
Towards a Software Framework for  
Model Interoperability 

 
Sergiu Dascalu, Eric Fritzinger, Sohei Okamoto, Fred Harris 

College of Engineering, University of Nevada, Reno 
{dascalus, ericf, okamoto, fredh}@cse.unr.edu 

 
Abstract-Modern mathematical models for simulation of various 
systems are becoming increasingly complex and intricate.  Since 
no one model can simulate every aspect of a system, the need for 
these models to be broken into their component parts is 
imperative for accuracy and maintainability. However, no model 
can operate alone without data from an outside source, and so 
further efforts in the Model Interoperability area of research are 
necessary. Model Interoperability is dedicated to finding 
methods with which to couple two or more models. This 
coupling would allow the models to utilize each other�’s data to 
produce more comprehensive and more accurate results.  There 
are several methods for model interoperability, including 
monolithic, component, scheduled, and communication.  Also, 
there are solutions to the problem of model coupling that use one 
or more of those methods, but most of them require significant 
code modification. The goal of the software framework proposed 
in this paper is to minimize the need for code modification and 
creation, provide a user interface through which to couple the 
models, and establish a library of models and other activities 
that the users of the system can utilize for their own model 
coupling needs.  

I. INTRODUCTION 

The software framework described in this paper, tentatively 
named Demeter, is part of a climate change research and 
development project funded by a grant from NSF EPSCoR.  
There are many solutions currently in use for model coupling, 
most of which require the user to have intimate understanding 
of the source code of each model that the user wishes to 
couple. This tends to lead to delays and even questions as to 
the validity of the coupled models�’ output, due to significant 
source code modification.  As a result, while the coupled 
models have the potential of producing good results, they 
might also become a system that is difficult to maintain and 
update. 

The goal of the proposed Demeter software framework is 
to allow scientists, mathematicians, programmers, and other 
potential users of the system to register new models, use other 
people�’s models, link models together in various workflows, 
and execute these workflows with minimal or no code 
modification or creation necessary.  In addition, it aims to 
provide a library of models, hosted on remote machines, for 
the users to access and utilize for their research.  This gives 
the users a broader base of models to choose from, and a 
cross-platform program with which to visually couple the 
models together for data transfer. 

The paper, in its remaining part, is organized as follows. 
Section II surveys several methods of model coupling.  
Section III discusses the existing work in the field of model 

interoperability.  Section IV describes the overall architecture 
of the Demeter system and provides explanations of the 
various concepts used in its design. Section V presents the 
Silverlight Client, the Workflow Runtime Host, and the 
Server Cluster of the proposed system.  Section VI reports on 
the current progress and outlines planned future work.  
Finally, Section VII presents the conclusion of this paper. 

II. MODEL COUPLING METHODS 

Model coupling is a difficult problem with several 
solutions available [1].  The monolithic method assumes the 
user has both models�’ source code and attempts to tightly 
couple them into a single program.  The component method 
allows the user to create or modify the models in such a way 
that they can be swapped out of a modeling system without 
the need for much, if any, coupling code modification.  The 
scheduled method keeps each model as separate programs 
and the researcher creates the coupling code that takes the 
output of the first model, massages the data from the output to 
be suitable for input to the second model, and feeds it into the 
second model�’s input.  Our previous work has employed this 
method in the development of scenario-based visual tool to 
facilitate model execution and data transformation [2].  The 
last method, communication, affords the user the most 
streamlined model coupling by allowing the models to run 
concurrently and send messages between them as a means of 
sharing data [1]. 

Most of the model coupling methods, however, are mired 
in the need to modify source code in order to produce a more 
sophisticated coupling.  There are many frameworks available 
that allow the researcher to use one method or another in a 
more standardized fashion, but few solutions are fit for all 
models or model policies. For instance, there may be a 
scientist that needs to use another researcher�’s model, but that 
researcher is unable to share either the source code or the 
compiled program. This could be for a variety of reasons, 
from NDAs (non-disclosure agreements) to proprietary 
information.  In this instance, the scientist has no possibility 
of modifying the source code or using the executable.  

However, with the Demeter software framework proposed 
here, the scientist could simply ask the researcher, who has 
registered their model with this system, for permission to use 
his or her model without needing the source code or the 
executable. This would allow the scientists to continue 
working by using the model they needed as if they had it 
without actually having it.  This powerful feature will enable 



researchers to share their work as they see fit without actually 
giving its associated source code to people. 

III. EXISTING WORK 

There are many solutions to model interoperability, and 
each uses a different method, as described in Section II.  
However, there are a few solutions that seem to stand above 
the rest when it comes to popular use and standardization.  
These solutions use the component-based method, which 
allows for cleaner interoperability code without having to 
modify the model source code as much as the monolithic or 
communication-based methods [1]. 

The Earth System Modeling Framework (ESMF) [3] is a 
powerful component-based framework that is used to 
increased software interoperability in scientific applications.  
It creates a common framework that individual components 
can be plugged into. It makes a distinction between what are 
called �“gridded�” components and �“coupler�” components.  It is 
cross-platform compatible and uses the Fortran and C 
programming languages. It is capable of handling parallel 
execution and has many tools available to the programmer for 
use. The individual components must be modified to fit 
within the structure of the framework, and the components 
also have to be aware of and use the features of the 
framework, thereby limiting the components�’ ability to be 
used in other frameworks. 

The Common Component Architecture (CCA) [4] is 
another component-based method of model interoperability.  
However, instead of providing a framework, CCA provides a 
definition language and interface for creating a framework.  

The Scientific Interface Definition Language (SIDL) is a 
meta-language that provides an interface definition that is not 
specific to any language.  Each component of a CCA-
compliant framework defines a SIDL of what input or output 
ports it supplies, and the ports can be represented by scalars, 
arrays, or functions.  CCA allows a model coupling 
programmer to define a framework for coupling other models 
with their model and, with some standardization, it can be 
used to couple models on a mass scale.  However, it is 
necessary to create a model with CCA in mind, or wrap the 
model in a CCA interface.  Regardless, the component gets 
compiled with a program, and cannot be changed without a 
configuration file alteration, or recompilation. 

OpenMI [5] is an interface standard that was produced for 
component interoperability by the OpenMI Association.  It is 
not a framework or code interface, but rather a standard for 
code interfaces and the methods that need to be supported to 
comply with the OpenMI standard. The standard defines 
methods for initializing a component, retrieving data, creating 
links, and cleaning up the components. The OpenMI standard 
affords component writers the ability to create a component 
without consideration of the programming language, or even 
the system that it will be plugged into.  It allows the 
programmer total freedom within the bounds of the standard. 

Many of the issues with these existing solutions stem from 
their inflexibility in language support and dynamic 
replacement. OpenMI seems to stand out as a broader 
solution to the problem of model interoperability, but it is a 
standard, not a framework for linking the components 
themselves.   

 
Fig. 1.  Software Framework Architecture. 



This is where we hope the solution we are proposing will 
stand out, as it will not only allow these components to link 
together, but the Demeter software framework will offer 
several distinct features that are unavailable in most other 
frameworks. 

IV. ARCHITECTURE 

The proposed system is comprised of several distinct parts, 
some of which can be used independently without the others.  
In designing this system, it was intended to give the users 
enough freedom as to do what they want, but at the same time 
it would not give so much freedom that the users would not 
know what to do.  There are three major components to the 
Demeter software framework that should be noted: the 
Silverlight Client, the Workflow Runtime Host, and the 
Server Cluster.  There is a small amount of overlap between 
the components, but the users are given the freedom to only 
use the parts they need, or want, for their research. 

The system makes significant use of web services.  A web 
service is a collection of endpoints that can receive messages 
from different clients to perform specific functions on the 
host machine. This functionality is similar to a library in 
programming, except that the service is at a remote location, 
hosted on a server. This would, for instance, allow a 
programmer to access functionality that requires HPC (high-
powered computing) resources from his or her local machine 
without taking up the limited resources of that local machine.  
So, the user could run a complex simulation model on a 
server from his or her local machine using a web service, 
assuming the model was set up to act as a service. 

Fig. 1 shows the Demeter framework�’s architecture as a 
whole.  The legend on the bottom right of the figure shows 
the meanings behind each of the different shapes. The 
Demeter software framework itself encompasses two main 
components, the User Interface and the Code Interface. The 
User Interface consists of the Silverlight Client, which 
utilizes the Code Interface.  The user may choose to bypass 
the Silverlight Client altogether, but it is there for the user�’s 

convenience.  The blue icons indicate services, also known as 
�“activities�” in the context of the framework. These activities 
can be models, data transformers, file converters, and other 
pieces of code that can be used when linking models together. 

The Demeter software framework takes advantage of the 
web service concept and creates the ability to access the 
various models as web services to be executed on the HPC 
nodes that are set up as part of the Server Cluster.  The 
models are coupled together using a workflow metaphor, 
which is defined using the Silverlight Client.  In addition, the 
software framework allows the users to register new 
activities/models from their own servers, and although it is 
not illustrated in Fig. 1, activities on their local machines can 
be registered as well.  When executed, these activities operate 
seamlessly as part of the Workflow Runtime Host, which is 
also hosted on the Server Cluster.  The Workflow Runtime 
Host executes the workflow created by the user, and due to it 
being hosted elsewhere, the user does not need to remain 
connected. 

There is also an API that allows the users to plug their 
model or activity into the system, and allow others to use it as 
a means of sharing their work without breaking many of the 
policies that may be infringed by doing this. This also affords 
researchers with limited or no HPC resources to utilize other 
HPC resources as a means to complete their own work.  This 
is the crux of the design for the proposed software framework 
�– to allow for extended sharing of resources for the 
advancement of research.  

V. THE SOFTWARE FRAMEWORK COMPONENTS 

The Demeter software framework is divided into three 
major components: the Silverlight Client, a Workflow 
Runtime Host, and the Server Cluster that contains the 
models maintained on site.  These three major components, 
combined together, allow the user to define workflows, use 
the models maintained on the server, and run them as part of 
a workflow.  As previously mentioned, the user does not need 
to utilize all three components in order to use the system, but 
they are closely related and work best as parts of the whole. 

1. The Silverlight Client 
The Silverlight Client is the first component to discuss, as 

Fig. 2.  The Silverlight Client. Fig. 3.  Activity Registration Window. 



it is what allows the user to define workflows, register 
activities, and send a message to run one of the workflows 
that were defined.  The application itself it embedded into a 
webpage and the user interface was developed in Silverlight 
[6], which is cross-platform and cross-browser compatible.  
Developing the Silverlight Client in this way allows it to be 
reached by a broader group of people, and the user interface 
will be displayed consistently among those who use it.  
Finally, Silverlight applications will also immediately update 
whenever the user goes to the website that is embedding the 
application, so there is little need to maintain knowledge of 
several previous versions, only about the latest one being 
necessary. 

The Silverlight Client shown in Fig. 2 allows the user to 
define a workflow by linking an activity�’s output to another 
activity�’s input. Represented here is a simple workflow that 
uses a series of activities. It generates random integers, finds 
the mean, and displays the output to a trace window after 
execution of the workflow. While this example does not 
convey the complexity of model coupling, the software client 
does allow the user to make the workflow as simple or 
complex as they wish.  Users have the ability to add new 
activities to the workflow via an activity registration window, 
brought up by the �“Register New Activities�” button in the 
top-left of the screen. 

With the Silverlight Client, the user is able to add services 
or local DLL files as activities to the Silverlight Client.  
Shown in Fig. 3 is the activity registration window, which 
shows the �“Get Median�” activity being added to a list of other 
registered activities.  The idea is to keep this aspect of the 

Silverlight Client as easy-to-use as possible, allowing the user 
to more efficiently get started using the workflow editor 
section of the application. 

Activities are added only if they are consistent with the 
standards of the Silverlight Client.  First, the programmer has 
to implement the activity code interface supplied with the 
API. The code interface is intended to be simple, but 
nevertheless to allow the user to create depth to their 
activities.  For instance, the programmer can display an edit-
time interface to the user, which allows him or her to setup 
any parameters that the activity needs before execution.  
Secondly, the programmer must remain consistent in how 
they name their inputs and outputs.  Each input and output 
(the small circles attached to the activities shown in Fig. 1) 
needs to have its own unique name, and when setting up the 
data outputs, each one must send information out at the end of 
the activity run. Finally, the user must bear in mind the 
security restrictions of Silverlight. The Silverlight API does 
not allow the programmer to manipulate files using code 
without some kind of user-initiated activity (e.g., clicking a 
button).  Directory and file information is unavailable, and so 
the programmer must allow for the manipulation of files 
through the input and output connections of the activity. 

Fig. 4 above illustrates a more complex workflow that has 
completed execution.  Seen here is the workflow shown in 
Fig. 2, but with added activities, and an output to the trace 
window.  Now, instead of merely finding the mean, it finds 
the median, which requires sorting the data set, and also gets 
the standard deviation, which requires the mean and the data 
set. The activities are all executed in a non-deterministic 

 
Fig. 4.  Completed Workflow. 



fashion, allowing whichever activity is available to execute 
when they have received all of their input.  For example, �“Get 
Standard Deviation�” cannot execute until �“Generate Random 
Integers�” and �“Get Mean�” completed execution. 

In addition, each of the activities in Fig. 4 comes from 
different sources.  Generate Random Integers, Get Mean, and 
Get Median all come from their own individual web services.  
Sort Integers, and Get Standard Deviation come from a single 
local activity library where both activities were defined.  
Finally, the Trace activity is built-in to the Silverlight Client.  
This should illustrate that even though the activities were 
diverse in their origins, they were all able to share data and be 
executed.  

2. Workflow Runtime Host 
The Workflow Runtime Host, presented in Fig. 5, is a web 

service that is hosted on part of the Server Cluster.  It is a 
relatively small component, but very powerful.  It is based off 
the Windows Workflow Foundation [7] in both terminology 
and its architecture.  The Workflow Runtime Host uses WF 
as the workflow runtime engine and offers additional 
features, which are still being developed. 

Since the Workflow Runtime Host is a web service, it can 
be called to execute a workflow, and the user can then 
immediately disconnect after the execution has begun.  The 
Workflow Runtime Host will continue execution of the 
workflow and notify the user of any progress or messages it 
receives via e-mail, text message, or other medium of 
communication.  The user can even log in from a different 
computer at a later time, open the Silverlight Client, and 
visually see the progress of the executing workflow. 

Another powerful feature of the Workflow Runtime Host is 
the ability to pause, stop, or resume execution of the 
workflow.  Most importantly, the Workflow Runtime Host 
can save its progress and keep, temporarily, as much 
information as possible.  This allows the user to resume an 
execution where something went awry.  With as long as the 
models run, this is one of the more important features to have.  
While the information cannot be stored indefinitely, the 
ability to resume it will be there. 

Since the Workflow Runtime Host is a web service, anyone 
with permission to use it will be able to use it as an 
independent component.  This means that programmers will 
be able to upload their own defined workflows without using 

the Silverlight Client. This is important because the 
programmer may wish to use the Workflow Runtime Host 
and several activities on the Server Cluster, but the Silverlight 
Client does not have the features he or she needs in order to 
couple his or her models.  

3. The Server Cluster 
The Server Cluster, shown in Fig. 6, is where the activities 

and the Workflow Runtime Host are maintained.  The servers 
themselves offer powerful computing resources as well as 
high storage capacity. The reason the Workflow Runtime 
Host is kept here is because when storing execution data for 
crash recovery, a large amount of space may be needed. That 
is where the Server Cluster comes into play. 

Several models are going to be kept on the cluster, 
available to be executed by those who have permission to do 
so. Each of these activities will be implemented using 
Windows Communication Foundation (WCF) [8]. This 
centralized location for the models is the key, as it allows the 
researchers on this project to access the same models on the 
HPC resources designed to handle the load. Furthermore, the 
models will have the ability to store the output to the database 
for further analysis and visualization. 

In addition, the server cluster will maintain a list of 
registered models that are added by other users. These 
activities will be available only to those granted access to the 
activity by the activity�’s owner.  This means that the activity 
owner will be able to make it publicly available, available 
only to several users of the system, or available only to the 
owner.  The only information stored in the activity registry is 
the URL of the activity web service, the type of Internet 
binding used, and the name and description of the activity. 

While the Server Cluster does not serve an active role as a 
component of the Demeter software framework, it is a crucial 
component nonetheless.  It allows models to be stored and 
run, the Workflow Runtime Host to execute workflows 
independently, stores a list of registered activities, and 
provides high storage capacity. 

 
Fig. 5.  The Workflow Runtime Host. 

Fig. 6.  The Server Cluster. 



VI. CURRENT AND FUTURE WORK 

The research, design and development on the Demeter 
software framework started in early 2010. Significant amount 
of time was needed to research the field and determine an 
approach to the problem that would prove useful. The result 
was a design that is both flexible and unique in its use of web 
services, recent technologies, and powerful activity-sharing 
capabilities. 

At its current state, the Silverlight Client is in its early 
prototype stages, and will undergo several revisions before 
final release. It currently has the ability to register activities, 
define workflows, and execute them using a runtime engine 
embedded into the Silverlight Client. Much of the future work 
will continue to involve developing the complete set of 
features needed for its initial release, and collaborating 
significantly with others on the project.   

The Workflow Runtime Host is currently developed only in 
part. It is not a web service, but rather a part of the Silverlight 
Client that operates solely on the user�’s machine. It will be 
extracted to a web service after further research and 
development on the Silverlight Client is completed. 

One important feature to be added later to the Silverlight 
Client and Workflow Runtime Host is the ability to manage 
model time and space steps, accounting for the variations 
used by the different models.  For instance, if global climate 
model A simulates at a 25 km resolution over 10 years on a 6 
hour time step, and hydrological model B simulates on a less 
than 1 km resolution for 2 years on a 1 hour time step, then 
model A and model B will have to resolve their spatial and 
temporal differences somehow, likely using an intermediary 
such as the Silverlight Client and Workflow Runtime Host.  
How this will be done needs to be researched, but it would be 
an important addition to the feature set of the software 
framework. 

Finally, the most important part of future work is to 
motivate the researchers to add their models and other 
activities to the Demeter software framework. This 
community effort to share work is what will make the 
proposed framework stand apart from many other solutions to 
the model coupling problems.  It is important to the process 
of model coupling that models be available for use by the 
Demeter software framework�’s user base. Notably, within the 
designed setup of the framework model creators can share 
their work without directly giving their models away. 

VII. CONCLUSION 

The field of model interoperability is complex, and 
coupling models can be an arduous task characterized by 
significant of code modification and difficulty in obtaining 
the models necessary for continued research.  The Demeter 
software framework proposed in this paper offers an 
alternative that limits the need for code modification and at 
the same time provides a library of models and other 
activities available to the users.  While currently it is in its 
early stages of development, significant collaboration and 
research is going into this project from various sources, 
mostly from climate modelers, but from other sources as well.  
We hope that this software framework can be a powerful tool 
for model coupling, and a motivation for the creation and 
sharing of work designed for the field of model 
interoperability.  

ACKNOWLEDGMENTS 

This work was made possible through the support provided 
by the National Science Foundation under Cooperative 
Agreement No. EPS-0814372.  Authors would like to thank 
Dr. Dan Ames, from Idaho State University, who suggested 
the use of web services for the proposed software framework 
for model interoperability. 

REFERENCES 
[1] T. Bulatewicz, �“Support for model coupling: An interface-

based approach,�” PhD dissertation, University of Oregon, 2006. 
[2] S. Okamoto, E. Fritzinger, S. Dascalu, F.C. Harris, Jr., S. Latifi, 

and M. McMahon, Jr., �“Towards an Intelligent Software Tool 
for Enhanced Model Interoperability in Climate Change 
Research,�” in Proceedings of the 2010 World Automation 
Congress (WAC-2010), Kobe, Japan, IEEE Computer Society, 
pp. 1/1-6. 

[3] Earth System Modeling Framework; �“ESMF�”; 
http://www.earthsystemmodeling.org/; Accessed February 18, 
2010. 

[4] CCA Forum; �“The Common Component Architecture Forum�”; 
http://www.cca-forum.org/; Accessed February 18, 2010. 

[5] OpenMI Association: �“OpenMI Association�”; 
http://www.openmi.org/; Accessed October 1, 2010. 

[6] Microsoft; �“Home: The Official Microsoft Silverlight Site�”; 
http://www.silverlight.net/; Accessed June 15, 2010. 

[7] Microsoft; �“Windows Workflow Foundation�”; 
http://msdn.microsoft.com/en-us/netframework/aa663328.aspx; 
Accessed June 15, 2010. 

[8] Microsoft; �“Windows Communication Foundation�”; 
http://msdn.microsoft.com/en-us/netframework/aa663324.aspx; 
Accessed June 15, 2010. 

 


