
Scrybe: A Tablet Interface for Virtual Environments

Roger Hoang Joshua Hegie Frederick C. Harris, Jr.

Department of Computer Science and Engineering
University of Nevada

Reno, NV 89557
{hoangr,jhegie,Fred.Harris}@cse.unr.edu

Abstract
Virtual reality (VR) technology has the potential to pro-
vide unique perspectives of data that are not possible with
standard desktop hardware. The tracking devices often
found with such technology allows users to use more nat-
ural gestures to interact with these systems. Unfortu-
nately, the practicality of this input modality diminishes
as the set of user-controllable options expands. Two-
dimensional graphical user interfaces (GUI) are advan-
tageous in this case for both familiarity and organiza-
tional reasons. Their application, however, in virtual en-
vironments can present difficulties in terms of usability
to the user when the interface gives no tactile feedback
and floats freely in the virtual world, requiring further
interaction to adjust it to a reasonable orientation to fa-
cilitate interaction. The ubiquity of touchscreen devices
today suggests a potentially inexpensive solution to these
problems by providing a tactile handheld interface. We
present Scrybe, a tablet interface for virtual reality ap-
plications, as a solution to this problem. We describe
modifications to a virtual reality library to facilitate the
addition of 2D interfaces in two different ways and discuss
their application to two touchscreen interfaces: a tablet
PC and an Android smartphone.

Keywords: Tablet, Virtual Reality, Human Computer
Interaction

1 Introduction

Virtual reality presents the opportunity for users to inter-
act with virtual worlds and data in ways that standard
desktop computers cannot provide. Wand devices such
as the Nintendo Wii Remote [13] shown in Figure 1 and
pinch gloves [10] allow the user to interact with systems
by either pointing or gesturing. However, these sorts of
input modalities are ill-suited for some tasks. Pointing in
3D space can be imprecise, and the numerous degrees of
freedom provided by gloves renders them unwieldy, fail-
ing to recognize gestures or accidentally triggering oth-
ers. For precise selection and execution of commands,
the common two-dimensional menu proves effective [1].

Presenting a 2D menu in 3D space has its own difficul-
ties. A menu that floats in the virtual world is bound
to be lost by the user as he or she moves about. Al-

Figure 1: The Nintendo Wii Remote, an example gesture
and pointing device.

ternatively, it can become unreadable or difficult to ma-
nipulate if oriented at a bad angle. These problems can
be resolved by always rendering the menu in the user’s
field of view, though doing this results in the menu oc-
cluding other objects in the scene. This distraction can
be reduced somewhat by minimizing the menu when not
needed [1].

Another problem with these menus is that interaction
with them requires either pointing or touching, both of
which is imprecise when the additional third dimension is
involved. The latter can be particularly problematic with
no tactile feedback, leaving the user to guess at how far
he or she must reach out to activate a GUI element.

Rendering these menus onto a physical handheld touch-
screen device offers a solution to these problems. The user
is capable of orienting the screen to a managable position,
and the physical surface provides tactile feedback.

Much work has been done on applying physical tablets
to enhance user interaction in a virtual environment,
though many of these works used a mock surface such
as a tracked clipboard and a tracked pen, rendering a vir-
tual interface on top of them using head-mounted displays
(HMD). Poupyrev et al. did exactly this, allowing users
to write notes on a virtual notepad in a virtual emergency

room. Using handwriting recognition, users were also able
to enter text commands [6], another input modality that
is difficult for virtual environments. Stoakley et al. in-
troduced a world manipulation metaphor called World in
Miniature (WIM), where users can interact with the vir-
tual world by interacting with a miniature version in their
hands. The WIM would be bound to the user’s hand as
long as the user maintained a grasping gesture; however,
without haptic feedback, rotation was found to be diffi-
cult. As such, the authors introduced a physical clipboard
prop [9]. For their 3D CAD application, Sachs et al. used
a palette attached to a positional tracker to allow the user
to change their view by rotating the palette [7].

Physical tablets are not without drawbacks. Bowman
and Wingrave found that while interaction with them can
be efficient, holding them can result in arm and hand fa-
tigue in comparison to a glove interface [2]. An opaque
mock tablet with an interface rendered through an HMD
cannot be used in large screen display environments such
as the CAVETM[3], where rear-projection means that the
tablet would obscure whatever was to be rendered on it.
Watsen et al. present a way to resolve this problem by
using Palm Pilot devices to render applets that could ma-
nipulate the virtual world [12].

We present Scrybe, a set of augmentations to a virtual
reality toolkit that allow a variety of tablet interfaces to
be used for VR applications. Our modifications introduce
flexibility to the system in terms of how much control over
the GUI the application programmer desires. Our system
also harnesses a tracker on the tablet device to convert
the device itself into a display window into the virtual
world, allowing users to either view the world outside of
the primary displays or view the world through certain
aesthetic or informational filters.

The remainder of this paper is structured as follows.
Section 2 discusses the software systems and modifica-
tions to it; Section 3 presents the hardware used. Sec-
tion 4 offers closing thoughts while Section 5 provides
avenues for future work.

2 Design

2.1 Problem Background

The problem of how to interact with virtual reality pro-
grams, since the virtual world can easily be larger than
the physical space provided. There are a number of dif-
ferent input devices that can be tracked in real time, to
determine their position and orientation in space, as well
as button presses. This does not mitigate the problem of
helping users easily interact with program elements that
are not best described with a single button press (i.e.
changing a percentage from 50 to 100).

2.2 Software Design

The goal of Scrybe is to provide tablet interaction to the
user for virtual reality applications. It allows the appli-

cation programmer to do this in two different ways: by
allowing the programmer to manage a custom built GUI
and by allowing the programmer to register modifiable
parameters for which the tablet determines how to best
present to the user. This section details how a virtual real-
ity library, Hydra [4], was altered to support these mech-
anisms. We then discuss two tablet applications created
to communicate with any application built with Hydra
that exemplify each of these techniques.

2.2.1 Hydra

Virtual reality systems vary widely in terms of hardware.
As such, a virtual reality toolkit is generally employed to
hide these details from the programmer, allowing their
applications to run on a variety of hardware configura-
tions. The toolkit harnessed for Scrybe is a library called
Hydra [4]. At its core, Hydra is responsible for providing
the programmer with an abstract interface to query for
user input and potentially synchronizing this information
across a cluster. To provide feedback back to the user,
the programmer specifies callbacks for certain rendering
modalities he/she choose to support. If the hardware sup-
ports a particular modality, Hydra looks for the config-
ured callback and invokes it; otherwise, it simply ignores
that aspect of rendering. For example, a programmer
can specify rendering methods for OpenGL, DirectX, and
OpenAL in the same program, but only the OpenGL and
OpenAL methods would be used in a Linux configuration.

Hydra achieves this modularity through a plugin mech-
anism. At runtime, plugins register services they provide
to library. Hydra then examines a configuration file to
determine which services the user wishes to invoke, such
as a stereoscopic X11 OpenGL window, and finds the ap-
propriate plugin to instantiate such a service. Inputs are
treated the same way. If the user wishes to use a particu-
lar input device, an appropriate plugin must be provided.
This plugin would then convert inputs from this device
into a set of virtual buttons, valuators, and tracker ob-
jects for the application to read. While plugins expand
the ways in which the user is able to interact with the
system, extensions provide the application programmer
and the plugin programmer with more functionality, such
as a graphics system-agnostic way to manipulate the ren-
dering matrices.

To provide the first interaction method for Scrybe, al-
lowing the programmer to manage a custom built GUI
system, a single plugin called GLStreamer was created.
The objective of the GLStreamer object is to stream a
video feed to a remote device as well as to receive and
redirect user input on the remote device back to the ap-
plication. The decision to stream images rather than hav-
ing the remote device render them is motivated by the
observation that most portable devices have much lower
rendering and computing capabilities than their immobile
counterparts. Thus, they would be not only incapable of
rendering more graphically complex virtual environments
but also incapable of simulating computational expensive
applications. Instead, it was deemed more efficient to

have a machine render the necessary images and send
them to clients; as such, at run-time, the GLStreamer
waits for incoming connections from remote clients. Upon
connection, the client sends the plugin information re-
garding the type of rendering the client needs. The plu-
gin then renders images accordingly to an offscreen render
buffer and sends them to the client as it requests them,
providing a built-in throttling mechanism.

While streaming raw images was acceptable at lower
resolutions, the amount of data increased rapidly as the
resolution increased, resulting in the system becoming
bandwidth limited. To ameliorate this problem, images
are compressed into JPEGs before being streamed. The
client is able to dynamically alter the compression quality
of the images to adjust for available bandwidth.

Using the GLStreamer object alone, the programmer
is expected to both render the GUI and handle all in-
teractions with it. He or she does accomplishes the first
task by specifying a render callback that draws both the
image the user should see along with the interface over
it. The second task is accomplished by specifying an-
other callback that handles mouse clicks and movement.
When the user interacts with the image on the client side
by clicking, the clicks are sent back to the GLStreamer
object which then invokes this callback.

Allowing the programmer to maintain the GUI can be
viewed as an unnecessary burden, particularly if the GUI
must be made flexible enough to adapt to different screen
sizes and resolutions. For this reason, a second solution
was proposed that moves the burden to the client appli-
cation. In such a scheme, the programmer simply exposes
certain variables to the client application, which supplies
some method for the user to alter them. This functional-
ity was produced with the addition of an extension and a
plugin to Hydra.

The extension, dubbed Parameters, allows the pro-
grammer to specify the type, name, and limitations of a
parameter. For example, one could specify a double preci-
sion floating point parameter named ”Simulation Speed”
that is constrained to a value between 1.0 and 1000.0.
All maintenance responsibilities, including cluster syn-
chronization, for these parameters is relinquished to the
Parameters extension. The server application can then
query for changes to the parameters and change its be-
havior accordingly. Alternatively, the server application
can alter the values of these parameters itself; as exten-
sion functionality is also exposed to plugins, this can be
useful for the programmer that wishes to present read-
only information to the user.

The exposure of parameters to the end user is executed
with the implementation of plugins. This exposure could
come in the form of webpage, a Flash application, or
whatever method a plugin developer deems useful. For
our tablet applications, a ParameterServer plugin was
developed. The ParameterServer behaves similarly to
the GLStreamer, waiting for remote clients to connect
to it. At this point, the plugin sends all information re-
garding the current state of the Parameters extension to

the client. The client application then handles present-
ing this information to the user. Modifications of these
parameters are sent back from the client to the Param-
eterServer, which then notifies the Parameter extension
of the changes. In the reverse direction, if the Parame-
terServer detects a change to the Parameter extension due
to the programmer application, another connected client,
or even another plugin, the ParameterServer broadcasts
these alterations to all listening clients.

2.2.2 Tablet PC Application

To illustrate the client for the first interaction mechanism,
a Qt application, shown in Figure 2 for Linux desktops
and tablets was developed. Qt was selected for its ability
to quickly generate a static user interface, which is all that
is necessary for this method. The static interface allows
the user to input the server and rendering properties be-
fore connecting to a remote GLStreamer object. It then
receives images from the GLStreamer which should con-
tain the dynamic programmer-controlled GUI in them. A
slider allows the user to alter the JPEG compression ra-
tio according to his or her tolerances for image quality
over interactivity. When the user moves or clicks on the
image, information about the position and state of the
input device are transmitted back to the GLStreamer ob-
ject which then informs the application. Figure 3 shows
the flow of this arrangement.

2.2.3 Android Application

For the second interaction technique, an Android applica-
tion for mobile phones was created. The information flow
of this setup can be seen in Figure 4. The simplicity of
programmatically generating some arbitrary GUI made
the Android platform an attractive option. The user can
still optionally connect to a GLStreamer to interact in
a manner similar to the Tablet application or to simply
have a view into the virtual world. Alternatively, the user
can connect to a remote ParameterServer object. When

Figure 2: The Scrybe viewing window.

libparameters

Hydra

GLStreamer

Application

Rendering

GUI

Tablet

ImagesUI Events

UI Events

Images

Runs

Figure 3: Example Scrybe setup when used with a
programmer-maintained GUI.

connected, the application downloads all parameters from
the server and constructs an appropriate list of parame-
ters. Boolean parameters are presented as checkboxes
while numerical values are presented with sliders and/or
input boxes depending on the range and necessary pre-
cision. String parameters are displayed with text boxes.
Any alterations to these parameters are sent back to the
ParameterServer; meanwhile, a separate thread listens for
changes received from the same server.

3 Hardware Design

This project utilized many different hardware compo-
nents. Foremost in the hardware is a tablet device. A
tracking system was also utilized in order to know where
in space the tablet is. The last of the major hard-
ware components is the immersive display, which for this
project is a singe large screen.

3.1 Tablet

There are currently two variations to the hardware tablet
in use, both connected to the sever via a dedicated WiFi
802.11G connection.

libparameters

Hydra

GLStreamer

Application

Rendering

Simulation

Images

Runs

Android

Hydra Parameters

Server

Images

Parameters

Figure 4: Example Scrybe setup when user-accessible
variables are handled by the Parameters extension to Hy-
dra.

3.1.1 Tablet PC

The original idea for this project was to stream to a tablet
PC running Linux. The tablet that was initially used used
was a Motion Computing LE1700. Though not particu-
larly powerful in terms of the hardware, it is well-suited to
what was needed for this project. All that was required of
the tablet was that it be able to run Linux Ubuntu 10.04
as of this writing and allow for mouse tracking. This
tablet has a stylus which is used as a mouse for both
position and for generating mouse clicks.

3.1.2 Android Phone

As the project progressed the development team decided
that it may be beneficial to write the software to func-
tion on systems other than the tablet discussed above.
Android was chosen as a platform for this because the
development kit was easy to access, and the hardware
was readily available in the form of phones. The main
goal of this addition was to make it simpler for users by
allowing them to simply connect their phone to the sys-
tem and then use it like they would the tablet PC. The
largest downside of using a phone is that the screen is

Figure 5: The Android version of the application.

smaller when compared to a traditional tablet PC, which
is not necesarily bad; the image will come across with
the same clarity, though selecting specific elements on the
screen can be tricky, as everything is now condensed into
a considerably smaller area. Another consideration for
selecting a phone, or other small scale tablet, is that the
framerate that should be streamable should be increased,
to account for the fact that the number of pixels need-
ing to be sent is decreased. The Android Scrybe client is
pictured in Figure 5.

3.2 Tracking

On top of the standard two-dimensional input devices,
using the screen to generate mouse clicks, the tablet’s
position and orientation are tracked in real-time. This
allows the window into the virtual world that the tablet
represents to move with the user with a full six degrees of
freedom[8]. The tracking system used in this project uti-
lizes ten OptiTrack[5] FLEX:V100 infared cameras which
track reflective markers and the proprietary OptiTrack
Tracking Tools software, shown in Figure 6. These cam-
eras are accurate to less than a millimeter and are capable
of streaming images to the Tracking Tools program at one
hundred frames per second. The software is then respon-
sible for maintaining a list of all known trackable objects
and updating their positions as they move through the
tracked space. This part of the system is essential since it
provides a standardized output, in the form of VRPN[11],
that can be used to easily update the location and orien-
tation of of the tablet to determine what view of the world
to stream over the network.

3.3 Primary Display

The primary immersive display is the backend to the sys-
tem used for testing. This system is a passive stereo
screen that is projected on by two projectors, one for each

Figure 6: The OptiTrack Tracking Tools.

eye. The light for each eye is polarized differently, so that
when both projectors are on, a special pair of glasses al-
lows these images to be reseperated. While not directly
part of the system, in the same way that the tablet or
tracking, it is required to generate the image that is be-
ing streamed over the network.

4 Conclusions

We have presented Scrybe, a system that allows users to
interact with a virtual environment using touchscreen de-
vices. To do so, modifications were made to a virtual
reality library, allowing the creation of tablet interfaces
in two different ways. In the first, the application pro-
grammer is given free reign on the aesthetics and organi-
zation of the GUI, while in the second, the programmer
relinquishes this freedom to the plugin developer and the
device developer, who determine the best way to present
user-accessible variables. We presented a sample imple-
mentation of both techniques for two different device plat-
forms, highlighting the flexibility of the system.

5 Future Work

Many avenues of future work exist for Scrybe. On the
one hand, a user study needs to be conducted to mea-
sure the effectiveness of tablet interfaces in comparison to
gesture interfaces as well as non-tactile two-dimensional
interfaces. Exploring other mechanisms to allow for GUI
generation would be interesting with respect to program-
mer usability. The modification of the Hydra library itself
to incorporate components of Scrybe would be useful in
allowing the user to modify not only the running applica-
tion but also the configuration of the library.

5.0.1 Acknowledgments

This work was partially supported by by NASA EPSCoR,
grant # NSHE 08-51, and Nevada NASA EPSCoR, grants
NSHE 08-52, NSHE 09-41, NSHE 10-69

References

[1] D.A. Bowman and L.F. Hodges. User interface con-
straints for immersive virtual environment applica-
tions. Graphics, Visualization, and Usability Center
Technical Report GIT-GVU-95-26, 1995.

[2] D.A. Bowman and C.A. Wingrave. Design and eval-
uation of menu systems for immersive virtual envi-
ronments. vr, page 149, 2001.

[3] C. Cruz-Neira, D.J. Sandin, T.A. DeFanti, R.V.
Kenyon, and J.C. Hart. The CAVE: audio visual
experience automatic virtual environment. Commu-
nications of the ACM, 35(6):64–72, 1992.

[4] Roger Hoang. Hydra.
http://www.cse.unr.edu/hpcvis/hydra/. Accessed
May 27, 2010.

[5] Natural Point. OptiTrack Optical Motion Solutions.
http://www.naturalpoint.com/optitrack/.

[6] I. Poupyrev, N. Tomokazu, and S. Weghorst. Virtual
Notepad: handwriting in immersive VR. In Pro-
ceedings of the Virtual Reality Annual International
Symposium, pages 126–132. Citeseer, 1998.

[7] E. Sachs, A. Roberts, D. Stoops, and C. MIT. 3-
Draw: A tool for designing 3D shapes. IEEE Com-
puter Graphics and Applications, 11(6):18–26, 1991.

[8] W.R. Sherman and A.B. Craig. Understanding
Virtual Reality-Interface, Application, and Design.
Presence: Teleoperators & Virtual Environments,
12(4), 2003.

[9] R. Stoakley, M.J. Conway, and R. Pausch. Virtual
reality on a WIM: interactive worlds in miniature.
In Proceedings of the SIGCHI conference on Hu-
man factors in computing systems, page 272. ACM
Press/Addison-Wesley Publishing Co., 1995.

[10] Fakespace Systems. Fakespace Pinch Gloves.
http://www.i-glassesstore.com/pinglovsys.html.

[11] II Taylor, M. Russell, T.C. Hudson, A. Seeger,
H. Weber, J. Juliano, and A.T. Helser. VRPN:
a device-independent, network-transparent VR pe-
ripheral system. In Proceedings of the ACM sym-
posium on Virtual reality software and technology,
page 61. ACM, 2001.

[12] K. Watsen, R. Darken, and M. Capps. A handheld
computer as an interaction device to a virtual envi-
ronment. In Proceedings of the third immersive pro-
jection technology workshop. Citeseer, 1999.

[13] C.A. Wingrave, B. Williamson, P.D. Varcholik,
J. Rose, A. Miller, E. Charbonneau, J. Bott, and
J.J. LaViola Jr. The Wiimote and Beyond: Spatially
Convenient Devices for 3D User Interfaces. IEEE
Computer Graphics and Applications, 30(2):71–85,
2010.

