Watermarking Space Curves

Rakhi C. Motwani*, Mukesh C. Motwani*

, Kostas E. Bekris*

, and Frederick C. Harris, Jr.*

*Department of Computer Science and Engineering
University of Nevada, Reno USA 89507

Abstract—This paper describes an imperceptible, non-blind,
fragile watermarking technique for space curves. The proposed
technique employs a wavelet-based approach, and computes a
multi-resolution representation of the space curve to embed a
watermark so that it has widespread presence in the curve. A
variety of wavelet families are exploited and experimental results
provide a comparison of the performance of different wavelets
in terms of the watermark’s imperceptibility and tolerance to
attacks. To quantify space curve distortion, a signal-to-noise
ratio is used, and a linear correlation measure is employed to
determine the resistance of the watermark to modifications.

I. INTRODUCTION

Motion capture (MoCap) technology yields appealing com-
puter graphics animations but entails high investments in
terms of cost, time and effort. The digital nature of MoCap
data makes it vulnerable to piracy and plagiarism, thereby
discouraging MoCap studios and labs from publishing such
data. This paper focuses on tamper detection in trajectories
(space curves) derived from motion capture data, to assist in
detecting modifications that violate copyrights of motion data
extracted from published MoCap datasets.

Watermarking techniques have been used for copyright
protection, ownership authentication, and tamper proofing of
digital data. Watermarking schemes insert information in the
digital content in such a way that the embedded information
is imperceptible to the the human eye. Robust watermarking
techniques strive to embed information in such a way that it is
difficult to remove without causing perceivable distortions to
the original data. However, this is a challenging research prob-
lem therefore such schemes are only tolerant to a limited set
of attacks. Fragile watermarking schemes, on the other hand,
embed watermarks that have low resistance to modifications
and are destroyed at the slightest variation to the host content.
Therefore, fragile schemes find applications in tamper proofing
digital data, since a damaged watermark signals a malicious
modification attempt to the data.

Research related to watermarking of 3D data is still in its
infancy, and finds applications to 3D meshes and motion data
streams. The rest of this paper is organized as follows. Section
II presents the related work in this relatively immature field.
Section III describes the proposed watermarking approach.
Section IV provides the results of experiments. Conclusions
with future work are summed up in Section V.

II. RELATED WORK

Related work on curve watermarking has been investigated
for planar curves (in the 2D contex) for copyright protection
of digitally distributed maps ( [1], [2], [3]), vector fonts
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Fig. 1. Trajectory Plot(red) of Left Hand Joint of Human Skeleton(blue).
Motion Sequence from climb.bvh

[4], hand drawn curves and topographic maps [5]. However,
limited work has been done on curve/trajectory/motion-data
watermarking in the 3D domain.

The authors in [6] propose a progressive watermarking
scheme for 3D motion capture data that uses frame decima-
tion. A robust, blind 3D motion capture data watermarking
algorithm for human motion animation is proposed in [7], that
is cluster-based and uses quantization techniques. The authors
in [8], describe a spatial domain technique to watermark 3D
motion capture data. Pu et al. [9], adopt singular value decom-
position to consider both the time varying relations among the
motion frames and the spatial correlations among the different
joints in motion. The motion data matrix is decomposed into
two eigen vector matrices and a singular values matrix. The
watermark is added to the singular values matrix. Agarwal
and Prabhakaran [10] propose a tamper-proofing mechanism
for MoCap data that applies hash functions to the data matrix
and embed identifiers as watermarks to detect attacks such as
row/column shuffling and element shuffling.

Most watermarking techniques [11] adopt a certain level
of randomness in the algorithm to battle attacks on watermark
removal by brute force approach. However, this is the simplest
approach and has its drawbacks. Embedding the watermark
directly in the spatial domain makes it vulnerable to removal
or replacement attacks. It is preferred to transform the motion



data into frequency domain. This assures that the watermark is
spread across the 3D curve such that removal or replacement of
parts of the curve does not destroy the watermark completely.
In [12], Yamazaki proposes segmentation of the motion data
followed by a discrete cosine transform operation on each
segment to embed the watermark in the spread spectrum
domain. In [13], Yamazaki employs wavelet-based spectral
analysis for watermark insertion. The watermarking approach
presented in this paper also employs wavelets but differs from
Yamazaki’s approach as it utilizes a multiresolution wavelet
representation of the 3D curve for watermark insertion. More-
over, the proposed approach isolates the trajectories of the
human skeletal joints and applies to the space curve generated
by each joint. In addition, a variety of wavelet families are
experimented with to determine the best performer.

I[II. METHODOLOGY

For MoCap data, a space curve is a sequence of coordinates
in 3D space. This space curve is derived from the motion
of one joint (denoted by dot marker) of the human skeleton,
as shown in Fig. 1. The MoCap dataset used for this figure
is obtained from BeyondMotion Studio [14] and represents
the climb.bvh sequence. The space curve is the trajectory
represented by red markers in the plot below.

The proposed approach transforms the spatial representa-
tion of the 3D curve to the spread spectrum domain using
wavelets [15]. Wavelet transform is preferred over Fourier
or Discrete Cosine transforms because it captures both the
global pattern (i.e. averages or approximations) and the local
variations (i.e. fluctuations or details) in the curve. Wavelet
functions decompose a space curve into multiple resolutions
thereby facilitating examination of the gross and finer details
of the curve at different scales or resolutions. The following
subsections describe the the proposed multiresolution wavelet-
based, non-blind watermarking approach.

Fig. 2. Multiresolution Analysis of the Space Curve- The space curve is
represented at decreasing scales (Level-2 wavelet transform yields a higher
scale, Level 4 results in a lower scale). The finer details are lost by lowering
the resolution.

A. MultiResolution Analysis

The space curve is represented by a three-dimensional
discrete signal C' of length n. The wavelet transform is
applied to the z, y and z co-ordinates of C' separately. As
depicted by Eq. 1, a discrete wavelet transform applied to C
decomposes the signal into two sub-signals, .S; and W;, of
half its length (m = 5 where n is an integral power of 2 with
zero padding), where ¢ represents the multiresolution level of
wavelet transform.

Cln] = Si[m] + Wi[m] (1)

The first sub-signal constitutes the scalar co-efficients that
represent the approximation of the original signal and is
computed by the following equation:

5:= 3" Clk)on(h) @
k

where ¢(k) represents the scaling function of the chosen
wavelet family.

The second sub-signal represents the wavelet co-efficients
that constitute the differences between the subsequent compo-
nents of the original signal and is denoted by:

Wi =>_ C(k)pi(k) 3)
k

where (k) represents the wavelt function of the chosen
wavelet family. The functions ¢(k) and ¢(k) are defined by
the chosen wavelet. Haar, Daubechies, Biorthogonal, Meyer,
and Mexican Hat are different families of wavelets. Readers
are advised to refer to [16], [17], and [18] for further details
on wavelet transform.

A multi-resolution representation of the space curve decom-
posed at levels with decreasing resolution, is demonstrated in
Fig. 2. A visual representation of multiresolution wavelet de-
composition of C' into approximation and detail co-efficients,
in the z-dimension, is shown in Fig. 3.
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Fig. 4. Watermark Insertion and Extraction Process

B. Watermark Embedding

The steps underlying the process of watermark insertion and
extraction are demonstrated by Fig. 4. The watermark insertion
process adds a random watermark Z; to the multiresolution
wavelet coefficients WW; selected by a key Kj;, which is
derived from a pseudo-random number generator function,
where j represents the x,y,z dimension. The watermark R
is a sequence of pseudo-random numbers. The watermark
is multiplied by a scaling factor M, which determines the
embedding strength. Experimental values for M lie in the
range 10~ to 1075,

The watermark is inserted into the multiresolution wavelet
coefficients according to the following equation:

W;(k) = W;(k) + R;M )

where W' denotes the watermarked wavelet coefficient, k
denotes the wavelet coefficient’s index selected by key K,
and j represents the z, y and z coordinates of the space curve.

Inverse transform applied to the unmodified scalar co-
efficients and the modified wavelet coefficients yields the
watermarked space curve as shown in Fig. 5. The space curve
in this figure represents the trajectory generated by red markers
plotted in Fig. 1, but it looks different since it has been plotted
independently of the skeleton with the x,y,z axes swapped and
does not incorporate the scaling of the coordinate axes in the
plot.

Original and Watermarked Space Curve

Fig. 5. Original(blue) and Watermarked(green) Space Curves

C. Watermark Detection

To detect if a space curve has been modified, wavelet
domain representation of the original 3D curve is subtracted
from the wavelet domain representation of the test space
curve. The extraction process requires the key K, hence
the watermarking technique is non-blind. Correlation of the
subtraction result with the original watermark determines if
the curve has been tampered with or not.

A linear correlation coefficient corr is used as the metric for
similarity between the original and extracted watermark. Given
pairs of quantities (i.e. two sets of data A and B) (A4;, B;),
where j = 1,..., N and A is the mean of all Aj’s and Bis
the mean of all B;’s, corr is given by the formula:

2; (A - 4) (B; - B)

corr = — — (5)
Vs (4= S, (B - B)
When corr = 1, the extracted watermark is identical to the

original watermark, which implies that the test curve has not
been tampered with.

IV. EXPERIMENTS

The experiments ae done in Matlab using the Wavelet
toolbox and Motion Capture toolbox [19]. The data used in
this project is obtained from [20]. Distortion analysis of the
original and watermarked space curves is based on the signal-
to-noise ratio (SNR) metric which is given by the following
equation:

(6)

SNR«zcd=2mmmo< RMS(C) )

RMS(C —C")

where C' is the original space curve and c’ represents the
watermarked space curve. RM S denotes the root-mean-square
value. The imperceptibility of the watermarking algorithm is
measured by this SNR value.

Results for distortion analysis for the space curve, shown
in Fig. 6 (defined by 352 points in 3D), are listed in Table I.
Experiments are conducted on a seven families of wavelets to
determine the best performers. The payload value in Table I
represents the length of the watermark (i.e. the number of
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Fig. 6. Distortion Analysis-Original Space Curve(blue) and Watermarked Space Curve(green) at Different Levels of Transform for Different Wavelet Families

wavelet coefficients that are modified to accommodate the
watermark). The payload capacity increases as the level of
wavelet transform increases since the watermark is inserted
into the wavelet coefficients from all levels 1 through N, where
N is the level of applied wavelet transform. For example, SNR
at Level-3 for Haar wavelet indicates presence of watermark
in all Levels 1,2 and 3. Thus, SNR in Table I decreases as
number of levels of the wavelet transform increases, since
noise(watermark) is added at more levels. As depicted by Fig.
6, a visual distortion is observed in the watermarked space
curve for SNR values lower than 50.

Payload [ 113 [ 160 [ 194 [ 218 [ 236
Wavelet Level-1 Level-2 | Level-3 | Level-4 | Level-5
Family

Haar

SNR 50.1264 | 42.0223 | 35.7126 | 30.2582 | 25.0681
Daubechies

SNR 70.2424 | 59.8253 | 49.0849 | 38.5224 | 28.7898
Biorthogonal

SNR 66.0393 | 56.8886 | 48.9948 | 36.6137 | 28.5002
Reverse

Biorthogonal

SNR 59.6760 | 48.9117 | 38.6306 | 29.8878 | 28.2937
Coliflets

SNR 63.8576 | 53.9897 | 45.3761 | 34.2555 | 26.4873
Symlets

SNR 64.2491 | 53.0709 | 44.6761 | 33.9973 | 29.5184
Meyer

SNR 69.4834 | 61.8976 | 51.2509 | 39.6161 | 28.6246

TABLE I

IMPERCEPTIBILITY MEASURE AND PAYLOAD CAPACITY OF THE
WATERMARKING ALGORITHM AT DIFFERENT LEVELS OF WAVELET
TRANSFORM FOR A SPACE CURVE COMPRISED OF 352 POINTS

Results for various attacks on the watermarked space curve
are shown in Fig. 7 and outlined in Table II. The correlation
measure corr determines the performance of the algorithm
under the following attacks: 1) cropping - in this attack parts of
the space curve are removed by an adversary, ii) replacement -
this attack involves modification of sections of the space curve

by different data, and iii) concatenation - this attack appends
data from different space curves to yield a new space curve.

Since the proposed watermarking scheme is fragile, the
watermark is destroyed at the slightest variation to the space
curve caused by attacks. When corr is not equal to 1, it
signals a modification to the watermarked space curve thereby
indicating violation of copyrights. A corr value of 1 indicates
proof of ownership.

Wavelet Crop Replacement | Concatenation
Family
Haar 0.3781 0.3129 1.0000
Daubechies 0.4273 0.6741 1.0000
Biorthogonal | 0.3618 0.5392 1.0000
Reverse 0.2346 0.4075 1.0000
Biorthogonal
Coiflets 0.3351 0.5813 1.0000
Symlets 0.3468 0.4927 1.0000
Meyer 0.3687 0.5360 1.0000
TABLE I

CORRELATION MEASURE FOR ATTACKS
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V. CONCLUSIONS AND FUTURE WORK

This paper presents an imperceptible, fragile, non-blind
watermarking technique for space curves derived from mo-
tion capture data. The proposed watermarking algorithm is
based on multiresolution wavelet analysis of the space curve.
The implementation embeds information into the wavelet
coefficients to minimize perceivable distortion to the space
curve since the human eye can not perceive changes in the
higher frequencies. The algorithm maximizes the presence of
the watermark across the entire space curve by modifying
the wavelet coefficients at multiple resolution levels. The
performance of various wavelet families at different levels of
transform has been evaluated and experimental results indicate
that the Daubechies, Biorthogonal, and Meyer wavelets yield
better SNR and provide optimal performance at Level-3. Space
curves with sharp discontinuities can be efficiently repre-
sented with Haar wavelet. Motion curves do not exhibit such
abruptness and therefore the experiments have demonstrated
improved performance using smoother wavelets. Future work
entails varying the scaling factor M in accordance with the
transform level of the wavelet coefficients.

Watermarking of space curves can only provide copyright
protection for MoCap data. Protecting copyright ownership
of the skinned mesh animations generated from MoCap data
is a different area of research all together, since skinned
mesh animations are generated by interpolation of keyframes.
Authors in [21] have suggested a technique to watermark
skinned mesh animations by randomly inserting watermark in
mesh skin weights.

The work presented here is preliminary and focuses only
on the space curve generated by one joint of the human
skeleton used for MoCap animation. Further work is required
to incorporate the motion constraints (temporal and spatial)
while modifying the space curves of all joints of the skeleton.
Future work also involves refining the algorithm such that it is
resistant to various motion editing tasks [22] such as motion
enhancement/attenuation, blending, stitching, shuffling, and
noise removal.
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