Massively Parallel Jitter Measurement
from Deep Memory Digital Waveforms

Torbjorn Loken*, Lee Barford'*, Frederick C. Harris Jr.*

*Department of Computer Science and Engineering
University of Nevada/0171
Reno, NV 89577-0171 USA

TMeasurement Research Laboratory
Agilent Technologies
561 Keystone Ave. Unit 434
Reno, NV, 89503 USA

Abstract—As the increase of computer clock rates has finally
begun to reach its stopping point the focus has instead shifted
to increasing the number of cores present. This increase in cores
is seen most in Graphics Processing Units (GPUs) and other
massively parallel processors. These new devices however bring
with them new methods for achieving top performance. This
paper uses jitter quantification to show the power that a massively
parallel device can bring to measurement analysis. The parallel
algorithm shown is able to obtain large speed ups over serial
implementations and is able to analyze large data sets to provide
a more complete picture of nature of the timing jitter in a signal.

Keywords — signal analysis, timing jitter, time interval error,
parallel programming, clock recovery

I. INTRODUCTION

Measuring jitter is a major consideration when testing any
serial, digital communications channel. With requirements for
much reduced bit error rates (BERs), the allowable margin for
jitter decreases and the need accurately to measure jitter in-
creases. Due to this requirement of low jitter to decrease the bit
error rate, tools both quantification and visualization of jitter
statistics of a signal are increasingly valuable to digital design
engineers. Jitter histograms and eye diagrams are used to not
only predict bit error rates, but also give insight to the sources
of jitter. As bit error rates decrease, it is desirable to capture
longer waveforms (often called “deep waveform”) in order
to both (1) increase the likelihood of capturing rare events
and (2) improve the statistical significance of the tails of the
measured jitter histogram or fitted probability distribution used
to extrapolate jitter performance and BER [1]. Oscilloscopes
are commercially available that can capture billions of samples
per trigger. However, clock recovery from the waveform and
computing jitter statistics and graphical presentations of the
jitter probability distribution becomes a rather computationally
expensive task as waveform lengths increase. The purpose of
this paper is to present a method for fixed frequency clock
recovery and jitter measurement of a two-state digital signal
using massive parallel processors and large data sets. The use
of parallel processing to analyze signals in the this manner
has already been shown to be a strong argument for their for

their use for further analysis, like jitter histogram plots and
eye diagrams.

The presented method makes minimal assumptions about
the signal. The first assumption is that the signal is a two state
digital signal. The second is that there is an approximately
equal number of low to high and high to low digital state
transitions. The implementation of the method for this paper
is not IEEE Standard 181-2011 [2] compliant. Importantly the
method presented in this paper does not make any assumptions
about prior knowledge of the relative high low and middle
values of the voltage for the signal or the expected unit interval
of the signal.

To facilitate an rapid analysis of a measured waveform,
the method presented uses a massively parallel processor.
Formerly, massively parallel computation was only available as
supercomputers or computing clusters. Both the expense and
the physical remoteness of such computing resources made
them poor choices for use in measurement systems. But now
massively parallel computation is available in the form of
Graphics Processor Units (GPUs). GPUs are available that
plug into standard PCs at low cost, making them practical
for use within measurement systems.

GPUs however are not suited for all problems. Their model
of computing pairs extremely well with data parallel tasks and
tasks which utilize linear memory access patterns [3]. The
key and novel result of this paper is that it is possible to do
high throughput clock recovery and jitter statistics computation
using a GPU by factoring those computations into a series of
steps, each one of which has memory access patterns well
suited to the GPU.

We use the Thrust library provided by NVidia [4] gives high
level access to programming primitives which are executed on
a GPU. These primitives often times have a counter part in
the C++ Standard Template Library (STL) [5]. The method
proposed makes heavy use of both the iteration and container
primitives provided by the Thrust library. This allowed the
design of both the CPU and GPU implementations to take
place in parallel. The use of Thrust much like the use of the

STL allows for rapid development by combining these simple
primitives to implement solutions complex algorithms. Thrust
makes heavy use of templating to produce code which is then
run on the GPU itself.

A well studied example of a problem which is suited
to GPUs is sorting [6]. Sorting algorithms for traditional
processes have memory access patterns that are random. How-
ever, GPU-specific sorting algorithms have been developed
that have linear memory access patterns and extremely high
performance on GPUs. Steps of our clock recovery algorithm
that might seem to require random memory access patterns
are reduced to sorting both (1) to take advantage of the high
speed of sorting on the GPU and (2) eliminate the need for
random memory access patterns.

The analysis of jitter historically has been largely considered
when designing and implementing clock recovery circuits [7].
As bit error rate requirements begin to tighten, it is desirable
to identify events with ever more low probability. Therefore, it
is becoming increasingly useful to measure jitter and display
eye diagrams from much longer waveforms.

Other previous studies of jitter analysis have relied on a
reference clock for computing jitter histograms [8]. This is
limiting however because a reference clock is not always
available in many situations. Due to this limitation approaches
which use reference clocks when constructing a jitter his-
togram are not as generally useful as a method which can
make due without.

Recently massively parallel processors have been used in
transition localization [9][10]. These methods showed that
large speedups of processing time for deep waveforms could
be gained for this important first step of many different
signal analysis methods. This was an important indicator that
further analysis of deep waveforms could be successfully
implemented using massively parallel processors.

This paper will explore a method which uses Thrust to give
a large speed up to an existing serial algorithm. Section II
will discuss the algorithm and its implementation, the results
of using the implementation with actual measured data will
then be discussed.

II. THE METHOD

This section describes the structure of the method presented
in the paper. It will then discuss the changes which were made
to maximize the performance on the GPU. Following that is
an in depth explanation of the process presented.

The purposed method makes some assumptions about the
input signal. Other than the assumption that the signal is digi-
tal, the most important of which is that transitions will occur in
the signal. Due to this transmission protocols like 8b/10b [11]
should be used so that transitions can be guaranteed to happen.

The purposed method is a series of transformations and
reductions of the input signal. The first an most important
transformation which is preformed is taking the input signal
and finding each of the transitions in the signal with sub-
sample accuracy. This initial transformation forms the basis of
the method. This is accomplished by first determining relative

values for the high, low and middle voltages of the input
signal. Using these values the transition points in the signal can
be found. Once the transition points are found a rough estimate
of the number of samples per unit interval is made. Once
the rough estimate of the duration of a unit interval is made
it is further refined. This refinement is done by comparing
the number of samples to the estimated total number of unit
intervals in the input signal. With this refined estimate a phase
offset estimate can be calculated for each of the transition
points in the input signal. Using linear regression the phase
offset and a correction for our final estimate can be calculated.
From this further analysis tools like jitter histograms or eye
diagrams can be constructed.

While the proposed method is straight forward in its design
there are considerations which were made to translate the
algorithm to work efficiently on the GPU. The most major
change is that while the STL provides a primitive for selecting
the nth element of a container, Thrust provides no matching
call. For the CPU implementation the nth_element was used
to obtain percentile data without the overhead of constructing
sorted data or histograms. However since this functionality
is missing Thrust it was necessary to sort the data each
time a percentile was needed. However this is not an issue
since Thrust provides a very fast sort [12]. However, the
sort destroys its input data, so it was important to maintain
proper copies of data which was to be sorted. Another concern
when working on the GPU is minimizing the total time spent
transferring data over the PCI bus to the card. Care was
also taken to reduce all data transfers to the bare minimum,
especially in the case of the large data sets used.

A more in depth explanation of the process follows.

Step One: Determine relative high, low and middle
voltage levels in the signal. The first step is determining based
on the input signal what the values for high and low will be.
This done by finding the 1st percentile of the voltages to find
the value for low and finding the 99th percentile for the high
value. From these values a middle value can be calculated by
finding the midpoint of the two values.

Step Two: Find transition points in the signal with in
sub-sample accuracy. The second step is finding the all the
points of voltage transition in the signal. When a transition
is found its position is noted. For each of these transition
points a linear interpolation step is done to find the sub-sample
transition time. These values are then summed to find each
transition point in the signal with sub-sample accuracy.

Step Three: Make a rough estimate of the number of
samples in the signal per unit interval. From these transition
times a histogram of the inter-transition intervals is made. To
make this histogram the inter-transition values are found by
finding the adjacent difference of the sub-sample transition
times. Using these inter-transition values a histogram is made.
The rough estimate of the samples per unit interval is obtained
by finding the 25th percentile of these inter-transition times.
Using the 25th percentile of these inter-transition times is only
valid due to the nature of the signal.

Step Four: Refine the rough estimate of samples per unit

errors to be linear fitted

—_ o _|
F -
(=}
2 o
L)
i o
g = 7
@
Q
E
e [=]

8

| | |
0.0e+00 5.0e+06 1.0e+07 1.5e+07
transition time
Fig. 1. The estimated time interval error before correction

interval. The rough estimate from the last step will will not be
accurate enough for further use. Due to this the rough estimate
of samples per unit interval is refined. To do this the first
thing needed is the number of estimated unit intervals in the
signal. Following that the total number of samples which occur
from the first transition to the last transition in the signal. That
number of samples is then divided by the estimated number
of unit intervals in the signal.

Step Five: Eliminate remaining linear trend in time
interval error. In this step the estimate will be corrected a
final time using linear regression. Figure 1 shows an example
of the linear trend being corrected. In addition to giving the
final estimate of the samples per clock, this linear regression
step also gives the phase correction need for clock recovery.
To correct the refined estimate a linear regression of estimated
time interval error given the period estimate obtained in step
4 and the sub-sample transition times from step two. From
the linear least squares fitting a coefficient and an offset are
obtained. The coefficient is used to correct our refined period
estimate from the last step and the offset is the phase offset.
Figure 2 shows the result of this step.

Step Six: Construct appropriate plots Once the phase
offset is calculated and the estimate of the unit interval has
been corrected the appropriate plots are constructed.

III. RESULTS

The proposed algorithm was implemented two times. One
implementation used only the CPU and was written in C++
using the primitives provided by the STL to verify the results
of the purposed method. The other implementation written
in C++ using Thrust to run code on an NVIDIA GPU was
used to measure the total speed up of the method with
increased core counts. Both implementations were tested with
an actual measured waveforms obtained using the apparatus
shown in Figure 3, in which waveforms were produced by
an Agilent 8133A Pulse Generator and captured by a Agilent
DSA91304A Digital Signal Analyzer.

R time vs Time Interval Error

o
3]
[=T
L
S
[==]
N
| | |
0.0e+00 5.0e+06 1.0e+07 1.5e+07
time (samples)
Fig. 2. An example of the final time interval error produced

q imEa
Oscilloscope

e

¥

GPU

PC

Fig. 3. Measurement apparatus used to verify the proposed method

The experimental platform is an Intel Core2 Quad core CPU
Q9450 at 2.66GHz with 8 GB of memory. The GPU used was
an NVidia GeForce GTX 480 which contains 15 groupings of
32 compute cores for a total of 480 compute cores and has 1.5
GB of on board memory. The CPU implementation was com-
piled with g++ version 4.6.3 while due to the restrictions of
Thrust the GPU implementation was compiled with the CUDA
toolkit version 5.0 and g++ version 4.4.7. All implementation
were compiled on 64 bit Ubuntu 12.04 with optimization level
-03.

The measurement results obtained by the serial and GPU
versions were identical. For example, when all 16 million
samples are used, both versions yield the standard deviation
of TIE of 4.630199 samples. The resulting plots of the
time interval errors (TIEs) for each transition and the jitter
(probability density of the TIE) are shown in Figures 2, 4 and
5. (The probability density is a kernel density estimate [13]
computed from the TIEs.)

There were three timings which were measured: one timing
for the CPU, one timing for the GPU which did not include

Time Interval Error Probability Density

0.08
|

Density
0.04
1
"'\-_,____H
o

0.00
|
|

TIE (samples)

Fig. 4. TIE probability density

Time Interval Error histogram

(=] | i
> S
E o
g —
5 8-
L —
[I |
-20 -10 0 10 20

TIE (samples)

Fig. 5. TIE histogram

the data transfer times and a one timing for the GPU which
included the transfer times as well. Table I and Figure III
show the results for these timings as the size of the input
signal was increased, while Table II and Figure III shows the
through put of these results. For signals less than 16,000,000
samples in length sections of the input waveform were used.
The waveforms used in these timing experiments were pseudo-
random binary signals (PRBSs).

Table I and Figure III show that when considering only the
computations the difference in the serial CPU implementation
and the parallel implementation on the GPU as the input
size grows is sizable. While the CPU implementation was
not expected to keep pace with the GPU implementation it is
interesting to note the significant speed up which is present.

Execution time

o
Lo Ju—
o
PR Y
L2 o
¥ —
£ o
o PR .
B - = R ;|
S | B i S A
o | | |
5.0e+06 1.0e+07 1.5e+07
number of samples
Fig. 6. Execution time of the purposed method in seconds. The solid line

shows the CPU execution time, the dashed line shows the GPU execution
time including data transfer and the dotted line shows the execution time on
the GPU.

Computational throughput

3
w -é—} | I o Ll T o
= h ek
-:.E | _.Gr
2] o
: g o.. -=—==0
S £ ° -e------e----{}-——-—-e
£ & o
] Gy
E - @
: . - E
-é—: —
(=] I | l
5.0e+06 1.0e+07 1.5e+07

number of samples

Fig. 7. Computational throughput of the purposed method measured in
Samples per second. The solid line shows the throughput of the CPU
implementation, the dashed line shows the throughput on the GPU including
data transfer and the dotted line shows the throughput on the GPU.

Another interesting thing to note is that for even with signals
as small as 1,000,000 elements, when the data transfer time
is considered the GPU implementation is able to handily beat
the CPU. This result means that it is quite practical to use
this method over a pure CPU implementation. Table II and
Figure III show the massive difference in throughput that the
GPU is able to provide over the CPU. For the entire 16 million
sample signal the GPU implementation was able to handle 8
times as many samples as the CPU in the same amount of
time when not considering the total transfer time of data on
and off of the GPU. This is a reason expectation to make as
the method presented is likely to be an intermediate step in a
larger process.

TABLE I
EXECUTION TIME IN MILLISECONDS FOR EACH IMPLEMENTATION FOR EACH OF THE DIFFERENT INPUT SIGNAL LENGTHS

[Input Size (samples)]| CPU [GPU (no data transfer time) [GPU (with data transfer time) |
1,000,000 15.19 7.17 9.89
1,414,213 22.38 7.43 10.96
2,000,000 28.59 8.61 13.21
2,828,427 43.44 10.11 16.36
4,000,000 62.24 12.33 20.88
5,656,854 89.56 16.26 28.15
8,000,000 144.44 20.84 37.38
11,313,708 242.54 28.37 51.66
16,000,000 309.37 38.23 70.88

TABLE II

THROUGHPUT FOR EACH IMPLEMENTATION FOR EACH OF THE DIFFERENT INPUT SIGNAL LENGTHS

[Input Size (samples) [[CPU (MSa/s) [GPU (MSa/s, no data transfer time) | GPU (MSa/s, with data transfer time) |

1,000,000 65.835 139.460 101.122
1,414,213 63.180 190.330 129.046
2,000,000 69.946 232.297 151.401
2,828,427 65.108 279.701 172.917
4,000,000 64.269 324.492 191.561
5,656,854 63.163 347.852 200.963
8,000,000 55.385 383.880 214.013
11,313,708 46.646 398.743 219.002
16,000,000 51.717 418.563 225.740

An interesting thing to note is that despite the relatively high
throughput shown by the GPU in Table II and Figure III the
application is still computationally bound. While the method
as implemented is capable of consuming 418 million samples
a second the PCI express bus is capable of transmitting still
more samples [14].

IV. FUTURE WORK

To further increase the robustness of the solution provided
by this paper we plan on making the implementation com-
ply with the IEEE Standard 181-2011 [2] procedure for (1)
identifying voltage reference levels and (2) the location of
state transition times. Significant progress toward achieving the
second of these on GPUs has been reported elsewhere [9][10]
and it should be possible to combine those methods with the
present one. The current implementation is non-standard and
is more sensitive to noise, glitches, and runt pulses than the
procedure specified in the standard. The sensitivity however
never presented its self during testing. Ideally this would be
done on the GPU to maintain a high level of efficiency by
avoiding unnecessary data transfers.

In addition to become more compliant with this standard we
plan on experimenting with ways to build a proper histogram
on the GPU more efficiently. The current implementation
does not need histograms but to become IEEE Standard 181
compliant a future implementation needs an efficient method
for building histograms on the GPU.

Finally the presented method is also unable to deal with non-
constant clocks. In order to add functionality to recover these
non-constant clocks a phase locked loop would be needed.

V. CONCLUSION

The novel contributions of this paper are (1) the application
of massively parallel processors to do clock recovery and to
quantify jitter and (2) the use of sorting to replace building
histograms when analyzing waveforms so as more efficiently
to use such processors.

By using the efficient sorting, transformation and reduction
routines provided by Thrust, the benefits of constructing a
solution using the primitives offered by Thrust were shown.
Identical measurement results were obtained, so using parallel
processing did not effect the measurement uncertainty. Us-
ing Thrust to translate a program written in C++ using the
Standard Template Library is a simple process and provides
a large speed increase while only requiring a small amount
of changes to be made. With this speed comes the possibility
of analyzing larger data sets allowing for a more complete
measure of the jitter in a signal rather than making many
small measurements or attempting to use a statistical method
to acquire a similar result. The results of this paper are a
strong indication that measurement analysis such as jitter
measurements are very well suited for the GPU and that
perhaps further optimizations could help alleviate the still
present computational bottleneck. Using the purposed method
in concert with other GPU powered processes allows for very
deep waveforms to be efficiently processed.

REFERENCES

[1] W. Maichen, Digital Timing Measurement: From Scopes and Probes to
Timing and Jitter. Springer, 2006, ch. 9.3.

[2] “IEEE standard for transitions, pulses, and related waveforms,” IEEE
Std 181-2011 (Revision of IEEE Std 181-2003), pp. 1 =71, 6 2011.

[3]

[4]
[5]
[6]

[7]
[8]

B. Jang, D. Schaa, P. Mistry, and D. Kaeli, “Exploiting memory access
patterns to improve memory performance in data-parallel architectures,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 22, no. 1,
pp. 105-118, 2011.

“Thrust quick start guide,” September 2012. [Online]. Available:
https://github.com/thrust/thrust/wiki/Quick- Start-Guide

N. M. Josuttis, The C++ Standard Library: A Tutorial and Reference,
2nd ed. Addison Wesley, 2012.

E. Sintorn and U. Assarsson, “Fast parallel GPU-sorting using a
hybrid algorithm,” Journal of Parallel and Distributed Computing,
vol. 68, no. 10, pp. 1381 — 1388, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731508001196

C. Hogge Jr, “A self correcting clock recovery curcuit,” Lightwave
Technology, Journal of, vol. 3, no. 6, pp. 1312-1314, 1985.

W. Dalal and D. Rosenthal, “Measuring jitter of high speed data
channels using undersampling techniques,” in Test Conference, 1998.
Proceedings., International. 1EEE, 1998, pp. 814-818.

[9]

(10]

[11]

[12]

[13]

[14]

L. Barford, “Parallelizing small finite state machines, with application to
pulsed signal analysis,” in Instrumentation and Measurement Technology
Conference (I2MTC), 2012 IEEE International. 1EEE, 2012, pp. 1957—
1962.

V. Khambadkar, L. Barford, and F. Harris, “Massively parallel local-
ization of pulsed signal transitions using a GPU,” in Instrumentation
and Measurement Technology Conference (I2MTC), 2012 IEEE Inter-
national. 1EEE, 2012, pp. 2173-2177.

A. X. Widmer and P. A. Franaszek, “A DC-balanced, partitioned-block,
8b/10b transmission code,” IBM Journal of research and development,
vol. 27, no. 5, pp. 440-451, 1983.

N. Leischner, V. Osipov, and P. Sanders, “GPU sample sort,” in Parallel
& Distributed Processing (IPDPS), 2010 IEEE International Symposium
on. IEEE, 2010, pp. 1-10.

B. Silverman, Density estimation for statistics and data analysis. Chap-
man & Hall/CRC, 1986, vol. 26.

M. Koop, W. Huang, K. Gopalakrishnan, and D. Panda, “Performance
analysis and evaluation of PCIe 2.0 and quad-data rate infiniband,” in
High Performance Interconnects, 2008. HOTI ’08. 16th IEEE Sympo-
sium on, Aug. 2008, pp. 85 —-92.

