
Design and Implementation of an NCS-NeuroML Translator

Nathan M. Jordan Kimberly B. Perry Nitish Narala
Laurence C. Jayet Bray Sergiu M. Dascalu Frederick C. Harris, Jr.

Department of Computer Science and Engineering
University of Nevada
Reno, NV 89557

{ ljayet@gmail.com}

Abstract

Computational Neuroscience has become an
emerging field studying complex dynamics of the
brain. Several software systems have been developed
to simulate these processes with a wide range of biolog-
ical detail, from the interaction between thousands of
neurons, down to the dynamics between two individ-
ual cells. However, each uses a specific programming
language or input syntax, which makes it difficult for
non-programmers to use. Since each language is dif-
ferent, it also becomes a non-trivial task to compare
results and exchange data among researchers, which
slows down the discovery of important findings. We
propose to create a tool that translates input files be-
tween two different languages, the NCS input language
and the NeuroML format. It provides a user-friendly
interface, which can be used to both create and edit
simulations without using a text editor or a complex
programming language. This novel tool will not only
allow non-programmers to model brain processes and
functions, but will also give NCS users an opportu-
nity to compare their modeling results with other well-
known simulators.

Keywords: NeuroML, NCS, Conversion, GUI, Edi-
tor, Computational Neuroscience.

1 Introduction

Within the past twenty years, the availability and via-
bility of computer-based models of physical processes
has increased dramatically. Using these systems, re-
searchers can now simulate complex biological mech-
anisms that were previously limited to a very small
scale, or simply were not feasible to experiment with.
Neural network simulators report on the activity of
groups of neurons and/or the activity between ele-
ments of the neurons themselves. In 2001, The Uni-
versity of Nevada, Reno began the development of a

simulator of their own, called the NeoCortical Simula-
tor (NCS) [1,2]. NCS runs on a grid of machines at the
University, and has provided researchers the ability to
understand high-function brain dynamics and study
neurological disorders such as Alzheimer’s disease.

As the usage and scale of the simulator increases,
there has become a need to benchmark and compare
the performance and experimental results of the NCS
simulator with other noteworthy simulators such as
NEURON [3], GENESIS [4], NEST [5], and PyNN [6].
However this is a more difficult task than what im-
mediate observations would lead one to believe. Each
simulator uses a different input syntax, as well as vary-
ing levels of assumption with regard to physics and bio-
chemistry [7]. Consequently, a one-to-one mapping of
inputs is not possible, and a significant level of higher-
level processing is required to create a mapping be-
tween two types of input files.

To solve the problem of ambiguous input files, a
new input language format is emerging as a de-facto
standard for input to neural simulators. NeuroML is
an XML-based markup language that describes neu-
rological simulations with a high-level of biological de-
tail [8]. Using this language, several simulators will be
able to process the same input and their results can be
compared more easily. NeuroConstruct [9], a graphi-
cal interface (GUI) file converter can already convert
NeuroML into a few simulators’ proprietary formats,
including NEURON, GENESIS, MOOSE, PSICS, and
PyNN. Unfortunately, NCS does not yet have this ca-
pability, and prevents comparing results with other
simulators. To facilitate the use of NeuroML with the
NCS simulator, we devised a language translator, Neu-
roTranslate, which can convert between the two types
of input files. This editor has forms and other controls,
including a user-friendly GUI that allow non-technical
users to create simulations without the need to under-
stand either NeuroML or the NCS input syntax.

The remainder of this paper is structured as



follows: Section 2 outlines the functional and non-
functional requirements of the system; Section 3 de-
tails the use cases for the application; Section 4 gives
a design overview, including the structure and the be-
havior of the system; Section 5 describes the GUI of
the project; Section 6 presents the current status of
application; Section 7 draws conclusions and suggests
planned future work.

2 Requirements Specification

2.1 Functional Requirements

The system shall provide the following functions and
features (functional requirements labeled as (F):

F01 Open a NCS file to view.

F02 Open a NeuroML file to view.

F03 Save a file in NCS format.

F04 Save a file in NeuroML format.

F05 Translate NeuroML into NCS.

F06 Translate NCS into NeuroML.

F07 Edit a NCS file.

F08 Edit a NeuroML file.

F09 Create a NCS file.

F10 Create a NeuroML file.

2.2 Non-Functional Requirements

The system shall also fulfill the following non-
functional requirements, labeled as (NF):

NF01 Run on the Linux operating system.

NF02 Minimum training time shall be required.

NF03 No programming knowledge shall be required.

NF04 Use a GUI to accomplish the aforementioned
requirements.

NF05 Include documentation for user convenience.

NF06 The user interface must be easy and intuitive.

3 Use Cases

The functionality of the system is shown in the use
case diagram described in Fig. 1. The details of the
use cases (UC) are the following:

UC01 Open NCS File
The user selects the open option from the menu. He

Figure 1: Use Case Diagram.

is then presented with a file dialog and searches for
a NCS input file. Once the file is selected, the GUI
opens the file in the NCS view.

UC02 Open NeuroML File
The user selects the open option from the menu. He
is then presented with a file dialog and searches for a
NeuroML input file. Once the file is selected, the GUI
opens the file in the NeuroML view.

UC03 Save NCS File
The user selects the save option from the menu. The
system will then write the current model to an NCS
format file.

UC04 Save NeuroML File
The user selects the save option from the menu. The
system will then write the current model to an Neu-
roML format file.

UC05 Translate NCS File
The user selects the open option from the menu. The
user is presented with a file dialog and searches for a
NCS input file. Once the file is selected, the system
will open and the user clicks the NeuroML button to
open the translate dialog.

UC06 Translate NeuroML File
The user selects the open option from the menu. The
user is presented with a file dialog and searches for



a NeuroML input file. Once the file is selected, the
system will open and the user clicks the NCS button
to open the translate dialog.

UC07 Create NCS File
The user selects the new file option and selects the
NCS option which opens a blank model in the NCS
view.

UC08 Create NeuroML File
The user selects the new file option and selects the
NeuroML option which opens a blank model in the
NeuroML view.

UC09 Edit NCS File
The user opens a NCS file and modifies parameters
within the NCS view.

UC10 Edit NeuroML File
The user opens a NeuroML file and modifies parame-
ters within the NeuroML view.

UC11 Help
The user selects the help option from the menubar. A
help page is presented providing information regarding
NeuroTranslate, NCS, and NeuroML.

4 Design Overview

4.1 High-Level Design

The software architecture of NeuroTranslate is based
off of the Model-View-Controller architectural pattern.
The view is represented by the user interface, the
model is represented by the data structures containing
the NeuroML and NCS data, and the controller is rep-
resented by the interconnecting components we have
created to make the software design both portable and
easy to understand. User interface events are handled
through the UIController component, which in turn
modifies and queries data from the model. The details
of file I/O are left to the FileController, which handles
the reading and writing of both NCS and NeuroML
files. Figure 2 shows the architecture NeuroTranslate
employs for its design.

4.2 Structure

The details of of each class, as described in Figure 3
are the following:

Main
This is the main entry point of the application, it in-
stantiates the UIController and hands over control to
the user.

Figure 2: Component Diagram.

MainWindow
The main application window.

NCSData
Contains all the parameters represented in a particular
NCS model, represents part of the model.

NeuroMLConverter
Required for switching between XML and the Neuroml
object with JAXB.

NCSConversionData
Contains the NCSData object that is a product of
the conversion as well as any problems that occurred
therein.

Model
Handles transactions to the NCS data or the NeuroML
data, dependent on which mode the user is in.

UIController
Responsible for handling events triggered by the user
interface, interacts with the model to either get infor-
mation or make changes.

Neuroml
An object containing the data representative of a Neu-
roML model.

NeuromlConversionData
Contains the Neuroml object that is a product of the
conversion as well as any problems that occurred.



Figure 3: Class Diagram.

FormatConverter
Directs translating between the two file types.

ConversionNotes
Contains a list of information regarding the translation
from one format to the other.

NeuromlToNCS
Converts a NeuroML object into an NCSData object
and keeps track of problems that may arise during that
process.

NCSToNeuroml
Converts a NCS file into a Neuroml object and keeps
track of problems that may arise during that process.

ValueMatcher
Matches the names of NCS entities obtained during
the parsing of the file to the corresponding objects.

ConversionNote
Results from problems during translation. Contains
the name of an entity, the severity of the problem, and
a message to direct the user how to solve the problem.

FileController
Opens and saves files to/from the application.

Parser
The NCS parser object produced by BYACCJ.

Scanner
The NCS scanner object produced by JFlex.

4.3 Behavior

When NeuroTranslate is started, the system enters
the waiting state where it responds to UI events.
While the system is in the waiting state, it will
display the selected filetype’s view, currently either
NCS or NeuroML. The following list describes the
different states in which NeuroTranslate can exist, as
illustrated in Figure 4.

Open File
The system enters the Open state when the user se-
lects the open file option. The system will prompt the
user with a file dialog to enter a filename. The system
returns to the waiting state upon exit where the new
file parameters are displayed.

New File
The system enters the New File state when the user
selects the new file option. The system will clear
the current file and replace it with a blank file and
re-enters the waiting state.

Save File
The system enters the Save File state when the user
selects the save file option. The system will prompt
the user with a file dialog to enter a filename. Once a
filename has been entered, the system will write the
file to the corresponding format and return to the
waiting state.

Translate
The system enters the Translate state when the user



Figure 4: State Diagram.

is ready to translate a file. The system will display
an error popup which lists all the warnings and errors
if applicable. Upon exiting this state, the system will
either translate the file into the new format and re-
enter the waiting state, or will simply return to the
waiting state if either the translation is not possible or
the user cancels the translation.

Edit Content
The system enters the Edit Content state when the
user updates or modifies a parameter. In this state,
the system propagates the changes to the model and
other views and returns to the waiting state.

Help
The system enters the Help state when the users se-
lects the help option. In this state, the system will
display a help screen with information regarding Neu-
roTranslate, NCS, and NeuroML.

4.4 Supporting Resources

To aid the development and functionality of Neuro-
Translate, we have used a few external libraries and
programs.

User Interface
NeuroTranslate required a user interface that was both
easy to understand, use and develop, and functioned
like a native GNOME application. We considered
Swing, AWT, Qt for our user interface design, how-
ever, upon review they did not meet our requirements.
We instead chose to utilize the java-gnome library [10]
for our user interface. Not only does it provided a

consistent and quality appearance, it also allowed us
to use the libglade user interface library in conjunction
with the Glade Interface Designer. These two compo-
nents facilitated loading a user interface dynamically
during runtime, which allowed for greater flexibility
during development, and less clutter in our Java code.

NeuroML
In order to manipulate NeuroML entities within a Java
environment, NeuroTranslate needed to read a Neu-
roML file and represent it with Java objects in a logi-
cal manner with respect to the markup language. To
do this, NeuroTranslate used the JAXB (Java API for
XML Bindings) framework [11]. This framework could
both read a NeuroML file and create the correspond-
ing Java objects, and write those Java objects to a
syntactically and semantically valid NeuroML file.

NCS
In addition to NeuroML, NeuroTranslate was also re-
quired to read a NCS input file into the Java envi-
ronment. An existing parser for the file type existed
(it was used for the simulator itself), however it was
written in C, and proved problematic to work with. In
order to solve this problem, we created our own lexical
scanner and parser using JFlex [12] and BYACCJ [13]
for the scanner and parser respectively. These tools
dramatically cut down on development time by pro-
viding an easier way to create the parser needed to
turn the NCS parameters into Java objects for Neuro-
Translate to work with.



5 GUI

The NeuroTranslate GUI was created with sim-
plicity in mind. Each of the supported languages (cur-
rently NeuroML and NCS input) have their own lay-
outs, which display the parameters in a logical and
straightforward manner. The different biological lev-
els of each language are represented in a tabulated list.
The most general and higher-level parameters are lo-
cated on the leftmost tab, and the most biologically
specific parameters are located in the rightmost tabs.
Within each tab, there are a list of parameters with
their names located on the left, their values in the
middle, and the units of the parameter (if applicable)
are on the right. The changes the user makes within
the GUI are reflected immediately in the model and in
other tabs as the change is committed, and is visible
in the rest of the tabs and fields within the program.
Tooltips are available for the parameters to assist the
user as well. This layout is demonstrated in Figures 5
and 6 for NCS and NeuroML, respectively.

In order to translate a file from one language to
another, the user clicks the languages button (located
in the bottom right of the view, see Figure 5) that
they wish to translate to. A popup window is then
displayed which shows any problems or notifications
associated with translation. There are two levels of
severity for a problem: warning and error. A warn-
ing advises the user that some parameter they have
specified in the model might require additional config-
uration or may not map exactly how they intended.
An error specifies that the translation is not possible
due to a particular parameter that does not map at
all into the other language. Each problem contains
the offending parameter, its severity, and a message to
help the user discern what the problem is. Examples
of this UI element can be found in Figure 7.

6 Current Status

In its current state of development, NeuroTranslate in-
cludes a GUI that allows the user to import a NCS file,
add and change certain parameters, and export the file
into a valid NeuroML file. This allows researchers to
represent neural models at various scales in a simulator
independent manner. The system currently provides
feedback during translation as to whether or not a cer-
tain parameter can properly or completely be mapped
to a counterpart in the other language. Some of the
more complicated parameters have yet to be imple-
mented, and currently result in warnings/errors during
translation.

Figure 5: NCS File.

Figure 6: NeuroML File.



Figure 7: Translation Status Diagram - No Problems
and Warning Examples.

7 Conclusion and Future Work

NeuroTranslate is a graphical tool to open, create, and
edit the NCS and the NeuroML input file format to
then translate between them as necessary. With the
increasing use of both the NCS simulator and other
simulators located around the world, it is becoming
increasingly important for researchers to compare re-
sults and exchange models and ideas. NeuroTranslate
is a step in this direction by allowing computational
and non-computational neuroscientists to create mod-
els, run simulations and compare results empirically.

The potential of NeuroTranslate for future devel-
opments includes a few different features. Given that
other simulators besides NCS have not yet adopted
the NeuroML standard for an input syntax, the op-
tion exists to add additional language support to Neu-
roTranslate to expand its viability as a tool for neural
network simulations. Another feature that has been
requested is the ability to interpret the results of the
simulation with various forms of data visualizations,
such as line charts, and spike train raster plots. In
addition to visualizing the results of a simulation, it
would also be possible to visualize the model itself us-
ing some form of graphical notation (i.e. displaying
the location of neurons and other biological objects
the way they exist in the simulation), similar to the
existing functionality of neuroConstruct [9].

Acknowledgements

This work was supported by a grant from the U.S.
Office of Naval Research (N000140110014).

References

[1] R. Drewes. Brainlab: a toolkit to aid in the de-
sign, simulation, and analysis of spiking neural
networks with the ncs environment. Master’s the-
sis, University of Nevada, Reno, 2005.

[2] C. Wilson, P.H. Goodman, and F.C. Harris Jr.
Implementation of a biologically realistic parallel
neocortical-neural network simulator, 2005.

[3] N.T. Carnevale and M.L. Hines. The NEURON
Book. Cambridge University Press, 2006.

[4] J. M. Bower and D. Beeman. Constructing real-
istic neural simulations with GENESIS. Methods
Mol Biol, 401:103–125, 2007.

[5] M. Diesmann and M.-O. Gewaltig. NEST: An
environment for neural systems simulations, 2001.

[6] J.M. Eppler, M. Helias, E. Muller, M. Diesmann,
and M.-O. Gewaltig. PyNEST: a convenient in-
terface to the nest simulator. 2(00012), 2009.

[7] R. Brette, M. Rudolph, T. Carnevale, M. Hines,
D. Beeman, J.M. Bower, M. Diesmann, A. Mor-
rison, P.H. Goodman, F.C.J. Harris, M. Zirpe,
T. Natschlager, D. Pecevski, B. Ermentrout,
M. Djurfeldt, A. Lansner, O. Rochel, T. Vieville,
E. Muller, A.P. Davison, S. El Boustani, and
A. Destexhe. Simulation of networks of spiking
neurons: A review of tools and strategies. Jour-
nal of computational neuroscience, 23(3):349–398,
2007.

[8] P. Gleeson, S. Crook, R.C. Cannon, M.L. Hines,
G.O. Billings, M. Farinella, T.M. Morse, A.P.
Davison, S. Ray, U.S. Bhalla, S.R. Barnes, Y.D.
Dimitrova, and R.A. Silver. NeuroML: A lan-
guage for describing data driven models of neu-
rons and networks with a high degree of biological
detail. PLoS Comput Biol, 6(6):e1000815, 2010.

[9] P. Gleeson, V. Steuber, and R.A. Silver. neuro-
Construct: A tool for modeling networks of neu-
rons in 3d space. Neuron, 54(2):219–235, 2007.

[10] A. Cowie. The java-gnome user interface li-
brary, 2011. Available from: http://java-
gnome.sourceforge.net.

[11] E. Ort and B. Mehta. Java architecture for XML
binding (JAXB), 2003.

[12] G. Klein. JFlex: The fast scanner generator for
java, 2009. Available from: http://jflex.de.

[13] T. Hurka. BYACC/J, 2008. Available from:
http://byaccj.sourceforge.net.


