
WEB-ENABLED TOOLKIT FOR DATA INTEROPERABILITY SUPPORT

Jigarkumar Patel, Sohei Okamoto, Sergiu M. Dascalu, Frederick C. Harris, Jr.

Department of Computer Science & Engineering
University of Nevada Reno

Reno, NV, 89557, USA
{jspatel, okamoto, dascalus, fredh}@cse.unr.edu

Abstract

 To address some of the challenges related to data
interoperability in scientific modeling and simulation we
propose a web-enabled software application (software
toolkit) that dynamically generates data processing tools
(data processors) capable of performing conversions and
other operations on data based on user-defined
specifications and customizations. The proposed
application is designed to store all new user-created data
structures and mappings for reuse and sharing purposes. It
is also designed to generate reusable source code and
executable binary files for easy and straightforward use
by the scientists, thus saving them a substantial amount of
data processing time. This paper presents the software
architecture of the proposed web-enabled toolkit, provides
details of the toolkit’s modes of operation and web user
interface, and outlines directions of future work.

1. INTRODUCTION

 Usually a large dataset is considered a gold mine for
the scientists, but often it is hard to find the desired
subsets of data from this dataset. Depending on the
dataset’s type and size researchers employ various
techniques to get subsets of data of interest, including
time consuming manual filtering or writing a script or an
application that could be run by a computer. This process
prolongs the core research process and also leaves room
for errors. This paper focuses on data processing issues
related to geospatial data. These issues can largely be
divided into three main categories. The actual practical
problem encountered by a scientist could be the result of a
combination of these issues.

1.1 Data Storage Formats

 Researchers acquire data from various public
repositories and other data sources. The datasets of
interest often come in different file formats. Sometimes
datasets are also a byproduct of model simulations. The
same dataset can be represented differently in different
files. Figure 1 illustrates the same data in some of the
more popular human readable file formats. Conversions
between various file formats typically present challenges
to the researchers. Many times they have to spend a

significant amount of time writing code to handle file
format conversions and the same process gets repeated in
other research groups.

<document>
 <row>
 <Avg_Temp>58.2</Avg_Temp >

 <Min_Temp>52.2</Min_Temp >
 <Max_Temp>65.6</Max_Temp >
 <Avg_Wind>5.2</Avg_Wind >

 </row>
 <row>

 <Avg_Temp>56.4</Avg_Temp >
 <Min_Temp>48.5</Min_Temp >
 <Max_Temp>63.2</Max_Temp >
 <Avg_Wind>3.1</Avg_Wind >

 </row>
 <row>

 <Avg_Temp>57.5</Avg_Temp >
 <Min_Temp>51.3</Min_Temp >
 <Max_Temp>64.3</Max_Temp >
 <Avg_Wind>4.2</Avg_Wind >

 </row>
</document> XML

Avg Temp
58.2
56.4
57.5

Min Temp
52.2
48.5
51.3

Min Temp
52.2
48.5
51.3

EXCEL

Avg Temp, Min Temp, Max Temp, Avg Wind
58.2, 52.2, 65.6, 5.2
56.4, 48.5, 63.2, 3.1
57.5, 51.3, 64.3, 4.2 CSV

Figure 1: Data represented in different file formats

1.2 Data Filtering, Merging, Sorting and Grouping

 Many time series data repositories store large
amounts of data spanning over many years and consisting
of many records. Some repositories also have live data
streaming. Besides time series data, many geospatial data
files are quite large, covering large geographical areas.
Researchers often need to collect subsets of data from
several sources. With online public repository access tools
it is easier to download the desired time series data but

978-1-880843-86-4/ISCA SEDE/June 2012

this is not possible with locally stored time series and
geospatial data. Model coupling often requires combining
data sources to create necessary datasets to use with the
models. The data filtering and merging problem is
illustrated in Figure 2, in which rectangles represent data
files and circles represent individual records in the files.
Circles with the same colors are an indication of matching
records based on a user provided filtering condition. The
top and bottom files represent two distinct dataset
sources. The middle rectangle is a resulting merged data
file obtained by applying filtering conditions to the source
datasets. The overall process is further complicated by
different file formats of source and destination. Adding
grouping and sorting capabilities for data only makes the
problem even more challenging.

Figure 2: Data filtering and merging process illustration

1.3 Data Scaling Challenges

 Various environmental science models use geospatial
data as part of their input and produce geospatial datasets
as their output. These models often operate at different
geological scales hence they require datasets at different
scales and frequency. Scaling datasets is a complex
challenge, as illustrated in Figure 3 and Figure 4. In both
figures, a black dot is an actual value for a climate

variable and a rectangular area represents a grid cell that
is part of a larger geographical area (grid). Down
sampling data of a grid cell to smaller size cells is largely
dependent on the geological location and type of
parameters and models researchers are working with.
Similarly, many models operate at different time scales
and down sampling time scaled data also depends on
climate variables and models involved in the process.
Climate models generally operate on a larger size grid
with larger cell areas whereas hydrology models operate
on a smaller size grid with smaller cell areas [1]. Thus,
hydrological models can use the output results of climate
model simulations but not without down scaling the
output data. The down sampling issue becomes even more
complex with rapidly changing geographical terrain such
varied combinations of mountains and valleys.

Figure 3: Geospatial data grid down sampling

Figure 4: Geospatial time data down sampling

2. RELATED WORK

Researchers from different domains have access to
various public repositories to obtain data. For example,
the National Oceanic and Atmospheric Administration [2]
and other similar repositories offer web-based interfaces
to download data using map and selection tools. However
the users do not have control over the output climate
variables and do not have many choices regarding the file
format of the downloaded data. For data processing and
model simulation activities, researchers can use scientific
workflow applications such as Kepler [3] [4]. Kepler
enables users to select and connect pertinent analysis or
computational components and data sources to create an
executable representation (scenario) of the steps required
to generate results. Kepler is a powerful environment with

many capabilities but has a steep learning curve and the
workflows produced using it require it to run, hence
making the newly created solutions dependent on Kepler.
There are also other tools [5] [6] [7] [8] available to
process locally stored data but they are bound to certain
specific data types only and generally do not offer easy
ways for extension. In comparison, the solution proposed
in this paper offers a new and flexible approach aimed at
handling many data interoperability challenges not
directly addressed by others.

3. DESIGN OF THE PROPOSED SOLUTION

 To provide tool support for addressing data inter-
operability issues, we are developing a web application
whose high level design can be represented using
subsystems [9], as shown in Figure 5. Each subsystem
consists of a set of functions included to fulfill the
application’s requirements. Each subsystem is explained
in further detail in the following subsections.

Figure 5: Subsystems of proposed solution

3.1 Subsystems

3.1.1 Users Management
 As its name suggests, this subsystem manages all
processing aspects pertaining to users, including user
registration, login, logout, profile update, password
change, password reset, and ownership of the content.
Administrators of the web application can also manage
users by creating new users directly without registration.

3.1.2 File Formats
 This subsystem is designed to facilitate support for
reading and writing data in different formats. Only an
application developer can add support for a new file
format as it requires changes in the source code and
recompilation of the software. Web applications users will
be able to select appropriate file formats during the
workflow creation process. This is a critical subsystem
because supported file formats determine which models
can be used for the purpose of data processing tools’
generation.

3.1.3 Data Structures
 This subsystem can be considered the fundamental
building block in the model coupling process. This
subsystem is designed to allow users to define and
manage data structures assembled from a variety of
primitive data types such as number, text, date, time, and
Boolean. Support for complex data structures will be
included in this subsystem in future releases.

3.1.4 Data Structure Operations
 This subsystem will enable users to define grouping,
sorting, and logical filtering conditions on particular data
structures. Grouping and filtering conditions are defined
on columns (data structure components) whereas logical
filtering conditions are defined on column values using
conditional operators and functions.

3.1.5 Workflows
 This subsystem depends on all other subsystems
except the code generator subsystem. It will provide a
user interface to accomplish the ultimate tasks of data
processing tools’ generation. Users will be able to create
complex workflows by simply using drag and drop
interactions. As a part of the process, users will define
required data structures, associated operations, and file
formats. The subsystem will also be able to generate
reusable workflows that will relieve researchers from
time-consuming repeatable data processing activities and
could eliminate human errors that might be introduced in
the manual process.

3.1.6 Dynamic Code Generator
 This subsystem will generate a wrapper source code
that will allow the execution of user created workflows.
The generated source code will be based on data
structures, data structure conditions, and file formats
defined or used in the process of workflow creation. The
subsystem will also generate an executable binary file
from the generated source code by compiling it on the fly.
The users will be able to download the source code and its
associated binaries with dependent class libraries.
Furthermore, the users will be capable to execute the
downloaded workflow binaries on their local computers,
without any user intervention after initiating the execution
process. Hence, the proposed approach will provide a
complete start-to-finish data processing tool that can be
used by researchers without writing any code.

3.2 Software Architecture Patterns

 In software engineering, developers can choose from
many software architecture patterns, as over the years
many architecture patterns have evolved and matured.
The choice of architecture patterns largely depends on the
project requirements and the developers’ experience.
Furthermore, it is possible to deploy multiple architecture

Web
Application

Users Management

File Formats

Data Structures Data Structure
Operations

Workflows

Dynamic Code
Generator

patterns [10] in the same project. The proposed solution
can be divided essentially into two parts: a web
application for user interaction, and a class library to
implement the actual tasks. Both parts of the solution use
different architecture patterns to leverage the software
engineering principles of flexibility and reliability. The
two patterns employed also come with their specific
software design benefits.

3.2.1 Model View Controller Pattern
 The proposed solution is being developed partially
based on the Model-View-Controller (MVC) architecture
principles. More specifically, the solution is developed
using the ASP.Net MVC 3 [11] [12] [13] framework and
is coded in the Visual C# programming language.
Although the solution follows to some extent the MVC
framework architecture it also uses the Model-View-
ViewModel (MVVM) architecture pattern to break down
the functionality into logical sections and thus create a
data independent layered architecture.
 The Model-View-Controller (MVC) is a software
architecture pattern that separates data access, domain
logic, and user interface from each other. The MVC can
be graphically represented as shown in Figure 6. The
MVVM pattern adds an additional layer of data
representation, as depicted in Figure 7. In the figures, the
solid line represents a direct association whereas the
dashed line represents an indirect association.

View

Controller Model

Figure 6: Model-View-Controller (MVC) Overview

ViewView

ControllerController

ViewModelViewModel

ModelModel

Figure 7: Model-View-ViewModel (MVVM) overview

In the MVC pattern, the Model represents the data and the
associated domain logic of the application. It is also
responsible for providing responses to requests and for
being aware of the state of data. It can also be seen as an
object model for data entities. The View translates the
model into forms suitable for user display and interaction.
The View generally is not aware of the domain logic and

only takes care of rendering the given data. It passes all
user requests and other events to the Controller. The
Controller receives user input and requests via form
submissions or events. It transmits the submitted forms
and requested actions to the Model and after receiving
responses from the Model it sends data back to the View
for user presentation and interaction.
 The proposed solution also employs the MVVM
architecture pattern. In this pattern the View-Model is
responsible for exposing the data objects resident in the
Model in ways that allow these objects to be easily
managed and used. Both MVC and MVVM emphasize
separation of concerns in software design, implementation
and testing, thus enabling developers to create higher
quality code.

3.2.2 N-tier Architecture and the Repository Pattern
 To overcome certain limitations of the MVC and
MVVM patterns, the proposed solution also uses a multi-
tier architecture (or N-tier architecture) for the class
library part of the web-enabled toolkit’s design. The N-
tier architecture separates processes in three categories:
presentation, application processing, and data
management. Services defined by interfaces handle data
requests between a user and a database. This architecture
enables developers to create flexible and reusable
applications; specifically, by structuring an application
into tiers, developers have only to change (or add) a
specific layer, without the need of rewriting the entire
application. The overall software architecture of the web-
enabled toolkit proposed in this paper is a combination of
the N-tier architecture and the repository software pattern.
Especially for applications with complex domain models,
a repository can serve as a useful mediator between the
domain and data mapping layers, acting as a domain
object collection residing in the memory. For effective
data access layer, the proposed solution also uses the
Object Relational Mapping (ORM) framework, called the
Entity Framework by Microsoft [14].

4. USER INTERACTION AND USER INTERFACE

In the first step of the process, the proposed toolkit
allows the users to define various data structures
composed of predefined primitive data types, as
illustrated in the activity diagram shown in Figure 8.

Figure 8: Create new data structure process

Create Data
Structure

Provide Data
Structure Details

Create Column Provide Column
Details Save Column

Add Another Column

Save Data
StructureBegin End

Select Column
Data Type

A web interface snapshot pertaining to the same

process is shown in Figure 9. The resulting sample data
structure is presented in Figure 10. The next step of the
process is to define data operations on existing data
structures by defining grouping, filtering, and sorting
conditions on structure components (columns), as
illustrated in Figure 11. Interface screenshots
representative of this process are shown in Figure 12. In
the next step of the process the users can create a desired
workflow by selecting the input file format, the specific
data structure involved, the data operations that are
applied on the specified data structure, and the required
output file format. This process is illustrated in Figure 13.
If desired, the users can also select appropriate
downscaling functions. Finally, the users will be able to
download the source code and executable binaries
generated based on the workflow created.

5. CONCLUSIONS AND FUTURE WORK

 Data processing in general and data interoperability
in particular raise complex challenges for which there are
no “one size fits all” solutions. The key objective of the
work presented in this paper has been to provide
enhanced support for data interoperability (with particular
application to climate change research). To the best of our
knowledge, current solutions do not tackle data
interoperability challenges via a web-based approach.
With our proposed web-enabled toolkit, dynamically
generated data processors will allow more efficient testing
of research hypotheses and provide a basis for addressing
more complex model and data interoperability problems
through contributions from the research and development
community.

The web-enabled application presented in this paper
aims to provide a new way for addressing data
interoperability issues. At this point in time, there are
many possibilities for improvements and directions of
future work. For example, one such direction is to auto-
detect data structures by reading file headers and thus
reduce end-user work. At this stage source code
generation is based on internal templates which generate
code in the Visual C#/Mono programming language. In
the future, it is possible to add templates for other
programming languages to meet additional requirements
of the researchers. Furthermore, we plan to add data
downscaling functions to our web-enabled toolkit. Also,
besides local files, we would like to add support for
various other data sources such as web services and
relational databases. The workflow generation process
can also be expanded to include additional data
processing and computational activities and thus support
defining and executing more complex model coupling
scenarios.

Figure 9: Interface to add a new data structure

Figure 10: Data structure created via the web interface

Select Data
StructureBegin

Grouping
Condition on

Column

Sorting
Condition on

Column

Filtering
Condition on

Column
End

Data Structure Operations

Figure 11: Defining operations on data structures

Figure 12: Sample data structure operations

Input Data
Structure

Begin

Input File
Format

Output File
Format

End

Data Structure
Operation

Figure 13: The core workflow creation process

Acknowledgments

This work was made possible through the support
provided by the National Science Foundation under
Cooperative Agreements No. EPS-0814372 and No. EPS-
0919123.

6. REFERENCES

[1] A. Bernea, G. Delrieu, J. D. Creutin, and C. Obled,

"Temporal and spatial resolution of rainfall
measurements required for urban hydrology,"
Journal of Hydrology, vol. 299, no. 3-4, pp. 166-
179, December 2004.

[2] National Oceanic and Atmospheric Administration.
(2012, April) NOAA Climate Services. [Online].
Available at: www.climate.gov

[3] San Diego Supercomputing Center, "Kepler: an
extensible system for design and execution of
scientific workflows," in Proceedings of the 16th
Intl. Conference on Scientific and Statistical
Database Management, 2004, pp. 423-424.

[4] The Kepler Project (2012, April) The Kepler
Project. [Online]. Available at: https://kepler-
project.org/

[5] D. Kavan and P. Man, "MSTools—Web based
application for visualization and presentation of
HXMS data," International Journal of Mass
Spectrometry, vol. 302, no. 1-3, pp. 53-58, 2011.

[6] M. Nilsson, "The DOSY Toolbox: A new tool for
processing PFG NMR diffusion data," Journal of
Magnetic Resonance, vol. 200, no. 2, pp. 296-302,
October 2009.

[7] M. Waldhor and E. Appel, "Intersections of
remanence small circles: new tools to improve data
processing and interpretation in palaeomagnetism,"
Geophysical Journal International, vol. 166, no. 1,
pp. 33-45, July 2006.

[8] C. Schwager, U. Wirkner, A. Abdollahi, and P.
Huber, "TableButler – a Windows based tool for
processing large data tables generated with high-
throughput methods," BMC Bioinformatics, vol. 10,
pp. 235-243, 2009.

[9] I. Sommerville, Software Engineering, 9th edition,
Addison-Wesley, 2010.

[10] M. Fowler, Patterns of Enterprise Application
Architecture, Addison-Wesley Professional, 2002.

[11] Microsoft ASP.NET MVC (2012, April) MVC: The
official Microsoft ASP.NET Site. [Online].
Available at: http://www.asp.net/mvc

[12] A. Freeman and S. Sanderson, Pro ASP.NET MVC
3 Framework, 3rd edition, Apress, 2011.

[13] J. Galloway, P. Haack, B. Wilson, and S. Allen,
Professional ASP.NET MVC 3, Wrox, 2011.

[14] J. Lerman and R. Miller, Programming Entity
Framework: Code First. O'Reilly Media, 2011.

