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Abstract

The combination of biologically realistic neural simula-
tions and robotic agents offers unique opportunities for
both computational neuroscience and research in intelli-
gent robotics. A concept that can provide insights into
the cognitive developments involved in human robotic
interaction as well as provide a pathway to developing
truly intelligent agents. In this paradigm spiking neural
models are coupled with physical or virtual entities in a
closed-loop. The embodied agent provides stimulus to
the neural model which in turn provides a filtered and
processed view of that world. More often than not the
complexity and corresponding computational burden of
these models necessitates the use of high-performance
computers that must be stored and maintained separate
from the entity. In these instances, closing the loop can
be an arduous task requiring intimate collaboration be-
tween neuroscientists and engineers. Presented here is a
software package for simplifying those interactions while
facilitating the communication between neural simula-
tions and abstract remote entities.

Keywords: Neurorobotics, Spiking Neural Network
Simulation, Autonomous Agents, Intelligent Robotics.

1 Introduction

Computational neuroscience enjoys a unique role in bi-
ological research. At one end it can help validate and
quantify experimental results. While at the other, it
provides a predictive mechanism for aspects of the ner-
vous system that are unreachable by any other means.
In addition to the importance mathematically modeling
the nervous system has to physiological research is its
value to artificial intelligence and autonomous agents.

By employing spiking neural models as the process-
ing elements for robotic agents, researchers are attempt-
ing to explore theories that span the breadth and depth
of robotics, AI and neuroscience. Understanding neu-
rological processing often requires complex interactions
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with the real world (or a virtual one). This is the case
in the fields of both social robotics [1, 2] and neuro-
robotics [3–5]. These theories generally involve the inte-
gration of several sensory modalities as well as complex
commands between the agent and the neural architec-
tures controlling it. This integration can be a complex
task requiring either expertise in both computer engi-
neering and neuroscience or collaborations between ex-
perts in each of these fields. The software, NCSTools,
presented here was developed to ease the complexity of
interfacing neural models with remote agents as well as
abstract the neurological detail from the roboticists and
the engineering detail from the neuroscientists.

This paper is laid out with the remainder of this
section presenting a minimal background on spiking neu-
ral models and neurorobotics as well as introducing NC-
STools. This is followed by Section 2, which illustrates
the design choices made in this project as well as the ba-
sic software engineering behind its implementation. Sec-
tion 3 provides a complete example of how NCSTools can
be used to speed-up the task of interfacing with a spik-
ing neural simulation. Finally, Section 4 concludes with
some current applications where NCSTools has been uti-
lized as well as some future directions.

The work presented here is an extension of a presen-
tation given at the Computational Neuroscience Society
Meeting in San Antonio, Texas, August 2010 [6].

1.1 Spiking Neural Models

Simulating excitable cells involves integrating a set of
differential equations that describe the electrical activ-
ity along the membrane of the cell. The unique aspects
of these cells is that once a threshold voltage has been
reached, an all or nothing avalanche of electrical current
occurs. This results in a spike of electrical activity, or
an action potential, and initiates the communication be-
tween neurons. Its effect is felt by all neurons connected
to the one that spiked, or fired. Additionally, repeated
spike events can alter or grade the effect felt by those
downstream neurons. This modification is referred to as
synaptic level plasticity and is thought to play a major
role in animal learning [7]. By combining the differential



equations describing membrane voltages with the synap-
tic communication, computational neuroscientists hope
to reveal details of the nervous system unavailable with
current experimental techniques.

1.2 Neurorobotics

The field of neurorobotics focuses on the coupling of neu-
ral systems with some form of physical actuation. An
example of this is the concept of virtual neurorobotics
(VNR). This is based around the interoperability of a
neural model, a virtual robotic avatar and a human par-
ticipant [8, 9]. Under all but the most basic scenarios
this interoperability is accomplished through an orga-
nized network communication system. For this paper
an emphasis is placed on robotic and automated agents;
however, it should be noted that the tools described here
are by no means limited to that application.

1.3 The NeoCortical Simulator

The NeoCortical Simulator (NCS) was developed at The
University of Nevada, Reno by the Brain Computation
Lab under the direction of Dr. Phillip Goodman. From
its inception a heavy emphasis has been placed on paral-
lelization and performance. In addition, mechanism for
getting spiking information out and stimulus in was also
extremely important. Despite the focus on performance,
NCS provides a number of important biological models.
For a review of what NCS has to offer refer to Wilson
et al. [10, 11] and to see how NCS compares to other
neural simulators see Brette et al. [12]. Its features can
be summarized as:

• High-performance MPI-based parallel architecture
• Leaky Integrate-and-fire (LIF) neurons with con-

ductance based synapses and Hodgkin-Huxley chan-
nels.

• Hebbian synaptic learning with Short-term plastic-
ity, augmentation, and spike-timing dependent plas-
ticity (STDP).

1.4 NCSTools

NCSTools is a bridge between neuroscientists and engi-
neers using NCS for research. The strength of NCSTools
lies in its configuration language. It provides a mecha-
nism for defining interactions between the neural simu-
lation and the agent. These interactions are described
using plain text strings and developers simply need to
agree on the strings to develop their components. Be-
sides the benefit that neither end is required to know
intricacies of the other, this also provides a level of reuse
that can reduce development time. The only require-
ment is that the strings remain consistent. This greatly

reduces the development time of a neurorobotic applica-
tion.

2 Design

NCSTools was developed in C++ with a focus on object-
oriented design principles. The motivation for its con-
struction was driven by the need for a replacement to
the previous software package, Brainstem [13]. Although
successful as a proof-of-concept, Brainstem lacked the
necessary extensibility and reliability required for rapid
use by researchers. Based on these inadequacies, sev-
eral non-functional requirements were identified before
starting the development of NCSTools. These were

1. Usability: The use of NCSTools must be relatively
simple. Although its intended users are scientists
and engineers, its operation has to make sense based
on the task.

2. Extensibility: The rapid pace of scientific research
necessitates a system that can be readily extended
to incorporate new ideas and concepts.

3. Robustness: The codebase must be invariant to
the application and multitude of configurations.

4. Reliability: NCSTools is intended for researchers
performing experiments in both neuroscience and
robotics. If it is unreliable, meaningful results can
be lost.

The component interfaces provide layered abstrac-
tion supporting an extensible yet robust code base. Sim-
ilarly, the configuration language supports overall usabil-
ity. Throughout this section numerical subscripts that
correspond to the non-functional requirements are used
to indicate how each design element supports the re-
quirements.

Figure 1 presents the system level layout of NC-
STools. The major components are described below.

Figure 1: System layout. With the exception of the user inter-
faces, all connections are made using the various network clients
described below.



input :
{

NCSReportCollection1 : {
num reports = 500 ;
# The t o t a l per iod o f counting , i n c l u d e s
# repor t c o l l e c t i o n and recovery .
per iod = 500 ;
# The number o f r e p o r t s .
NCSReports = 2 ;
type = "STANDARD" ;
NCSReport1 : {

connect ion = "to_PMC1" ;
command = "point_left" ;
} ;

NCSReport2 : {
connect ion = "to_PMC2" ;
command = "point_right" ;

} ;
# Setup the p l o t s f o r t h i s group .
p l o t = "YES" ;
plotType = "BAR" ;
plotname = "Motor Activity" ;
tabIndex = 1 ;
p lot Index = 1 ;

} ;
} ;

Listing 1: Input configuration example. This is a fixed
window input container with a window of 500 spike reports from
NCS. After that time the activity from the named connections
“to PMC1” and “to PMC2” are compared. The command
corresponding to the winning channel is sent to the connection
clients. For instance, if the “to PMC1” channel is more active the
command “point left” is sent to the connected agents. The last
section is used to configure if, where, and how this activity will be
presented on the user interface.

2.1 Configuration Language1

The flexibility of NCSTools lies in its configuration lan-
guage. Most aspects are modifiable at runtime through
the input configuration file. This includes control for
the definable communication “language”, the GUI, User
IO and Data processing. There are two examples of the
configuration language provided in Listings 1 and 2. The
component of NCSTools that these correspond to are de-
scribed in Sections 2.2 and 2.3 respectively.

2.2 Inputs2,3

In the context of this paper, inputs are the signals com-
ing from the NCS simulation specified as reports. NCS
publishes population level information about the simu-
lation to each of the reports requested. This informa-
tion can be spike-counts for individual neurons, sampled
synaptic weights and neuron voltages.

Input Containers

The base class for all inputs is the input container. This
provides the common functionality, such as initialization

and communication, as well as the interface for all de-
rived classes.

Windowed Input Containers

Windowed input containers allow the user to specify a
window of time over which the spiking activity of any
number of neuron populations can be compared in a
winner-takes-all pattern. The window of time is deter-
mined by how often the NCS simulation sends spiking
information. There are currently two types of derived
window input containers, one uses a fixed amount of time
and the other uses a moving window.

The fixed time container compares the spiking ac-
tivity over a static window. After the defined period of
NCS reports has elapsed the most active population (the
one with the highest number of spikes) is selected. The
command specified in the configuration file for that re-
port channel is then sent to all connected clients. An
example configuration for a fixed time container is pre-
sented in Listing 1.

The second input container uses a moving window
of time. This window is fixed width but progresses in
time as the simulation progresses. This continues until
the most active population’s activity is greater than the
next most active by a user specified threshold. At that
time the command associated with that report is sent
out and the window is reset.

A key feature of both the inputs and the outputs,
described in Section 2.3 below, is the ability to bind the
same command string to multiple containers. This pro-
vides a mechanism for starting a coordinated series of
events based on a single client command or simulation
result.

In addition to sending commands to the connected
agents these containers can also be used for plotting in
the GUI as described below.

2.3 Outputs2,3

The NCSTools outputs define the signals traveling to the
NCS simulations. These are stimulus sent to populations
and can be triggered by text strings from the connected
clients or by the built-in touchpad interface described
below.

Static Output
The stimulus sent to the neuron population is fixed and
defined by the configuration file.

Dynamic Output

The stimulus sent to the neuron population is sent by
the client along with the string command.

Timed Output

Timed output containers are used to send the same stim-
ulus a set number of times. Through the configuration
file the user can specify how many times to send the



output :
{

NCSStim1 : {
type = "TIMED_OUTPUT" ;
command = "saw_red" ;
connect ion = "from_VC1" ;
# The s t a t i c output to send .
output = "0.2000" ;
# How many t i c k s between stim inputs .
f requency = 50 ;
# The number o f t imes to repeat the input .
num outputs = 1 0 ; ;

} ;
NCSStim2 : {

type = "TIMED_OUTPUT" ;
command = "saw_blue" ;
connect ion = "from_childbot_VC1" ;
output = "0.0000" ;
f r equency = 50 ;
num outputs = 1 0 ; ;

} ;
} ;

Listing 2: Output configuration example. Two outputs are
configured here; each tied to a different command from the
connected agents. These are both timed outputs where the
stimulus, in this case a value of 0.2000, is sent every 50 simulation
reports a total of 10 times. Where the stimulus is sent depends on
the string received from the connected clients.

stimulus and the interval between successive stimulus.
An example of this is presented in Listing 2.

2.4 Network Communication3,4

Aside from the user interface, the connections illustrated
in Figure 1 represent one or multiple network communi-
cation mechanisms. NCSTools not only coordinates the
connection to and from the NCS neural simulation but
also provides a network server for handling client and re-
mote agent connections. The individual components of
the network communication provided by NCSTools are
described below.

2.4.1 NCSTools Server4

NCSTools uses a simple POSIX socket server for client
communication. The simplicity of the server helps ensure
its reliability and the low-level components help guaran-
tee that the performance of the server does not hinder
the overall application.

2.4.2 Client Communication2,3,4

Several client implementations are provided for C++,
Python and MATLAB/Java. These provide objects that
appropriately abstract the interface from the implemen-
tation to support the extensibility of both NCSTools
and client applications. Both blocking and non-blocking
communication is supported.

IO Clients

The IO clients are used for most applications. These
provide the input and output mechanisms required to
interact with NCSTools.

Pacing Clients

As neural models increase in both size and complexity
they often exceed the real-time capabilities of the hard-
ware. Pacing clients are provided to ensure that remote
clients do not overfill buffers or lose track of the sim-
ulation. These connect to NCSTools to maintain syn-
chronization and receive heartbeats that are output at
user specified intervals signaling the current time in the
simulation.

Passthrough Clients

Passthrough clients connect to the NCSTools server and
receive messages sent to or from other clients connected
to the server, including the NCS simulation. These
clients can provide users with a complete landscape of
the neurorobotic experiment. These can also be used to
create context aware clients that can modify their be-
havior based on the state of the system.

2.4.3 voServer

Communication with NCS is facilitated by the voServer
package [14]. This is a minimal publish-subscribe server
that provides both binary and ascii data streams. As
part of this project a C++ client was developed similar
to the NCSTools clients described above. This client is
used by all of the IO modules of NCSTools.

2.5 Graphical User Interface

The Graphical User Interface (GUI) is an option given
to users for visualizing aspects of the neural model in
real-time. The GUI was written as a C++ library using
Qt [15]. As with all aspects of NCSTools, it is completely
configurable through the input file. The user can specify
each tab and what information shows up on that tab.
An example GUI is given in Figure 2.

Plot Types

The GUI is used to visualize the state of the NCS simu-
lation. It provides three plot types:

Bar Plots

Bar plot are used to visualize the spiking activity of com-
peting neuron populations. It uses the derived instances
of the windowed input containers, described in Section
2.2.

Raster Plots

Raster plots present the precise spiking activity of the
neurons within a population. The X axis is the time, in



Figure 2: Example graphical user interface. This is a single tab
that presents the three main types of plots. The tabs and plots
are dynamically created based on the configuration file provided
at runtime.

units of simulation reports, and the Y axis corresponds
to the neuron index relative to the population.

Line Plots

Line plots are used to plot the synaptic efficacy over
time, again this is in units of simulation time.

2.6 Touchpad Interface

The touchpad interface provides users with a way to bind
keyboard inputs, either single keys or new-line termi-
nated strings, to stimulus and control signals. The input
is entered through the command line and is fully config-
urable through the input language. There are three ma-
jor options for the touchpad that are described below.
The touchpad signals can be directed to a named NCS
input or to agents connected to the NCSTools server.
Similar to the inputs and outputs described above, a
particular key binding can be used for any number of
different commands. With this a single keyboard input
to control many different aspects of the neurorobotic in-
teraction.

Instant: When touchpad bindings are defined as instant
their associated actions will occur only once and as soon
as the command is received.

Repeated: The repeated bindings are analogous to the
time outputs described in Section 2.3. These provide a
way to repeat an input stimulus over a configured period
of time.

Timed: The timed bindings provide a mechanism for
setting a period of silence before repeating the configured
stimulus. This basically creates a window of stimulus
followed by a rest period. This window is then repeated
for the configured number of times.

Coupling With Input Signals

The unique aspect of the Repeated and Timed bindings
is the ability to couple them to signals coming from the
connected agents. When a configured signal is received
from a connected agent the user is prompted for a nu-
merical value by the touchpad interface. This value is
used to determine the graded input values sent to the
simulation. This is used in the example given in Section
3 below.

2.7 Control Interface

In addition to sending stimulus and receiving reports,
NCSTools provides access for controlling and modifying
a running neural simulation. Commands can be bound
to strings from connected agents or to the built-in touch-
pad functionality. Some of the features this releases in-
clude the saving and loading of model states, modifica-
tion of synapses, adding new stimulus paths and stop-
ping the simulations.

3 Example Scenario

To illustrate NCSTool’s role in neurorobotic research,
a motivating example is presented in Figure 3. In this
case the remote agent is a virtual robotic avatar and the
interaction is with a camera and the touchpad interface.
The steps are:

1. Camera captures image from user and dominant
color is calculated.

2. The virtual environment sends the defined plain text
statement (“saw red”) to NCSTools through the
server interface. This uses a static output described
in Section 2.3.

3. Based on the configuration NCSTools will stimulate
the appropriate regions of the remote NCS Model
through the NCS network interface.

4. The activity of the two premotor regions in the
model are monitored and compared as the simula-
tion progresses. A windowed input describe in Sec-
tion 2.2 monitors the activity.

5. In this case a winner-takes-all calculation is com-
puted and the appropriate plain text statement is
sent through the NCSTools server interface to the
robotic avatar based on the most active brain re-
gion.
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Figure 3: Example neurorobotic scenario.

6. The user is then given the opportunity to “reward”
the robot if the correct color was identified. The
reward is achieved by coupling the output from the
agent with the touchpad interface as described in
Section 2.6.

Although this is a simple example there is still a
significant amount of coordination involved.

4 Discussion

NCSTools provides a dynamic interface to the neural
simulation environment NCS. The abstraction between
the neural models and the robotic interface is unique to
this project and there have already been several projects
that have successfully leveraged NCSTools.

Oxytocin Induced Trust

The work presented by Anumandla et al. [16] made
extensive use of NCSTools. In this project a human
participant interacted with a robotic avatar through a
GPU based gabor processing application, NCSTools and
a NCS simulation. The results of this work provided new
theories on the role Oxytocin may play in establishing

and stabilizing trust between mammals. These theories
would not have been possible without a closed loop vir-
tual neurorobotic system.

Emotional Speech Processing

Thibeault et al. [17] used NCSTools to coordinate
the processing between a speech extraction package and
a neural simulation. The speech processing algorithm
successfully extracted the emotional aspects of a person’s
speech pattern to determine the reward stimulus to inject
into the model.

Virtual Reality

As part of an unpublished proof-of-concept, NC-
STools was utilized for the large-scale visualization of a
running neural simulation. The neural model was con-
structed within NCS along with a corresponding X3D
model. The visualization software created a virtual rep-
resentation of the neuron populations. Through the
network interface the voltages of the cells within the
model were collected and as the simulation progressed
the model neurons would change color to represent the
voltage of the cell. In addition, 3D sound was used to
signal when a spike was fired. The package was tested
successfully on a 3D wall and a 6 sided Cave Automatic



Virtual Environment (CAVE).

Future Directions

There are several directions that have been identified for
future development of NCSTools.

Real-time Structural Modifications

Providing a mechanism for users to modify aspects
of the model including the type of neuron and the con-
nectivity, will greatly increase the rate at which different
models can be evaluated. In addition, this would pro-
vide a mechanism for actively modifying neurogenesis
(the addition of new neurons), and synaptogenesis (the
dynamic addition and removal of synaptic connections).

Cluster-Aware Version

The complexity of large-scale neural models gener-
ally requires distributed compute clusters. By creating
a cluster-aware version of NCSTools, multiple instances
can run in parallel while still coordinating communica-
tion between instances.

Dynamic Server Configuration

The current version is only modifiable on initializa-
tion. Allowing users to modify the configurable aspects
of NCSTools will make it a more appealing tool for neu-
rorobotics.
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