A GPU Algorithm for Comparing Nucleotide Histograms

Adrienne Breland” Harpreet Singhf Omid Tutakhill Mike Needham!
Dickson Luong’ Grant Hennigt Roger Hoang! Torbjorn Loken!
Sergiu M. Dascalu’ Frederick C. Harris, Jr.f

fDepartment of Computer Science & Engineering *#Department of Physiology & Cell Biology

University of Nevada, Reno
Reno, NV 89512

Abstract

We designed and implemented an algorithm
for conducting bioinformatic sequence compar-
isons with GPU processing. The input is a set of
short “test” sequences and a set of longer “refer-
ence” sequences. The algorithm determines where
along any of the reference sequences the test se-
quences may align. We compared run-times of the
GPU implementation with a CPU implementation
on a large, real dataset and gained a 5.5-6x speed-

up.

1 Introduction

Utilizing the massively parallel architectures
in GPU computing has led to exceptional increases
in speed for many sequence comparative appli-
cations in bioinformatics [1]. However, this re-
quires that algorithms be redesigned to exploit
GPU hardware [2, 3]. For example, GPU adapta-
tions of BLASTP, Smith-Waterman [4, 5, 6], and
HMMER [7] have allowed speedups of 10x, 10x-
50x, and 60x-100x respectively. As the advantage
of GPU computing becomes more apparent, sev-
eral applications are being designed to directly ex-
ploit GPU architecture while bypassing most com-
putation on the CPU. These include applications
such as Cmatch for sequence matching [8] which
enables a 35x speedup, and MSA-CUDA for mul-
tiple sequence alignment [9] which also allows up
to 37x speedup.

GPU processing is the execution of compu-
tation using a Graphics Processing Unit (GPU),
stored on graphic cards, instead of a Central Pro-
cessing Unit (CPU). A GPU may be thought of
as a CPU which has been redesigned for a specific
type of problem. CPUs have been optimized to
execute sequences of instructions rapidly. These
instruction sequences do not always remain the
same, and often take different paths depending
on execution at runtime. This is referred to as

978-1-880843-87-1/ISCA ACC/June 2012

branching. Much of the CPU architecture is al-
located to handle branching while still allowing
rapid execution of instructions [10]. However,
more parallel applications, such as graphics pro-
cessing, are not characterized by high levels of
branching. The same set of instructions are ap-
plied to large sets of data, such as making the same
change to each pixel in an image. In these cases,
CPU resources allocated to optimize instruction
branching are not being used as efficiently as they
could be. GPUs are not optimized for instruction
branching and the majority of resources are left
for direct computation [10].

Many algorithms used for sequence compar-
isons are well suited for implementation on GPU
processors. Sequence comparisons are often em-
barrassingly parallel, meaning that comparing one
pair of sequences may be accomplished indepen-
dently of a simultaneous comparisons of another
pair of sequences. Thus, the same set of compar-
ison instructions can be applied to different se-
quence pairs and run in parallel. This type of
parallel computation allows a well defined set of
instructions with little to no branching.

Here, we present an algorithm for compar-
ing sets of short RNA sequences against sets of
reference sequences in which the majority of com-
putation is accomplished on the GPU. The algo-
rithm is used to identify sub-strings in the refer-
ence sequences with the potential for high align-
ment scores with any of the reference sequences.
These are candidate regions for more computa-
tionally intensive, full alignment comparisons in
later processing steps not described here.

2 Overview

The sequence data that we consider here con-
sists of a set of short RNA sequences, which we
call test sequences, and a set of longer reference
sequences. Our test set contains 61,120 sequences

which range in length from 15 -169 nucleotides.
Our reference set contains 608 sequences which
range in length from 21-700,395 nucleotides. The
goal is tofind at what positions, if any, each test
sequence may align somewhere along one or more
of the reference sequences.

This is accomplished by computing and com-
paring the nucleotide histogram of each test se-
quence with the histogram of each subsequence
(equal in length to that of the test) found in the
references. If the nucleotide histograms are equiv-
alent by a given percentage, which may be set by
the user, the test sequence and the reference sub-
sequence are marked as potential matches.

2.1 Complexity

Given N test sequences and M reference
sequences, NxM string comparisons are accom-
plished. To perform a comparison between a sin-
gle test sequence (T;,i € N) and a single reference
sequence (R;,j € M), T; must be compared with
every overlapping subsequence in R; with a length
equal to that of T;, denoted as |T;|. This yields
(IR;| — |T3| + 1) comparison operations for each
test sequence.

Assuming that each R; is at least as long as
the shortest T;, which we call |Thssn], the maxi-
mum possible number of comparison calls will be:

Nz(> (IRj| = Tarn + 1))

J
M
N (IRjl = NMTyn + NM

J

assuming that:

M
Z |RJ| >> MTyrn (1)
J
and:
M
SOIRy| 5> M @
J
we have:
M
O(N) =Nz) _|Rj| (3)
J

2.2 Histograms

The nucleotide histogram of a genomic se-
quence is an integer array of length four contain-
ing counts of each character type. The alphabet
for any genomic sequence contains four characters
{a,c,g,t/u}. DNA sequences contain 't’ where

—_—

Figure 1: For each subsequence of length |T;| in
the reference, (R;), we compute a nucleotide his-
togram to compare with that of T;.

RNA sequences contain 'u’, however we may con-
sider them equivalent when performing a string
comparison, and in the following discussion, we
only refer to 't’. Thus, for each test sequence T;
of length |T;|, we compute the histogram in which
the first element contains the number of a’s found
in T;, the second element the number of ¢’s, the
third element the number of ¢’s and the fourth
the number of ¢’s . Histograms are computed for
each test sequence, and then again for each over-
lapping subsequence in the reference. This com-
parison scheme is illustrated in Figure 1.

Histogram differences are computed as the
summed ratio of differences computed between
counts of each nucleotide. Thus for two arrays (T;
and R;) of length four, the difference in nucleotide
counts (D) is given as:

3

D= abs(Tiz] - Ry[x]) (4)

x=0

The percentage similarity (.S; ;) is computed
as unity minus the percentage in difference be-
tween the two sequences:

i 5)
|T]

Thus, if S; ; is greater than or equal to a user
defined threshold, that region in R; is flagged for
further comparison with 7;.

S{,’j =1-

3 GPU Implementation

The implementation language was Compute
Unified Device Architecture (CUDA) C, a develop-
ment language that enables efficient usage of the
GPU architecture. The Thrust library was also
utilized. This library contains many data struc-
tures and functions applicable to string processing
which have been optimized for GPU architecture.
Programs were developed and tested using a Fermi
Architecture NVIDIA graphics card, GeForce 480
series.

3.1 Inclusive Prefix Sum (Scan)

Nucleotide counts are computed with the
scan algorithm [11], which is implemented in par-
allel in the Thrust library for CUDA C. The scan
algorithm sequentially compounds a binary oper-
ator function on an array of values, producing a
new array of the compounded value up to each in-
dex. We use the inclusive version of scan, which
requires a minor modification to input arrays be-
cause the Thrust function is exclusive. With the
inclusive scan operation, the output at each index
includes the compounded operation on the input
at the same index. The exclusive scan only in-
cludes the compounded operation on the input up
to the preceding index.

An example of the inclusive scan is given. As-
sume the binary operation is “+” with an input
array of:

X =[1,1,2,3

The resulting output array will be:

X' =[1),0141),0+1+2),1+1+2+3)]
X'=1,2,4,7]

To compute nucleotide counts in a sequence,
we first divide it into four binary representa-
tions denoting the presence or absence of each nu-
cleotide. Given a nucleotide sequence S, it is first
converted to four binary strings (S.,S¢,Sg,St)
representing the presence or absence of nucleotide
x,x € {a,c,g,t}. This is illustrated in Figure 2.
The binary conversions are accomplished using the
thrust::transform function.

The inclusive scan algorithm is run on each
of sequence permutation (Sg, Sc, Sg,S¢). This en-
ables a parallel computation of the number of each
character type in a given string or subsequence of
a string. For example, assume a nucleotide string;:

S = attggaaaacacaa

for which:

S, =10000111101011

An inclusive scan with the “4” operator results
in:

S! = 11111234556678

The number of a’s found in any contiguous portion
of S may be computed by looking up only two in-
dices S,’. For example, to compute the number of

S acttgagc

S. 10000100
Sc¢ 01000001
Sg 00001010
S; 00110000

Figure 2: Binary representations of each nu-
cleotide type.

a’s in the substring beginning at the second char-
acter position and ending at the tenth (S[1] to
S[9]), we compute S [9] — S/ [0] =5—-1 = 4.
This is illustrated in Figure 3.

S = a[ttggaaaac]acaa
Sa = 1[000011110]1011

Sa'=1[111123455]6678

Sa'l9]-Sa'l0]=4

Figure 3: Computing the nucleotide count for a
given substring only requires accessing two array
indices.

4 Algorithm
4.1 Processing Test Sequences

The algorithm begins by concatenating all
short RNA test sequences into one string with
character delimiters inserted between each test se-
quence. This concatenation is converted into the
four character specific binary strings, with delim-
iters maintained, as shown in Figure 2. An inclu-
sive scan is then performed on each string. The
scan compounds the “4” operator up to each de-
limiter, and then restarts. Thus, each numeric
value in the scan output preceding a delimiter rep-
resents the number of characters of given type in a
test sequence. The thrust::gather function is used
to extract these values which precede delimiters
thereby producing a condensed array with char-
acter counts per sequence. This is illustrated in
Figure 4.

{F T, g
CONCAT_T ——
Tl T2 T3

CONCAT_T.' 00011122#11223333#0001#

Number of a's per
test sequence

Figure 4: The thrust::gather function is used to
extract nucleotide counts per sequence and con-
dense them into an array.

4.2 Processing Reference Sequences

Reference sequences are also converted to
four character specific binary strings and pro-
cessed with the inclusive scan. Recall, to compare
a test sequence (T;) against a reference sequence
(Rj), the character histogram of each overlapping
subsequence of length |T;| in R; must be computed
(Figure 1). We assume that the test sequences are
sorted by length, shortest to longest, prior to be-
ing used as input. Thus, for each length found in
the set of tests, overlapping reference histograms
are computed using the operation described in Fig-
ure 3 and results are stored temporarily. If several
test sequences with the same length exist, the ref-
erence histograms for that length must only be
computed once for comparison with all tests of
that particular length.

5 Streaming

Streams are sets of instructions to be ex-
ecuted sequentially. Multiple streams can en-
able computational speedups by overlapping data
transfer operations (between host (CPU) and de-
vice (GPU)) and data processing on the GPU. Ide-
ally, the data transfer step in one stream will occur
simultaneously with processing in another stream.

To make use of streams in our algorithm,
test sequences are compared with all reference se-
quences and results are copied back to the CPU.
Stream are managed by CPU threads which serve
as a small process managers by calling a stream
to compute comparison results for a test sequence
on the GPU, and then transfer those results asyn-
chronously back to CPU. When the stream has
finished, the thread uses the next available stream

to process the next available test sequence. Find-
ing the optimal number of concurrent streams was
accomplished by timing the process with stream
number ranging between 1-100. The optimal num-
ber for our data set was 22. Figure 5 shows the
graph of computing time vs. number of streams.

Process Time with Varying Number of Streams

+

*

+

+

*

4 5
%

&

i
L . L L L L L n .
0 10 20 30 40 50 60 70 80 90 100
Number of Streams(per data set)

Figure 5: Compute time vs. number of streams.

5.1 Pseudocode

The pseudocode is provided in the following.
In the pseudocode, R is the set of reference se-
quences and T; represent a test sequence in the
set of NV input test sequence where ¢ € N. It is
also assumed that the input sequences are sorted
by length and that lengths are precomputed.

start compare()
copy CPU — GPU (R)
concatenate(T;...Tx)
copy CPU — GPU (CONCAT_T)
scan (CONCAT_T)
while 1 < NUM
with next available stream
L = |next available (T;)|
get Histogramp, (R)
Vi,j €M
compare(Histogram (Ty) ,
Histogramy, (R;))
store (results)
end stream
copy GPU — CPU(results)
end compare()

6 Run-Time

We compared the GPU application run-time
with a CPU based implementation. Both a GPU
and CPU versions were tested on an Intel Core 2
Quad with 9GB of RAM running at 2.83GHz.

Like the GPU algorithm, the CPU version
also compares nucleotide histograms of all test se-
quences against histograms of all overlapping sub-
sequences in the reference set. However, the algo-
rithms are substantially different as the CPU ver-
sion does not include parallel computation. CPU
histograms are computed by iterating through se-
quences in a linear fashion and counting nucleotide
types. When computing histogram for overlapping
subsequences in the longer references, complete
histograms are not recomputed for each window.
Instead, the histogram is edited as a new character
is read by incrementing the count for that charac-
ter type, and decrementing the count for the char-
acter which has gone out of scope. This concept
is illustrated in Figure 6.

The time recorded for the GPU implementa-
tion was substantially faster than the CPU imple-
mentation. Using the same dataset on the same
machine, the GPU version completed all compar-
isons and results output in approximately 4m of
real and user time. The CPU version required ap-
proximately 55 minutes of real and user time. This
allows a speed up factor of at least 13x. Actual
run-times are listed in Table 1. The time recorded
for the CPU version also omits any time required
for results output.

real time user time
GPU 4m?25s 4m?23s
CPU 24m39s 23m59s

Table 1: Run-times for CPU and GPU algorithms.

acggtﬁaagtt........
#a=1, #c=1, #g=2, #t=0

#a=#a-1, #t=#t+1

#c=#c-1,#a=Ha+1

Figure 6: At the start of parsing a sequence, all
nucleotide counts in the first window are stored.
As the window progresses, counts are then modi-
fied by subtracting “1” from the count of the nu-
cleotide type which has gone out of scope, and
adding “1” to the type which has come into scope.

7 Summary

We describe a GPU algorithm for conducting
all-against-all comparisons between two bioinfor-
matic sequence sets. Potential string matches are
located by comparing nucleotide histograms be-
tween strings and substrings in the test and ref-
erence sets respectively. The algorithms employs
thrust::scan and thrust::gather functions rather
than linear string parsing, thus taking advantage
of the massively parallel architecture of GPU’s.

We compare the run-time of the GPU algo-
rithm to a CPU algorithm which employs linear
parsing of all text sequences using a single thread.
The dataset consists of 61,189 test sequences and
609 reference sequences. The GPU algorithm re-
quires 4m25s real time while the CPU algorithm
requires 55mb0s. This is at least a 5.5-6x speed
up factor in real and user time.

The algorithm described here is used to locate
where test sequences may align with any portion
of the reference sequences. Full alignment scores
are not calculated, only regions which are poten-
tially highly aligned are located. Future work will
involve implementing an alignment scoring algo-
rithm, such as the Smith-Waterman or Longest
Common Subsequences to these regions after they
are found to generate actual alignment scores.

References

[1] Dematté L, Prandi D (2010) Gpu computing
for systems biology. Briefings in bioinformat-
ics 11: 323-333.

[2] Elble J, Sahinidis N, Vouzis P (2010) Gpu
computing with kaczmarz’s and other itera-
tive algorithms for linear systems. Parallel
computing 36: 215-231.

[3] Vouzis P, Sahinidis N (2011) Gpu-blast: us-
ing graphics processors to accelerate protein
sequence alignment. Bioinformatics 27: 182.

[4] Ligowski L, Rudnicki W (2009) An efficient
implementation of smith waterman algorithm
on gpu using cuda, for massively parallel
scanning of sequence databases. Parallel &
Distributed Processing, 2009 IPDPS 2009
IEEE International Symposium on : 1-8.

[5] Liu Y, Maskell D, Schmidt B (2009) Cu-
dasw++: optimizing smith-waterman se-
quence database searches for cuda-enabled
graphics processing units. BMC Research
Notes 2: 73.

[6]

Manavski S, Valle G (2008) Cuda compati-
ble gpu cards as efficient hardware accelera-
tors for smith-waterman sequence alignment.
BMC bioinformatics 9: S10.

Walters J, Meng X, Chaudhary V, Oliver T,
Yeow L, et al. (2007) Mpi-hmmer-boost: Dis-
tributed fpga acceleration. The Journal of
VLSI Signal Processing 48: 223-238.

Schatz MC, Trapnell C (2007) Fast Exact
String Matching on the GPU. Technical re-
port.

Liu Y, Schmidt B, Maskell D (2009) Msa-
cuda: Multiple sequence alignment on
graphics processing units with cuda. In:

Application-specific Systems, Architectures
and Processors, 2009. ASAP 2009. 20th IEEE
International Conference on. Ieee, pp. 121-
128.

Owens J, Luebke D, Govindaraju N, Harris
M, Kriiger J, et al. (2007) A survey of general-
purpose computation on graphics hardware.
In: Computer graphics forum. Wiley Online
Library, volume 26, pp. 80-113.

Blelloch G (1990) Prefix sums and their ap-
plications. Synthesis of Parallel Algorithms :
35-60.

