
Design and Implementation of a Graphical Visualization Tool for NCS

Justin E. Cardoza1 Alexander K. Jones1 Denver J. Liu1

Roger V. Hoang1 Devyani Tanna1 Laurence C. Jayet Bray1,2

Sergiu M. Dascalu1 Frederick C. Harris, Jr.1

Brain Computation Lab
http://www.cse.unr.edu/brain/

1Computer Science and Engineering 2Bioengineering
University of Nevada, Reno George Mason University

Reno, NV, USA Fairfax, VA, USA

Abstract
A core goal for neuroscientists is to understand the
physiological processes behind memory, learning, and
cognition. By developing computational models of
the brain, scientists can simulate how neurons inter-
act with each other and study these interactions more
closely. However, these simulations often require tech-
nical expertise to create and can be difficult to an-
alyze due to a lack of comprehensive visualization
tools. NeoCortical View, or NCV for short, aims to
solve these problems by providing a simple, convenient
graphical interface for managing virtual brain models.
NCV interacts with the NeoCortical Simulator (NCS)
developed by the Brain Computation Laboratory at
the University of Nevada, Reno (UNR), allowing users
to build models, distribute simulations across available
hardware, and view the current live network state in
3D. NCV provides an intuitive and extensible simula-
tion platform with a reduced learning curve, abstract-
ing away the complex setup and analysis of neural
simulations and allowing neuroscientists to focus on
neuroscience.

Keywords: Simulation, GPU, Computational Neuro-
science

1 Introduction

The primary goal of this software is to simplify the
process of analyzing, managing, and launching brain
simulations. NCV [5] represents a major breakthrough
in how scientists can interact with computational brain
models under NCS [2, 3, 8]. The latest version of
NCS, version 6, is a CPU/GPU simulation environ-
ment for large scale neural networks and systems. It is
open-source, parallelizable and runs in quasi-real time.

NCS6 supports two major neuron model types: Leaky
Integrate-and-Fire (LIF) and Izhikivich. LIF neurons
in NCS6 are based on a reordered form of the Hodgkin-
Huxley (HH) equations [7]. Izhikevich neurons are
modeled using dynamical systems and Izhikevich equa-
tions [4]. In addition to these model types, users can
create plugin interfaces for other neuron models.

In the past, NCS did not provide any visualiza-
tion tools. As a matter of fact, no other major neural
simulation package provides any 3D visualization of
its models. If information was required on a part of a
model, scientists had to manually search through text
output from the simulator. NCV aims to eliminate the
need for this sort of low-level interaction by providing
a graphical interface to represent the results of a sim-
ulation in a simpler way as they are produced. NCV
also provides other tools to help scientists launch and
manage simulations more easily. One of these tools
is the cluster editor, a section of the interface to aid
in specifying what hardware NCS should use. Also
of note are the distribution tools used to launch NCS
given a hardware configuration from the cluster editor.

Due to its potentially diverse user base and run-
time environment, NCV has been built from the
ground up with multiple computing platforms in mind.
The cross-platform Qt and OpenGL libraries are uti-
lized to ensure that NCV can run under a variety of
different systems. NCV has been tested on several
computer hardware configurations running the Win-
dows 7 and Ubuntu Linux operating systems.

The rest of this paper is structured as follows:
Section 2 outlines the functional and non-functional
requirements for the software; Section 3 details the use
cases for the application; Section 4 gives an overview
of the design and application architecture; Section 5
presents the user interface and visualization capabili-

ties; Section 6 discusses conclusions; Section 7 outlines
future plans for additional development.

2 Requirements Specification

The requirements specification for NCV follows the
format in Ian Sommerville’s book Software Engineer-
ing [6]. Active behavior which the software must ex-
hibit is described using functional requirements; pas-
sive constraints on the software or its development are
described by non-functional requirements.

2.1 Functional Requirements

The functional requirements describe the most
important behavior of the software, including user in-
teractions, rendering processes, and network commu-
nications:

1. NCV shall be able to communicate with a local
or remote installation of NCS.

2. NCV shall support launching simulations of the
types supported by NCS.

3. The interface shall give the user options to start,
stop, and pause the current simulation.

4. NCV shall display a 3D representation of the neu-
rons and connections in the current simulation.

5. At application exit, NCV shall give the user a
choice to either leave the simulation running, or
to end it immediately.

6. In the visualization, the virtual camera shall obey
user commands to move and rotate.

7. Neurons and connections shall be selectable
through the user interface.

8. There shall be an option to deselect any previ-
ously selected neurons or connections.

9. Sizes of simulation elements shall be adjustable.

10. Colors used for rendering shall be customizable.

11. State data recieved from NCS shall be passed to
the visualization and analysis tools.

2.2 Non-Functional Requirements

The non-functional requirements outline the most
important constraints on the system, such as timing
and some details of the implementation that needed
to be established early on.

1. NCV shall be a cross-platform application.

2. NCV shall be implemented in C++ using Qt and
OpenGL.

3. TCP shall be used to communicate with the sim-
ulator while it is running.

4. The application shall operate on large datasets.

5. NCV shall perform rendering in as close to simu-
lation time as possible.

3 Use Cases

The use case diagram in Figure 1 shows the most
important functionality of the software. Arlow and
Neustadt [1] have established a format for software
use cases which is used here. The detailed use cases
are as follows:

UC01 Initialize Connection
When the user launches an external simulation, NCV
attempts to establish a connection with the primary
host running the simulation. Once the connection has
been established, state updates can be requested from
the simulator on an ongoing basis.

UC02 Disconnect
The user can disconnect from the running simulation
and halt the analysis tools by interacting with a button
in the application’s main toolbar.

NCV
Visualization
Component

NCV User NCS

Customize
Coloring

Render Scene

Camera
Control

Adjust
Element Size

Single
Selection/

Deselection

Group
Selection/

Deselection

Compound
Selection/

Deselection

Initialize
Connection

Receive
Attribute Data

Disconnect

UC04

UC05

UC06

UC07

UC08

UC09

US10

UC01

UC02

UC03

NCV
Networking
Component

Figure 1: The full use case diagram for the system.
Each bubble represents a scenario in which particular
behavior is expected of NCV.

UC03 Receive Attribute Data
At each update interval, new data is received from
NCS over the network connections for the current at-
tributes. The attribute data is then sent to any active
analysis plugins and the GPU, after which the visual-
ization of the model is updated.

UC04 Customize Coloring
The user can choose a custom color configuration
for the neurons and connections using an RGB color
picker. Several ranges can be selected for different col-
ors and the neuron and connection colors can be either
linked or have separate color tables.

UC05 Camera Control
Camera movement includes rotating the viewpoint and
navigating through the visualization space. The cam-
era is controlled by both the mouse and the keyboard.
With the keyboard, the user can move the camera
around the visualization; with the mouse, the user can
rotate the camera to point in different directions.

UC06 Single Selection/Deselection
When the user clicks on an element with the mouse,
that element is selected and highlighted. If the user
clicks on a previously selected element, that element
is deselected and no longer appears highlighted.

UC07 Group Selection/Deselection
The user can select multiple elements by supplying
a selection rectangle. The selection rectangle is de-
termined by the mouse position when the user first
presses the button and the mouse position when the
user releases the button. The rectangle is shown on
screen to aid in selection. If the user clicks in an
empty region of the screen, all selected elements are
deselected.

UC08 Compound Selection/Deselection
If there is already at least one element selected, the
user can change the selection mode through the tool
panel next to the visualization canvas. In compound
selection mode, clicking on an element in the visual-
ization adds it to the current selection if it was not
previously selected or subtracts it from the current se-
lection if it was previously selected.

UC09 Adjust Element Size
The size of the rendered neurons can be adjusted
through the tool panel next to the visualization.

UC10 Render Scene
NCV renders all the neurons and connections using the
OpenGL graphics pipeline. Rendering occurs when
data is received over the network or when the view-
point has changed.

4 Design Overview

The core design philosophy of NCV is driven by ac-
cessibility. As the application is targeted at profes-
sional neuroscientists, it is important to abstract the
command line utilities of NCS into a graphical user
interface and simplify the process of interacting with
a simulation without sacrificing any performance or
extensibility. Using the Qt framework gives NCV an
efficient and powerful user interface, facilitates deploy-
ment on multiple platforms, and supports extensibil-
ity through a plugin loading architecture. The lat-
est version of NCV has been tested on Windows 7
and Ubuntu Linux, and while deployment on Macin-
tosh OS X remains untested, the application does not
contain any platform specific dependencies that would
cause difficulties with installation on such systems.

As indicated by Figure 2, NCV begins by prompt-
ing the user for a project directory. The user is then
asked to supply a path to an installation of NCS which
may be hosted a local machine or a remote one. Once a
NCS installation has been validated, NCV passes con-
trol to the loaded plugins until a new project is opened
or the application is closed. If NCS applications are
still running upon application exit, the user can decide
whether to end the processes or leave them running.

In order for NCV to provide access to the evolv-
ing feature set of NCS, it utilizes plugins to implement
the majority of simulation processes. By requiring that
plugins satisfy one or more globally declared interfaces,
NCV can understand how to interact with the loaded
plugins without knowledge of their specific functional-
ity. This enables the application to supply users with
a wide variety of capabilities without imposing restric-
tions on what functionality is contained in the installa-
tions of NCS. Currently, there are three interface types
plugins may implement. The utility interface allows
plugins to interact with NCS applications by supply-
ing a bridge to a NCS installation. The distribution
interface also supplies plugins with a bridge to a NCS
installation, but is aimed at distributing and launching
simulations. When a plugin satisfying the distribution
interface launches a simulation, it notifies the main ap-
plication and supplies a bare-bones description of the
simulation context. Lastly, the analysis interface en-
ables plugins to subscribe to data being reported by
the simulation so that these plugins may provide users
with in-depth analysis of the running simulation.

The largest and most powerful plugin currently
incorporated into NCV is the visualization widget
which interacts with the main application using the
analysis interface. This plugin renders the topology of
the running simulation in 3D and enables the user to
navigate the visualization with a mouse and keyboard.
As shown in Figure 3, the visualization plugin captures

Project Selection

Project Startup

Setup NCS Bridge

 Simulation Startup

Simulation Runtime

entry / Enable utility
and distribution plugins
exit / Disable utility and
distribution plugins.

entry / Enable analysis
plugins
exit / Disable analysis
plugins. Stop
simulation.

Project Cleanup

 Close NCS Bridge

Plugin Launches
 Simulation

Project
Loaded

Plugins
Loaded

V
alid N

C
S

C

onnection
E

stablished

Window Exit / Project Exit

 Exit
Application

Lo
ad

 N
ew

 P

ro
je

ct

W
in

do
w

 E
xi

t /

P
ro

je
ct

 E
xi

t

Window Exit / Project Exit

entry / Create or load
project file.

entry / Read project
file and load related
plugins.

entry / Disable all
plugins.

User Stopped
 Simulation

entry / Prompt to kill
running applications or
leave running.

exit / Prompt to save
project. Close project
and cleanup plugins.

 NCS Bridge
 Closed

Figure 2: A state diagram that describes the operation of NCV.

data recieved by the network interface, transfers this
data to buffer memory on the GPU, and gathers in-
formation from the user interface to decide how the
simulation topology is rendered. To incorporate the
data recieved from the simulation, the visualization
maps the received data to a buffer of user specified
color values which is sampled for each element during
rendering. This allows a large collection of data to be
represented intuitively and also allows users to specify
custom color configurations that best suit their unique
needs. Much like the design of the core application,
the visualization plugin is developed with portability
and efficiency in mind. It uses the OpenGL 3.3 spec-
ification to offload graphics computation to the GPU
and utilizes many components of the modern OpenGL
feature set to optimize rendering efficiency. As a re-
sult, the visualization widget can render simulations
in the tens of thousands of neurons with reliable fram-
erates on modest laptops, and render simulations of
over 100,000 neurons on more capable desktop com-
puters. On a laptop with an NVIDIA 610M, a model
with 1,000 neurons and 10,000 synapses can be dis-
played at more than 50 FPS. On an i7 desktop with
dual NVIDIA 580s, a model with 1,000,000 neurons
and 100,000,000 synapses can be displayed at greater
than 20 FPS.

Neocortical
Simulator

Network
Interface

Data Buffering
and

Management

User Interface

Rendering
Post-

processing

<<subsystem>><<subsystem>>

<<subsystem>> <<subsystem>> <<subsystem>>

Figure 3: The architecture diagram of NCV’s visu-
alization component, showing the main modules and
the relationships between them. Also included is the
network connection to the external simulator.

5 User Interface

Upon launching the application, the user is prompted
to create a new project or load an existing one. When
creating a new project, the user must specify a project
name and what plugins that project will need. The

Figure 4: The main window allows users to select the
active plugin by interacting with the plugin launcher.

user is then presented with the main application win-
dow shown in Figure 4. Docked on the top of the
application window is the home toolbar which informs
the user of pertinent information about the currently
connected NCS installation such as the version and
host system. When a simulation is running, this tool-
bar also lets the user start, pause, and end the running
simulation as well as set the interval at which updates
from the simulator are received. Present below the
toolbar is a widget which contains a plugin launcher
and a canvas for displaying the currently selected plu-
gin.

The plugin launcher enables a user to show a plu-
gin’s dialog by clicking on the label associated with it.
As all plugins require a connection to a built instal-
lation of NCS, the plugin launcher contains a built-in
widget, indicated by the “Connect to NCS” label, for
establishing such connections. The dialog shown after
clicking this label validates a local or remote installa-
tion of NCS and reports to the main application when
a bridge to a valid installation has been established.
The main application window then reports information
regarding the NCS installation on the home toolbar
and activates all plugins in the launcher that require a
bridge to NCS. NCV contains several built-in plugins
which, given a bridge to NCS, assist in the setup and
distribution of simulations. The Cluster Editor plu-
gin allows a user to detect available hardware present
among specified machines and generate custom hard-
ware configurations for use in simulation distribution.
Simulation launching plugins like the built-in LIF and
Izhikevich Launchers allow the user to distribute sim-
ulations utilizing specific neuron modeling techniques
such as Leaky Integrate-and-Fire or Izhikevich mod-
eling. When a plugin has launched a simulation, it
reports to the main application that a simulation is

running and the plugin launcher enables all plugins
that satisfy the analysis interface so that they may
help users analyze the data reported by the simula-
tion.

The built-in visualization plugin is the featured
analysis tool provided in NCV. The visualization plu-
gin uses the topology generated by a running simula-
tion to render the current model in 3D. The visualiza-
tion widget, shown in Figure 5, contains a visualization
canvas which houses the rendering context, in addition
to a tool panel for customizing the rendering of the
brain. The tool panel lets the user select a reported
attribute to display for both neurons and connections
in addition to providing customization options for how
values of these attributes are represented. Attributes
with discrete states, such as whether or not a neuron
is firing, are given distinct color values for each state;
attributes that occupy a continuous range, such as the
voltage of a neuron, are mapped to a continuous gra-
dient of color.

Figure 5: The visualization plugin represents the brain
topology in 3D and represents data reported by the
simulation through colorization of brain elements.

The visualization canvas renders neurons as cubes
and connections between neurons as rectangular pipes.
Although this representation is a dramatic simplifica-
tion of true biological brain structure, it allows large
neural networks to be visualized efficently and navi-
gated fluidly. Subsections of the brain can be ana-
lyzed by left clicking the mouse on the visualization
canvas and dragging a selection rectangle over the de-
sired geometry. Selected brain elements are then visu-
ally emphasized over other elements and can be iso-
lated entirely so that only the elements of interest
are rendered. As seen in Figure 6, the brain topol-
ogy can be examined in finer granularity by hovering
the mouse over an individual element to examine the
current value for all reported attributes.

Figure 6: The visualization plugin allows users to
examine individual brain elements by hovering over
them.

6 Conclusion

NCV provides a wealth of features that make running
simulations with NCS easier. By abstracting the pow-
erful facilities of NCS from command line operations
into easy-to-use graphical interfaces, it makes NCS ac-
cessible to neuroscientists with limited technical exper-
tise. The visualization component allows for powerful
analysis of the simulation state in real time, giving
users the ability to customize how simulation data is
represented. NCV also provides an open source plugin
framework which can be used by developers or tech-
nically inclined neuroscientists to easily extend NCV
to support new features. This framework is fully com-
patible with the NCS plugin architecture, allowing its
plugins to be abstracted for users of NCV. The built-
in features of NCV expose the power of NCS, and the
plugin framework ensures that further expansions to
the simulator can be incorporated.

7 Future Work

Although NCV already contains a great deal of core
functionality, there are still many areas in which the
application can be expanded. While NCS has defined
file formats for brain topology and simulation proce-
dures, NCV could benefit from abstracting their cre-
ation into a simple graphical interface. By implement-
ing a drafting plugin, users could visually construct,
combine, and populate sections of a brain model in
3D and intuitively describe simulation behavior.

Currently, NCV launches a simulation and imme-
diately connects to it. In the future, additional func-

tionality could be added to NCV to connect to and
analyze previously running simulations.

The visualization plugin renders the low level
brain topology of a running simulation. One of the
most interesting changes would be to subdivide the
brain model into groupings. If the visualization plu-
gin could present labeled groupings of neurons and
synapses, users could identify the areas of the model
that are of interest and focus on them. Additionally,
it would reduce the amount of geometry rendered and
result in lower computation time.

Acknowledgements
This work was supported in part by a grant from the
U.S. Office of Naval Research (N000140110014).

References

[1] J. Arlow and I. Neustadt. UML 2 and the uni-
fied process: practical object-oriented analysis and
design. Addison-Wesley Professional, 2005.

[2] R. Drewes. Brainlab: A toolkit to aid in the design,
simulation, and analysis of spiking neural networks
with the NCS environment. Master’s thesis, Uni-
versity of Nevada, Reno., May 2005.

[3] R. V. Hoang, D. Tanna, L. C. Jayet Bray, S. M.
Dascalu, and F. C. Harris, Jr. A Novel CPU/GPU
Simulation Environment for Large-Scale Neural
Modeling. Submitted, 2013.

[4] E. M. Izhikevich. Simple model of spiking neu-
rons. IEEE Transactions on Neural Networks,
14(6):1569–1572., 2003.

[5] A. Jones, J. Cardoza, D. Liu, L. Bray, B. Bryant,
S. Dascalu, S. Louis, and F. Harris Jr. A Soft-
ware Package for Visualizing Complex, Distributed
Neural Networks. To Appear, BMC Neuroscience,
2013.

[6] I. Sommerville. Software Engineering. Addison-
Wesley, Harlow, England, 9 edition, 2010.

[7] T. P. Trappenberg. Fundamentals of Compu-
tational Neuroscience. Oxford University Press,
USA., Second edition, 2010.

[8] C. Wilson, P. Goodman, and F. C. Harris, Jr.
Implementation of a biologically realistic parallel
neocortical-neural network simulator. In Proceed-
ings of the Tenth SIAM Conference on Parallel
Processing for Scientific Computing, Portsmouth,
VA., March 2001.

