous Work

ROAM. ROAMing Terrain: Real-time Optimally
Adapting Meshes [5] is a well known level of detail al-



gorithm utilizing a binary triangle tree (bintree) which
stores all of the triangles for a given mesh. Instead of
dealing with a complete terrain system that performs
out-of-core paging for geometry, textures, and selec-
tion of LOD blocks, the authors focus on in-core ge-
ometry management. Given a bintree, split and merge
operations are performed using a dual priority-queue
system to achieve a LOD representation for the under-
lying data.

Top-down refinement of a terrain mesh is a sim-
ple and widely used concept where detail resolution
can be added easily by extending the leaf nodes of
the binary triangle tree with some adjustments to the
nested error-bounds. The authors state that ROAM is
suitable for dynamic terrain since the preprocessing of
error-bounds computation is localized and fast. How-
ever, the algorithm only handles data that can fit into
system memory. Reprocessing large amounts (more
than can fit into memory) of terrain data is unaccept-
able for extremely large datasets, especially if many
deformations are occurring and requiring error-bounds
to be recomputed every frame.

Geomipmapping. With advances in graphics
hardware, it is common to spend less work on the CPU
to find a “perfect” mesh and send more triangles to the
GPU, even if they aren’t needed. Since sometimes it
is faster (and easier) to render a triangle than deter-
mine if it should be culled, there is a balance between
brute force and dynamic refinement algorithms. In
2000, de Boer wrote the paper Fast Terrain Rendering
Using Geometrical MipMapping [4], a new approach
that exploits graphics hardware instead of computing
perfect tessellation on the CPU. De Boer states that
the goal is to send as many triangles to the hardware
as it can handle. Since terrain data can be represented
as a 2-dimensional heightmap, the analogy of texture
mipmapping was used and applied to geometry.

Geomipmapping makes use of a regular grid of
evenly spaced height values, that must have 2N + 1
samples on each side. A preprocessing step is per-
formed that cuts the terrain into blocks, called Ge-
oMipMaps, also with 2N + 1 vertices on each side (e.g.
a 257 × 257 regular grid may be divided into 16 × 16
blocks of 17 × 17 vertices). Vertices on the edge are
duplicated for each block where each block is given a
bounding box and is suitable to be stored in a quadtree
for quick frustum culling. Finally, a series of mipmaps
are created by simplifying the mesh which is done by
removing every other row and column vertex. The au-
thor suggests that out-of-core rendering could be sup-
ported by having only visible blocks or those near the
camera in memory while others can be discarded to
the hard disk until needed.

This algorithm is extremely easy to understand, im-
plement, and also exploits the benefits of the graphics
hardware. Adding detail is trivial by simply reversing
the simplification step described in the algorithm. De-

formation could be supported, but geomipmaps would
have to be recreated and geometrical errors recalcu-
lated, which could hinder real-time deformation. The
downside is that the number of geomipmaps increases
quadratically (N2 ) based on the size of the terrain;
therefore, possibly resulting in slow computation and
rendering.

Chunked LOD. At SIGGRAPH’02 Ulrich pre-
sented a hardware friendly algorithm based on the
concept of a chunked quadtree, which is described
in [15]. This algorithm, also referred to as Chunked
LOD, is somewhat similar to GeoMipMapping; how-
ever, it scales much better due to the quadtree struc-
ture. There is often confusion of the differences be-
tween Chunked LOD and Geomipmapping since the
algorithms are similar. However, Chunked LOD ex-
ploits a quadtree data structure of mipmapped geom-
etry. Therefore the number of rendered nodes does not
quadratically increase due to the size of the terrain.

A requirement of this algorithm is to have a view-
dependent LOD algorithm that refines aggregates of
polygons, instead of individual polygons. As ROAM
tessellates down to a single triangle, Chunked LOD re-
fines chunks of geometry that have been preprocessed
using a view-independent metric. Since chunks are
stored in a quadtree, the root node is stored as a very
low polygon representation of the entire terrain. Ev-
ery node can be split recursively into four children,
where each child represents a quadrant of the terrain
at higher detail than its parent. Every node is referred
to as a chunk, and can be rendered independent of any
other node in the quadtree. Having such a feature al-
lows for easy out-of-core support.

The Chunked LOD quadtree structure is one of the
best known hardware friendly LOD algorithms since
it can be utilized for very large out-of-core terrain.
Adding detail resolution requires extending the chun-
ked quadtree, which could be easily done in a prepro-
cessing step. However, deformation isn’t trivial since
the algorithm requires a static mesh; if any height sam-
ples were changed, it would require reprocessing the
entire quadtree, which is unacceptable for real-time
deformation.

3 Proposed Approach

The following sections present our out-of-core de-
formable terrain algorithm for preprocessing and ren-
dering of large-scale terrain datasets. This algorithm
is described in greater detail in [3]. We start with
an overview of the hierarchical representation of the
terrain data and then describe the runtime algorithm
for mesh refinement, rendering, memory management,
and deformation. Figure 1 illustrates the flow of data
through the system from program initialization to ren-
dering.



Figure 1: Block diagram demonstrating the flow of
data through our system.

3.1 Hierarchical Representation

The hierarchical representation of the original mesh is
built during a preprocessing step. For a n × n input
mesh, a quadtree is used to organize the data such that
the root node defines a low-detail representation of the
entire mesh. Each subsequent child contains more de-
tail at the scale of one quarter of its parent’s mesh,
while the leaf nodes constitute the original mesh. Ev-
ery node is of size m×m, and therefore each node uses
the same amount of vertices. The dimensions n of the
input mesh and m of the nodes must be one greater
than a power of two to allow for optimization of the
construction and refinement algorithms.

The quadtree is constructed using a simplification
process similar to [8]. First, the input mesh is par-
titioned into leaf nodes of size m × m, where each
node overlaps neighboring nodes by one row and one
column. Nodes are combined into 2 × 2 blocks and
upsampled by removing every other row and column
vertex. This is repeated recursively until 2× 2 blocks
can no longer be made. Each node is given a bound-
ing box that encapsulates the entire mesh, as shown
in Figure 2.

The process of removing every other row and col-
umn vertex when creating parent nodes implies that
the data for each node, except for the root, comprises
its parent’s data (the excluded rows and columns) and
its own data. During terrain deformation, this prop-

(a) Original (b) Child (c) Parent

Figure 2: The simplification process to create a
quadtree. The original mesh (a) is separated into
m × m nodes (m = 5) (b), where each 2 × 2 block
creates a parent node (c).

erty obviates the need to propagate changes through
the tree. In addition to a node’s individual data, it
contains pointers to its parent’s data. To guarantee
this property holds true, when a node is loaded into
memory all of its ancestors must be in memory as well.
The memory layout for any given node is shown in Fig-
ure 3.

For example, the bottom left vertex of an underlying
heightfield belongs to the root node. Child nodes re-
ceive a pointer to this vertex in order to access it. This
is similiar to the wavelet compression scheme from [2].
However, we do not encode the child data within the
parent’s node. Instead the individual data for each
node is stored in a file that can be loaded on demand.
This eliminates the need to decode node information
at runtime and allows for deformation without encod-
ing new vertices into the quadtree. In order to query
a node’s data, it must simply dereference the vertices
it points to.

(a) Node data

(b) Memory layout

Figure 3: Node data shown in (a) represents the mem-
ory layout shown in (b).



3.2 Runtime Algorithm

3.2.1 Mesh Refinement

The goal of any terrain rendering algorithm is to
quickly create the best approximation mesh for each
frame. Our approach uses a split-only top-down re-
finement. Previous algorithms use properties of the
underlying geometry (e.g. nested error bounds) dur-
ing refinement as in [15] and [4]. Deformation of the
terrain requires recalculation and propagation of these
properties throughout the tree. We take an approach
similar to [10] and use only the view position and frus-
tum as refinement critera. Although this approach
looks awkward for high-frequency data (e.g. a steep
mountain consisting of a few vertices), natural terrain
datasets often feature a smooth gradient.

Refinement begins at the root node and proceeds re-
cursively for each child node. A breadth-first traversal
is required for linking neighboring nodes. For every
node, if the node’s bounding box is inside the view
frustum and the center of the bounding box is closer
than a predefined threshold, the node is refined by
traversing its four children, otherwise it is prepared
for rendering. A threshold should be chosen such that
a nested regular grid surrounds the viewer. Since no
other metrics are taken into account during refine-
ment, this will yield the best visual fidelity. Note that
the LOD of neighboring nodes is never limited, as in
a restricted quadtree where nodes are forced to split
based on the level of its neighbors as in [12].

3.2.2 Neighboring Nodes

Smooth transitions between nodes of different LOD
must be rendered correctly, otherwise seams will be
visible due to gaps in the rendered mesh or inconsis-
tent shading from incorrect normal calculations. Also,
since each neighbor holds its own copy of edge ver-
tices, care must be taken while deforming edges or edge
boundaries. To handle these variations, a node must
be aware of its neighbors. Since quadtree refinement
isn’t restricted, the difference between two nodes may
be one level or more. Since a node’s LOD may change
from frame to frame, neighboring links are recreated
during refinement.

When linking nodes together, a node is only allowed
to point to a neighbor of equal level or higher. Enforc-
ing this rule allows each node to store no more than
four neighbor references. When a node is split dur-
ing refinement, the node is responsible for updating
its children with the correct neighborhood informa-
tion. This cannot be accomplished with a depth-first
traversal, commonly used in LOD algorithms. Instead,
a breadth-first traversal is performed.

Neighbor links play an important role for correct
normal calculation. Normals are needed to simulate
a realistic lighting model, and can also be used for

collision response. The biggest problem of normal cal-
culation presents itself on the seams of terrain patches.
Vertices on an edge need the height values of neighbor-
ing nodes.

The most common approach to calculate a normal
is to compute a normal for each vertex in the height-
field by taking the average normal of all faces that
contain the vertex [16]. This process consists of sev-
eral costly mathematical operations, such as square
roots. Several optimizations can be made by exploit-
ing properties of the heightfield. The method we use
is described in [14], which only requires the four neigh-
boring heightsamples of a vertex. In order to create
a smooth transition across a patch seam, neighboring
vertices must be queried and the computed normal is
then stored for each edge.

3.2.3 Detail Addition

To improve the appearance of the terrain without in-
creasing the size of the data on disk, procedural detail
is added at runtime for leaf nodes that meet the refine-
ment criteria. The detail is added to the hierarchy in
the form of new leaf nodes that extend the quadtree
until a user-specified level is reached. When creat-
ing a new node, a reverse process of adding rows and
columns is performed and the new node is linked to
its parent, which was previously a leaf node. The new
vertices are then assigned procedural data.

Linear interpolation is not sufficient for creating
additional detail because the resulting data is uni-
form. Instead, fractals are used to give the data a
non-uniform appearance. Each interpolated vertex is
shifted a random amount such that it stays within the
bounds of the surrounding vertices. Since detail addi-
tion is subtle, the process does not need to be deter-
ministic, therefore detail can be randomized each time
it is created.

3.2.4 Rendering

The result of refinement is a list of patches to be ren-
dered. Before rendering, indices can be recalculated
for nodes whose neighbor’s LOD have changed and
normals can be recalculated if deformation had oc-
curred. Each node must then dereference its pointer
data to create a vertex list. Finally, each node can
be transformed into world space and the data sent
across the bus to be rendered. The rendering process is
decoupled from the updating and disk I/O methods,
allowing for smooth loads of data and no hiccups in
the system regardless of how fast the viewer is moving
around the terrain.

Stitching is accomplished by having the finer detail
node omit vertices on its edge to match that of its
coarser neighbor. This is done by rendering degenerate
triangles. Geometrical skirts [15] were not chosen since



the size of the skirt may change after deformation. Re-
calculation of the skirt can become tedious and slow.
Figure 4 illustrates the removal of T-junctions by uti-
lizing degenerate triangles.

(a) T-Junction (b) Degenerate Triangles

Figure 4: T-Junctions appear at the neighboring nodes
of different levels of detail.

3.3 Memory Management

Our algorithm supports large datasets stored out of
core, i.e. data that resides outside of main memory
[11]. A separate loading and caching thread is fed
patches to load or write to disk. The patches to load
are based on refinement, while the patches to write are
based on a least recently used (LRU) algorithm.

During refinement, if a parent cannot be split be-
cause the data for its children is not in-core, a request
for the data is made to the loading and caching thread.
The system never stops to wait for data to load; until
the data for the children is loaded, the parent’s data
is rendered.

When the memory footprint exceeds a predefined
threshold, LRU patches are discarded to disk until the
used memory falls below the threshold. Each node is
given a timestamp representing the last time the node
was either rendered or deformed. A priority queue is
used to efficiently determine which nodes should be
discarded. Since every node relies on its parent for
some of its data, discarding a parent to disk will inval-
idate memory references for its children, therefore only
leaf nodes of the currently refined mesh are considered
for caching.

Depending on the actions of the user (fast move-
ment or several deformations) and the current mem-
ory footprint, nodes may require continuous allocation
and deallocation. Instead of using operators such as
new or delete which are notoriously slow for small and
frequent allocations, a freelist is used as in [6].

3.4 Deformation

Real-time modifications are applied to the terrain by
refining the currently active mesh based on a rectan-
gular selection of the terrain, called a brush, in ad-
dition to the view-dependent refinement criteria de-
scribed earlier. The vertex data for each refined node
is modified to fit the brush specification.

A brush defines the rectangular extent (defined by
position, width, and height) and the resolution of de-
formation (defined by a level in the hierarchy, which
may not exist). In addition, a brush holds an array of
pointers to vertices in the terrain, allowing deforma-
tions to cross node boundaries. Nodes that intersect
the brush are selected during refinement and vertices
from each node are given to the brush. Dereferenc-
ing the brush gives access to vertex data which can be
overwritten with new data. Since vertices on edges are
duplicated for each patch, care must be taken for de-
formations across boundaries by syncing adjacent ver-
tices. This is done in a pre-rendering step that com-
pares dirty flags of neighboring nodes in the quadtree.

Refinement is based on brush extent and resolution
as well as view-dependent criteria. Therefore, a node
may be refined even though it is not sufficiently close
to the viewer or inside the view frustum. Depending
on the resolution of the brush, data for nodes deep
into the hierarchy may be requested for loading. Only
when all of the data required by the brush’s resolution
has been loaded can deformation be applied.

As described in Section 3.2.3, procedural detail is
added for leaf nodes that meet the view-dependent re-
finement criteria. If a brush alters a node with pro-
cedural data, disk space is allocated for the node and
it is allowed to be discarded to disk by the memory
manager.

When a node is chosen for rendering, it is possible
that an ancestor has previously been deformed. Time
stamps are compared, and if a node’s last modification
is older than its parent’s, its data is adapted to the
parent mesh by creating procedural detail.

3.5 Texturing

Textures are processed similarly to the terrain data.
A large texture can be cut into user-defined partitions
and merged into 2× 2 blocks before being mipmapped.
This process continues until an entire quadtree is built
over the original texture data.

Nodes in the terrain quadtree directly map to nodes
in the texture quadtree. However, with modifications
to the terrain quadtree (deformation and procedural
detail), it becomes impractical to create a texture
quadtree of the same depth. If a node in the terrain
quadtree cannot be mapped directly to a node in the
texture quadtree, the parent’s texture and texture co-
ordinates are used. When a node is being loaded or
deleted it can also load or delete its texture.

Just as the terrain quadtree presented issues at
seams, so does the texture quadtree. This is due to the
kind of texture filtering used to generate the texture
quadtree. Although no seams are visible with nearest
filtering, this type of filtering is not visually appealing.
With linear filtering, seams appear at the texture edges
because the edge texels are not being blended with the



correct neighbor texel. This is solved by overlapping
adjacent textures during texture quadtree construc-
tion such that neighboring nodes have exact texels on
shared edges. Clamping the texture edges during ren-
dering causes these texels to blend, removing the seam.
There is no pefect solution, and the amount of pixels
to overlap can vary.

4 Results

Figure 5: Screenshots from the visualization.

The following tests were performed on a machine
with an Intel Core2 Quad Q9450 processor with 8GB
of DDR2 RAM and a NVIDIA GeForce GTX 275 un-
der Windows XP Service Pack 2, which can only utilize
3.5GB of RAM.

The data used for these results was obtained from [1],
which holds 10-meter elevation data of the big island of
Hawaii along with a 4096× 4096 texture. The terrain
file has dimensions of 8193 × 8193 and was already
in binary terrain (.bt) format. It was first converted
into the internal .ter file and the texture image (.jpg)
was converted into a .tex file. Since these files were so
small, the preprocessing took less than five minutes.

With this application, the user is able to move
around the scene via keyboard and mouse input. By
clicking and dragging the mouse, the user can select
a single axis-aligned brush, and change the resolution
of that brush via keyboard input. Once a brush is
selected with the desired resolution, the user may cre-
ate a hill or crater by raising or lowering the terrain.
Any changes to the terrain are automatically saved to
the .ter file and will be loaded back in when the ap-
plication restarts. Figure 5 shows screen shots of this
application.

In order to determine how well this algorithm runs,
we ran various operations on it as illustrated in Ta-
ble 1 with a frame buffer size of 1024 × 768. The file
tested was a ten meter resolution digital elevation map
(DEM) of Hawaii of raster size 8193× 8193 which can

be freely downloaded over the Internet [1]. The first
test was to simply move over the terrain with no de-
formation occuring. This tested the LOD refinement
algorithm used to render the terrain in real-time. The
next section of results in the table show the speeds
of deformation of the terrain in terms of frames-per-
second. Using different brush sizes, we deformed the
terrain over the same part of the dataset. For all of the
brush sizes used, the algorithm demonstrated interac-
tive framerates. The largest brush size used exhibited
a relatively low framerate due to the increased amount
of refining of the mesh down to the deepest parts of the
terrain hierarchy, which can be considered a worst-case
scenario.

Operation FPS
Arbitrarily moving over the dataset 48.41
Deformation with brush of size 32× 32 38.37
Deformation with brush of size 64× 64 23.54
Deformation with brush of size 128× 128 10.96

Table 1: Average frames per second for four brushes.

Another application of the algorithm has been used
for tire track deformation from a military vehicle nav-
igating the terrain in a dataset from Yuma Proving
Ground, an Army installation in Arizona.

5 Conclusion

We have presented a complete LOD terrain algorithm
including the major features of deformation and out-
of-core rendering. Refinement is not only based upon
the viewing frustum, but also takes into account the
selected deformation brushes. This allows data that is
not being viewed to remain in memory and be sub-
ject to deformation. Previous methods that allow
out-of-core rendering usually preprocess the geometry
into a triangulated irregular mesh for optimal poly-
gon throughput, and require that the terrain mesh re-
main static. Other in-core algorithms support changes
to the underlying heightmap, but need to recalculate
and propagate nested error-bounds through a hierar-
chal structure. Our approach eliminates the need for
any geometry tessellation or propagation after a mod-
ification to the terrain heightmap. By exploiting the
features of a regular grid, x and z coordinates will
never change requiring only updates to the y coordi-
nate (height offset). The quadtree structure exploits a
child-parent relationship in which child nodes actually
point to their parent”s data. In this way, when the
data of children nodes are modified, the pointer ac-
tually dereferences some parent data completely elim-
inating any propagation back up through the quadtree.
The need for nested error-bounds is also eliminated by
depending solely on the view position for refinement.



Even though this results in a less accurate refinement,
the tessellation is tolerable and the tradeoff of propa-
gation removal is well worth it.

Deformation is allowed to be done at any resolution
within the extended quadtree. The quadtree may be
extended to a user specified resolution by scaling up
the original terrain and adding procedural fractal de-
tail to the leaf nodes. These extra nodes are created on
the fly in real-time and only need to be saved to disk
if deformed. Since detail addition is so subtle, the ex-
tra nodes do not need to be spatially deterministic and
can be randomly created each time. By comparing the
time stamp of a nodes parent, data may procedurally
adapt to a low resolution modification using this same
method to create detail.

The terrain is represented as a heightmap, preclud-
ing such features as caves and overhangs. The dimen-
sions of the input heightmap are required to be 2N +1
on each side to allow for optimizations. Additionally,
the preprocessing step to build the terrain hierarchy is
non-trivial for large datasets.

Along with our algorithm, we have presented sup-
port for large texture maps, fast normal calculation,
and dealing with large world coordinate and depth
buffer precision.

6 Future Work

For simplicity, not all optimizations were used when
implementing this algorithm. It would be possible,
with some effort, to port the entire algorithm to the
GPU. Terrain data would reside completely in video
memory in the form of a texture, and a quadtree struc-
ture could be mimicked via indices to a memory loca-
tion. Vertex lists can easily be generated due to the
regular grid layout, and indices could properly be gen-
erated with triangles in a vertex shader.

Finally, the algorithm could be modified for render-
ing terrain at a planetary scale, which would require a
specialized acceleration structure for ellipsoidal geom-
etry.

Acknowledgements

This work is funded by NASA EPSCoR, grant #
NSHE 08-51, and Nevada NASA EPSCoR, grants #
NSHE 08-52, NSHE 09-41, NSHE 10-69. In addition,
this work is partially funded by the CAVE Project
(ARO# N61339-04-C-0072) at the Desert Research In-
stitute.

References

[1] Virtual terrain project. http://www.vterrain.org/.
Last accessed: October 21, 2009.

[2] S. Atlan and M. Garland. Interactive multiresolution
editing and display of large terrains. Computer Graph-
ics Forum, 25(2):211–223, June 2006.

[3] W. E. Brandstetter. Multi-resolution deformation in
out-of-core terrain rendering. Master’s thesis, Univer-
sity of Nevada Reno, 2007.

[4] W. de Boer. Fast terrain rendering us-
ing geometrical mipmapping. http://
www.flipcode.com/archives/Fast Terrain Rendering
Using Geometrical MipMapping.shtml, 2000. Last

accessed: 10/08/2009.

[5] M. Duchaineau, M. Wolinsky, D. Sigeti, M. Mille,
C. Aldrich, and M. Mineev-weinstein. Roaming ter-
rain: Real-time optimally adapting meshes. In IEEE
Visualization, pages 81–88, 1997.

[6] P. Glinker. Flight memory fragmentation with tem-
plated freelists. In Game Programming Gems 4.
Charles River Media, 2004.

[7] H. Hoppe. Smooth view-dependent level-of-detail con-
trol and its application to terrain rendering. In VIS
’98: Proceedings of the conference on Visualization
’98, pages 35–42, Los Alamitos, CA, USA, 1998. IEEE
Computer Society Press.

[8] P. Lindstrom, D. Koller, W. Ribarsky, L. Hodges,
N. Faust, and G. Turner. Real-time, continuous level
of detail rendering of height fields. pages 109–118,
1996.

[9] P. Lindstrom and V. Pascucci. Visualization of large
terrains made easy. In VIS ’01: Proceedings of the
conference on Visualization ’01, pages 363–371, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

[10] F. Losasso and H. Hoppe. Geometry clipmaps: terrain
rendering using nested regular grids. In SIGGRAPH
’04: ACM SIGGRAPH 2004 Papers, pages 769–776,
New York, NY, USA, 2004. ACM.

[11] S. Nielsen and T. Lauritsen. Rendering very large,
very detailed terrains. http://www.terrain.dk/, 2005.
Last accessed: 10/08/2009.

[12] R. Pajarola. Large scale terrain visualization using the
restricted quadtree triangulation. page pages, 1998.

[13] S. Rottger, W. Heidrich, P. Slusallek, H. Sei-
del, G. Datenverarbeitung (immd, and Universitt
Erlangen-nrnberg). Real-time generation of contin-
uous levels of detail for height fields. pages 315–322,
1998.

[14] J. Shankel. Fast heightfield normal calculation. In
Game Programming Gems 3. Charles River Media,
2002.

[15] T. Ulrich. Rendering massive terrain using chunked
level of detail control. ACM SIGGRAPH 2002: Pro-
ceedings of the 29th annual conference on Computer
graphics and interactive techniques, 2002.

[16] H. Zhao. Fast accurate normal calculation for height-
field lighting on a non-isometric grid. In CGIV
06: Proceedings of the International Conference on
Computer Graphics, Imaging and Visualisation, pages
408–413. IEEE Computer Society, 2006.


