
Uniform and Efficient Exploration of State
Space using Kinodynamic Sampling-based
Planners

Rakhi Motwani, Mukesh Motwani, and Frederick C. Harris Jr.

Abstract Sampling based algorithms such as RRTs have laid down the foundation
for solving motion planning queries for systems with high number of degrees of
freedom and complex constraints. However, lack of balanced state-space exploration
of RRTs calls for further improvement of these algorithms. Factors such as drift,
underactuation, system dynamics and constraints, and the lack of an energy/time
based distance metric in state space can cause RRT propagation to be uneven. This
paper focuses on improving the coverage of the RRT algorithm for physical systems
that demonstrate a tendency to restrict the growth of RRT to certain regions of the
state space. A localized principal component analysis based approach is proposed to
learn the propagation bias of state-space points sampled on a grid during an offline
learning phase. To compensate for this bias, expansion of the RRT in real-time is
steered in the direction of the least principal component of the propagation of the
state-space sample selected for expansion. The algorithm is tested on various sys-
tems with high degres of freedom and experimental results indicate improved and
uniform state-space coverage.

Key words: uniform state-space coverage, local-PCA based RRT

1 Introduction

Motion planning algoirthms can be categorized as Exact planning methods, Analyt-
ical solutions, Numerical approaches, and Approximate methods [3]. Exact meth-
ods [2, 13], Analytical solutions [11] and Approximate methods such as grid-based
search techniques [4] do not scale well beyond systems with few degrees of freedom
while Numerical approaches [1] converge to locally optimal solutions. Sampling-
based methods such as RRT [9], Expansive Spaces [6], and the PDST algorithm [8],

University of Nevada, Reno e-mail: rakhi@cse.unr.edu, mukesh@cse.unr.edu, fredh@cse.unr.edu

1

2 Rakhi Motwani, Mukesh Motwani, and Frederick C. Harris Jr.

also fall under the category of approximate methods and are used for high dimen-
sional systems.

This paper presents a technique to improve one of the most widely used kin-
odynamic sampling-based planners i.e. Rapidly exploring Random Trees (RRT)
[9]. RRT is a popular planner for complex systems with geometric and differential
contraints due to its capability of quickly exploring high-dimensional state spaces
through sampling. The RRT algorithm makes use of an implicit Voronoi bias to
evenly explore the state space. However, this Voronoi bias is no longer available
if there is no good distance metric in the state space (that determines proximity of
points in state-space in terms of time, or energy) or if drift and other dynamic con-
straints introduce undesired biases. For example, when using a Euclidean distance
metric for systems such as Acrobot and Lunar Lander, the RRT growth is restricted
to certain regions of the configuration-space, as illustrated by figures in Table 1.
Uniform state space exploration of RRT is desired as it reduces the time to find
solution trajectories. Typically, an RRT is grown for several thousand nodes for a
system under consideration in order to find a solution path. If balanced coverage
can be obtained by a relatively smaller sized tree, then we save computational cost
and time.

The objective of the work presented here is to make improvements to the standard
RRT algorithm to result in a tree of similar or smaller size that spans the state-space
evenly. The focus of this paper is to address the issue of the lack of a good distance
metric for physical systems that incorporates the effects of system dynamics and
contraints when determining which states are closer. The contributions of this paper
are as follows. The proposed approach provides a uniform state-space coverage for
an RRT by computing the local exploration bias of the dynamic system at each point
in the discretized state-space, and using this information to guide the expansion of
the tree out of the biased region into least explored areas of the state-space. Exper-
imental results indicate improvement in RRT’s state-space exploration for systems
that exhibit a bias in coverage towards a specific direction in the state-space. How-
ever, it must be noted that this technique is only effective in situations when RRTs
fail to evenly explore the state space. If RRT for systems grow uniformly in the
state-space the proposed approach does not contribute towards further improvement
of the state-space coverage. The contribution is unique in that no related work has
employed localized approaches to obtain balanced RRT exploration.

2 Related Work

The research community has published a variery of algorithms [10] that enhance
the performance of standard RRT algorithm by proposing modifications to decrease
metric sensitivity, reduce the rate of failed expansion, control the sampling domain,
guide tree expansion using local reachability information, bias sampling distribu-
tions to search in subspace of complete state space or goal region. There is limited
literature [12, 5] that addresses the exploration performance of sampling-based al-

Title Suppressed Due to Excessive Length 3

gorithms. Li et. al’s [12] work focused on using principal component analysis(PCA)
globally to compensate for the undesirable biases introduced by a physical system’s
dynamic contraints on the exploration of an RRT algorithm. Their approach is com-
posed of two steps: i) an offline learning procedure which constructs an RRT for the
physical system and executes a PCA on the entire tree to represent the principal di-
rections that the tree has expanded inside the task space; ii) altering the propagation
step for RRT during the online operation by modifying the config-space coordinates
of the random state sample in each iteration towards directions in which the variance
is lower in the offline generated tree, and choosing the control which takes the sys-
tem closer to this modified version of the random state sample. As a result, growth
of the online tree is promoted towards the least explored direction in the task space.
This algorthm has only been tested on a Three-link Acrobot and Car-like systems,
and has motivated the authors of this paper to implement this technique on variety
of systems to compare it’s performance with the proposed algorithm.

Glassman and Tedrake’s [5] work is based on control theory to derive an approxi-
mation to the exact minimum-time distance pseudometric by adapting the minimum
time linear quadratic regulator (LQR) and it’s associated cost-to-go function for
affine systems. The proposed technique linearizes the system dynamics at the ran-
domly sampled state space point in the RRT framework and defines a cost function
based on time and effort which is used as the distance measure. The authors use a
finite horizon affine quadratic regulator to compute the optimal cost-to-go functions
of linearizations of the physical system for multiple time horizons to locally approx-
imate the optimal distance measure. The proposed affine quadratic regulator-based
(AQR) distance metric improves exploration of the state space of double integra-
tor and simple pendulum but proves to be ineffective as the systems’ nonlinearity
and complexity increases such as the cartpole and torque limited 2-link Acrobot.
However, the local-PCA based RRT approach presented in this paper focusses on
complex non-linear systems.

3 Approach

The proposed technique is comprised of two steps - i) an offline step to learn the di-
rection of propagation of state-space points sampled on a grid when system dynam-
ics are simulated at these points, and ii) the alteration of the propagation step of basic
RRT algorithm during the online construction of the tree. The offline step determines
the principal components of the direction of propagation of state-space points on a
grid of appropriate resolution, when numerous controls are applied to simulate the
system dynamics at that point. These principal components represent the different
propagation biases in different parts of the state-space. The online phase utilizes this
information during the propagation step of building an RRT to reposition the random
sample so as to compensate for the biases and even out the RRT’s overall exploration
of state-space. Henceforth, the proposed algorithm is referred to as LPCA-RRT.

4 Rakhi Motwani, Mukesh Motwani, and Frederick C. Harris Jr.

Algorithm 1 Offline Step - Input: N, M,4t
for i = 1 to N do

x← Sample Grid State();
u[]← Sample Random Controls(M);
s[]← Simulate New States(x,u[],4t);
s′[]← Transform(x,s[]);
l pcax← PCA(s′subset);

end for
Return l pca grid

For the offline learning phase, state space points are sampled on a grid of appro-
priate resolution. Each sampled point represents a region, i.e. bin, in the state-space.
For each sampled state space point, the system dynamics are simulated for a specific
timestep for a certain amount of controls (i.e. between 50 to 250 depending on the
system) to derive a set of new states. The coordinates of the new states are trans-
formed such that the grid point serves as the new origin for these states. Principal
Component Analysis (PCA) [7] is executed on a subset of the state-space coordi-
nates of this set of new states. A subset of the state-space dimensions is considered
for computational feasibility and also due to the fact that coverage of configuration
space is desired as opposed to good coverage in state-space which comprises of
derivates of the configuration space parameters. This PCA is referred to as the local
PCA and is stored for each state-space point on the grid.

Algorithm 1 summarizes the offline step of the proposed approach, where N rep-
resents the total number of states sampled on the grid. N is determined by the grid
bounds, grid resolution, and the dimension of state-space. M denotes the number of
controls. M varies from system to system and is experimented with values starting
from 50 going up to 50,000 at increments of 100 to determine at what value does
the local PCA converge. The algorithm returns local PCAs for points sampled on
the entire grid.

The pseudo-code for the online phase is provided in Algorithm 2. The basic RRT
algorithm is adapted from [9] where at each iteration a random state xrand is sampled
from the state space. For construction of the RRT, the node xnear on the tree which
is nearest to xrand is selected for expansion. A Euclidean distance metric is used to
determine the nearest neighbor along the tree. The coordinates of xnear are evaluated
to calculate the bin from the offline state-space grid that this node belongs to. The
offline generated local PCA is then retrieved for the state xnear. Since this local PCA
is representative of a bin from the offline state-space grid therefore it is only an
approximate representation of the direction of propagation of the tree from xnear.
The configuration space coordinates of the randomly sampled state-space point at
the corresponding iteration of RRT are then modified to position the random sample
in the direction of the least significant components of this local PCA. The controls
that extend the tree from the selected node closer to the altered random sample state
are chosen for propagation of the tree thereby leading the RRT out of the regions,
where it would have originally been focussed, into unexplored areas of the state
space.

Title Suppressed Due to Excessive Length 5

Algorithm 2 Online Step - Input: xinit ,N, l pca grid
Tree.init(xinit)
for i = 1 to N do

xrand ← Sample Random State();
xnear ← Determine Nearest Neighbor(xrand ,Tree);
binxnear ← Evaluate Bin(xnear, l pca grid);
l pcaxnear ← Retrieve PCA(binxnear , l pca grid);
x′rand ←Modify(inv(l pcaxnear),xrand);
[xnew,xedge]← Propagate(xnear,x′rand);
Tree.Vertex Add(xnew)
Tree.Edge Add(xnear,xedge)

end for
Return Tree

Modify(inv(l pcaxnear),xrand)
xad j ← inv(l pcaxnear)∗ xrand ;
for i = 1 to n do

x′(i)ad j ← l1
li

*x(i)ad j;
end for
x′rand ← l pcaxnear ∗ x′ad j;
Return x′rand

The algorithm then propagates the selected node xnear by applying m random
controls to obtain new states. The closest new state to x′rand , denoted by xnew, and
the corresponding control are selected for the expansion step of the algorithm.

4 Experiments

The algorithm was tested on various systems - Three-link Acrobot, Car-like system,
Cart Pole, Hovercraft, and Lunar Lander. The results were compared against the ba-
sic RRT, and Li et al.’s algorithm henceforth referred to as GPCA-RRT. Performance
of these algorithms was measured in terms of the percentage of bins populated by the
generated tree on the discretized subset of state-space and execution time, measured
in seconds. Trees were grown for sizes spanning from 1000 to 20,000 nodes and
the performance results represent an average of ten test runs. The algorithms were
implemented in Octave 3.0.5 and executed on the UNR Research Grid. The imple-
mentation stores RRT in an array and uses linear search for nearest neighbor search,
hence recorded processing times are higher. Therefore, the authors would like to
emphasize that this is just a proof-of-concept implementation. For GPCA-RRT, the
experiment used the global PCA of the standard RRT of the same size i.e. an RRT
was grown for N nodes, the global PCA was computed for this RRT and was used to
generate the GPCA-RRT of size N nodes. The figures in Table 1 display a projection
of the trees, plotted for various systems, in those configuration space parameters for
which the tree exploration was not uniform.

6 Rakhi Motwani, Mukesh Motwani, and Frederick C. Harris Jr.

Table 1 Configuration-Space Coverage Plots for trees grown for 20,000 nodes

3-Link Acrobot Hovercraft Car-like System Cart Pole Lunar Lander
Plots for→ (θ1, θ2) c-space (x,y) c-space (x,y) c-space (x,θ) c-space (x,y) c-space

RRT

GPCA

LPCA

Three-Link Acrobot: The Acrobot was simulated in Passive-Active-Active
mode with torque applied at active joints. The angles θi are relative to the global
reference frame and do not correspond to the angles between consecutive links. As
indicated by Table 2, LPCA-RRT outperforms both algorithms by 15−20% in terms
of coverage at the expense of spending an average of 2.5% more in time. Moreover,
it was observed that the tree generated by LPCA-RRT for 5000 nodes covered the
config-space more uniformly than RRT grown for 20,000 nodes.

1000 Nodes 3000 Nodes 5000 Nodes 20000 Nodes
RRT Populated Bins 644 1691 2583 8536

Time 28.61 203.41 510.59 28210
GPCA Populated Bins 693 1893 2998 9800

Time 28.70 202.97 510.98 28471
LPCA Populated Bins 722 2015 3170 11285

Time 32.82 209.44 519.30 29329

Table 2 Three-link Acrobot Results: (θ1,θ2,θ3) config-space is divided into 50x50x50 bins to
measure coverage

Car-like System: LPCA-RRT causes the car to move straight with less turns as
in the case of RRT or GPCA-RRT. Results indicated that neither GPCA-RRT nor
LPCA-RRT provide an improvement in terms of coverage for this system. Results
for coverage have not been listed due to space contraints.

Cart Pole: Experiments on Cart Pole system showed that LPCA-RRT resulted
in an average improvement of 35% in coverage with only 1% increase in time to
grow the tree of same size. Space contraints prohibit the authors from sharing the
results. From the coverage plots in Table 2, it can be seen that the exploration of θ

space (plotted along y-axis) was improved for both LPCA-RRT and GPCA-RRT.
Hovercraft: LPCA-RRT demonstrated a uniform coverage of (x,y,) space as

compared to RRT. GPCA-RRT tends to skew the growth of RRT towards the up-
ward left direction, which is the principal direction of variance represented by the

Title Suppressed Due to Excessive Length 7

global PCA computed for the basic RRT algorithm. As per Table 3, coverage of
LPCA-RRT improved by an average of 25% with an average of 1.5% increase in
time cost.

1000 Nodes 3000 Nodes 5000 Nodes 20000 Nodes
RRT Populated Bins 530 1581 2588 9969

Time 19.68 125.11 316.20 4001
GPCA Populated Bins 477 1113 1772 9234

Time 21.79 127.48 317.59 4261
LPCA Populated Bins 568 1655 2704 9875

Time 53.28 226.26 481.69 4944

Table 3 Hovercraft Results: (x,y,θ) config-space is divided into 50x50x50 bins to measure cover-
age in terms of number of populated bins

Lunar Lander: The system was simulated in Ascent mode. For RRT and
GPCA-RRT, the branches of the tree tend to grow downwards, however LPCA-RRT
promotes the growth of the tree sideways. Results from Table 4, show that LPCA-RRT
provided an improvement in coverage by 25% at the cost of 4% increase in compu-
tational time.

1000 Nodes 3000 Nodes 5000 Nodes 20000 Nodes
RRT Populated Bins 361 1089.5 1483 5215

Time 17.249 112.79 313.281 4231
GPCA Populated Bins 323 1104 1773 6501

Time 17.344 113.88 313.289 4247
LPCA Populated Bins 555 1374 1800 6672

Time 23.375 133.54 324.123 4398

Table 4 Lunar Lander Results: (x, y, θ) config-space is divided into 50x50x50 bins to measure
coverage

5 Conclusion

The proposed technique improves RRT exploration by learning the local effects of
constraints in a physical system during an offline phase and then counteracts these
effects that inhibit the uniform growth of the RRT during the online operation of
RRT by adapting the propagation step. This work executes PCA locally and en-
ables better approximation of the underlying non-linear bias by decomposing the
state-space into regions where the bias may be varying. The approach is tested on
various systems and experimental results demonstrate that this technique works on
systems that exhibit a consistent exploration bias regardless of the size of the tree,
and that exploration performance is improved by 15− 35% thereby reducing the

8 Rakhi Motwani, Mukesh Motwani, and Frederick C. Harris Jr.

cost of finding a solution to specific motion planning queries. One key conclusion is
that the algorithm is only effective in scenarios where the standard RRT algorithm
fails to uniformly and quickly explore the state-space, as seen in the case of Car-like
system. Overall, this technique compensates for the lack of good distance metric in
the state-space and can be adopted by various sampling-based planning algorithms.

Acknowledgements

The authors would like to thank their colleagues Yanbo Li and Kostas Bekris for
providing guidance and assisting with replicting results from [12].

References

[1] Betts, J.T.: Survey of numerical methods for trajectory optimization. AIAA
Journal of Guidance, Control and Dynamics 21(2), 193–207 (1998)

[2] Canny, J., Rege, A., Reif, J.: An exact algorithm for kinodynamic planning in
the plane. Discrete and Computational Geometry 6, 461–484 (1991)

[3] Choset, H.M.: Principles of robot motion: theory, algorithms, and implemen-
tation Intelligent robotics and autonomous agents. MIT Press (2005)

[4] Donald, B., Xavier, P., Canny, J., Reif, J.: Kinodynamic motion planning.
J. ACM 40(5), 1048–1066 (1993)

[5] Glassman, E.L.: A quadratic regulator-based heuristic for rapidly exploring
state space. Master’s thesis, Massachusetts Institute of Technology (2010)

[6] Hsu, D., Kindel, R., Latombe, J.C., Rock, S.: Randomized kinodynamic mo-
tion planning with moving obstacles (2000)

[7] Jolliffe, I.: Principal Component Analysis, second edn. Springer Series in
Statistics. Springer (2010)

[8] Ladd, A.M., Kavraki, L.E.: Motion planning in the presence of drift, underac-
tuation and discrete system changes. In: Robotics: Science and Systems I, pp.
233–241. MIT Press (2005)

[9] LaValle, S., Kuffner, J.: Rapidly exploring random trees: Progress and
prospects. In: WAFR, pp. 293–308 (2001)

[10] LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)
[11] Lewis, F.L.: Applied optimal control & estimation: digital design & imple-

mentation. Prentice Hall (1992)
[12] Li, Y., Bekris, K.E.: Balancing state-space coverage in planning with dynam-

ics. In: IEEE International Conference on Robotics and Automatio (ICRA),
pp. 3246–3253 (2010)

[13] Schwartz, J.T., Sharir, M.: On the piano movers’ problem: Ii. general tech-
niqies for computing topological properties of algebraic manifolds. Commu-
nications on Pure and Applied Mathematics 36, 345–398 (1983)

