
NeoCortical Repository and Reports:
Database and Reports for NCS

Edson O. Almachar1 Alexander M. Falconi1 Katie A. Gilgen1

Devyani Tanna1 Nathan M. Jordan1 Roger V. Hoang1

Sergiu M. Dascalu1 Laurence C. Jayet Bray2 Frederick C. Harris, Jr.1

Brain Computation Lab
http://www.cse.unr.edu/brain/

1Computer Science and Engineering 2Bioengineering
University of Nevada, Reno George Mason University

Reno, NV, USA Fairfax, VA, USA

Abstract

In the field of Computational Neuroscience, com-
puter based brain simulators help Neuroscientists in
the formulation and examination of theories about the
inner workings of the brain in the microscopic and
cellular level. Brain simulators offer an opportunity
to refine and build upon the compendium of scientific
knowledge in Neuroscience. One of these brain simula-
tors is the NeoCortical Simulator (NCS). In operating
a computational powerhouse, there is a need of an in-
terface with which a user would interact with to com-
municate with the simulator. We propose a browser
based web application that a user may browse to in or-
der to use a plethora of services for the simulator. Two
of these services include a Repository Service which
allows a user to save a brain model onto a database
and a Reporting Interface which allows a user to view
the data output by the simulator. This paper details
the design and implementation of those services, called
NeoCortical Repository and Reports (NCR).

Keywords: Simulation, Computational Neuro-
science, Database, Reports

1 Introduction

The NeoCortical Simulator from the University of
Nevada, Reno, is a joint research venture between the
colleges of Science, Engineering, and Medicine within
the University of Nevada, Reno[4, 5]. It is a tool for
researchers to perform CPU/GPU based simulations
with biological brain models. The NCS uses brain
model data as arguments to the simulator and then
outputs data in a parsable text format. Previously,

the brain models had to be coded in, which was an in-
convenience for researchers unfamiliar with program-
ming. Additionally, the outputs were not conveniently
displayed and required extra time and effort to under-
stand the data.

Past projects have expanded on the idea of a
friendlier user experience when interacting with the
simulator. One of which is the NCS-NeuroML transla-
tor [6] which allowed the conversion of NCS input files
from the standard NeuroML input language to the na-
tive input language via the usage of a java-gnome user
interface library thereby streamlining interaction with
the simulator. Another is the 3D Neuron visualizer, or
NeoCortical View[3], which allowed a user to visualize
the current live network state of the simulation in 3D.

Figure 1: The architecture of the NCS Web Applica-
tion.

To continue this trend of streamlining the experi-
ence, we wish to further improve the interface. We pro-
pose the NCS Web Application; an intuitive, browser
based application that users may browse to on their
web browser and begin interacting with the NCS with-
out need of a command line interface. The NCS Web
Application is comprised of five main components that
encourage a smooth user experience within the NCS.
These components are outlined in Figure 1.

There are multiple development teams in charge



Figure 2: MongoDB documents design

of the construction of this web application. The Neo-
Cortical Builder team is responsible for Brain Builder
and Simulation builder [1]. Whereas, the development
team, NeoCortical Repository and Reports, is con-
cerned with the development of the Model Database
and the Graphical Reports, and as such, is the main
topic of discussion for this paper. The two components
developed by NCR are described by the following:

Firstly, when a user chooses to interact with
the Database, the user must be aware that NCS has
the ability to simulate three biological neuron mod-
els: Izhikevich, Leaky integrate-and-fire, and Hodgkin-
Huxley. NCR is concerned with the implementation of
a Model Database that would need to understand these
brain models in order to conduct services like storage,
search, and updating a model.

Secondly, further down the cycle in an active sim-
ulation, there would have to be an output. NCR is
concerned with the implementation of a Reporting In-
terface comprised of line graphs and raster plots, which
are the standard graphing mediums in Neuroscience.
These reports make interpretation easy and swift so as
to promote efficient use of time and better productiv-

ity.

As a result, the implementation of NCR within
the NCS mainframe will accomplish a multitude of
goals that encourage a user friendly experience with
the NCS. To help outline these goals, the design
overview of the NCR components and their use cases
are detailed in Section 2. The User interface, a key
asset in the human to computer interaction of the ap-
plication, is detailed in Section 3. The paper wraps up
with a discussion of future work in Section 4.

2 Design Overview

The main functionality of NCR is based on its
manifestation as a website. The site is hosted on a
web server base constructed using FLASK[9], a python
based micro-framework. The model database is de-
signed using MongoDB[7], which is an easily scalable
non-relational database. Hosted over the internet, the
database can be used to upload or store brain mod-
els. The reporting interface is constructed via D3.js[2],
a javascript graphing library, and jQueryUI[10], a



Figure 3: The low level design of the reports interface.

Figure 4: JSON document for Izhikevich Neuron

javascript user interface library. Everything the user
does to interact with the NCS would be done so
through the users’ web browser.

2.1 Database Design

The brain model database gives users of the NCS
web application the ability to easily collaborate with
others and save valuable time. The model database
is designed in order to store and query various brain
models. MongoDB is an ideal choice for the database
since it is free, open source, flexible in terms of schema,
and uses JSON-style(Javascript Object Notation) doc-
uments as shown in Figure 4.

The MongoDB document design is shown in Fig-
ure 2. Big boxes are documents, and boxes inside
boxes are sub-documents. Sub-documents are good
for faster queries. Each document belongs to one of
the 6 collections in the database: Groups, Neurons,
Channels, Synapses, Stimuli, and Reports. By default,
MongoDB does not enforce schema. In order to have

structured schema and validation layer, MongoKit [8]
is used. A database schema is created for each docu-
ment type, and is used as the format for the models
within MongoDB.

The simplistic structure of the search panel pro-
vides an intuitive way for a user to find a useful model
in the database without the need for searching through
various text files and downloads. The database stores
models from users who have uploaded or created a
model using the Model Builder tab of the application,
meaning that users from around the world may publish
a model for other users to view.

2.2 Reports - High Level Design

The Graphical Reports tab of the NCS web appli-
cation aims to provide as much of an intuitive interface
as possible in an attempt to maximize comprehension
of the data and to minimize the complication of tech-
nicality. In order to provide such an interface, a fully
dynamic environment is generated that would allow a
user to manage and manipulate graphs to their liking.
Users may manage graphs by dynamically creating or
deleting them. Users may apply spatial manipulations
by dragging and placing the graphs from one area of
the web page to another, allowing the user to reorga-
nize the graphs to their liking.

When considering a large amount of data, ac-
curacy in representation must be considered when
abstracting output from the NCS. Scalable Vector
Graphics (SVG) are the main abstraction medium
for the data and utilized for dynamic representation.
D3.js provides the interface between the data and the
SVG representing the data. As data is continuously
fed to the client from the server, the SVG’s must
change dynamically over time. To accomplish this,



D3 allows for animated SVG’s.
Presentation both on the NCS web application

and off are important. When considering the applica-
tions ability to save graphs onto disk, accurate repre-
sentation has to be priority. To facilitate this concern,
client side graph capture of the browser generated SVG
was an optimal design choice. Users may capture the
SVG elements within the webpage and have its context
downloaded as an SVG file. For an animated Graph-
ics Interchange Format (GIF), the SVG is continually
contextualized into a HTML5 Canvas element. That
element is then captured and inserted frame by frame
into a GIF object and downloaded as a GIF file.

2.3 Reports - Low Level Design

The graphical reporting interface is comprised
of multiple components whose functionalities vary
widely, but each having an important role in the con-
struction of a reporting window. The components in-
teraction is shown in Figure 3.

Control Panel - The component representing the
control panel that would allow a user to manipulate
the environment that the graphs will be instantiated
into.

Graphs - An singleton that would allow a user to add
or remove graphs. This entity is also responsible for
maintaining and feeding data to graphs.

Data Generator - An entity that manages the data
received from NCS and would continuouly inject that
data into the line graphs and raster plots.

Line Graph(s) - A D3 based entity that holds and
manages the line graph SVG.

Raster Plot(s) - A D3 based entity that holds and
manages the raster plot SVG.

GIF Capture - A service that allows a Line graph or
Raster plot to be recorded via GIF or SVG and saved
to file.

3 User Interface

3.1 Repository

The model database tab of the NCS Web Ap-
plication is used to search through the brain model
database using a simplistic search panel. The model
list on the tab shows the models in the database that
match the search criteria specified by the user. Within
the search panel, the user can filter the list based on
the model types, which are collected into groups in the
search panel. Selecting a model type opens a collapsi-
ble list of search-able parameter values. The user may

enter an exact value, or a range of values delimited by
a dash.

The search panel is located on the left side of the
model database tab. The initial panel shows groupings
for model types that can be expanded to reveal model
type selection boxes. Selecting a model type box adds
models of the selected type to the filtered results. If the
name of the type is selected, the search panel expands
to show the parameter search options. Here, the user
enters an exact or range of values into the search box
and clicks the search icon to update the model list.
Only the models of the selected type that have the
specified value appear in the list. A user can specify as
many included types and parameter values as desired
for a search. The general filter group includes filtering
the list based on name, author, description, and scope
values. An example of the list filtered by selecting
the group Neuron, type Izhikevich, and specifying the
author name are shown in Figure 5.

Figure 5: The models in the list are populated based
on the search filter values, located in the left search
panel.

By selecting the name of a list item, a user can
view the models details. A model view opens on the
page and shows the models general information, such
as the name, author, and description. The detail view
includes a table of parameters and the models param-
eter values. Each detail view is specific to the selected
model type in order to intuitively display the informa-
tion, as shown in Figure 6.

3.1.1 Use Cases - Repository

UC01 Search Models
A user selects model types to be included in the search
results, and then expands the parameter dropdown for
each type to enter parameter values. The list is popu-
lated based on the filters by type selections and entered
parameter values.
UC02 Examine Model
After a user has applied search filters to the model list,
the list contains relevant models. The user selects the



Figure 6: Selecting a model name in the list opens the
detailed view which shows the parameter values and
the promote option.

name of a model in the list and a detail view window
opens. The user views the parameter values for the
model.
UC03 Upload and Download Model
A user can choose to upload a model from database to
model builder and download model from model builder
to database.

3.2 Reports

Upon entering the reports tab of the application,
users will be greeted by a reports control panel. From
here, users will be able to control a myriad of func-
tions which allow the user to add graphing instances
into the environment, add graphing columns, change
settings, and view the reporting status of the simula-
tor. When a user adds a graph instance, it is either in
the form of a line graph or a raster plot. The graph
is instantiated and placed in the environment. The
environment which houses the graphs is comprised of
graphing columns. A graphing column is a container
that houses and displays graphs vertically (e.g. if a
user has one graphing column, it is possible to have
one ”stack” of instantiated graphs. If a user has two
graphing columns, it is possible to have two ”stacks”
of graphs). A key feature enabled by these graphing
columns is the ability to drag graphs from one graph-
ing column to another. This is the main implementa-
tion that allows for spatial customization where a user
can customize a certain region of the webpage to have
a certain set of graphs.

When a graph is instantiated, each graph will
have its own set of buttons at the header of the instan-
tiated graph. These buttons grant the user a series of
customization tools: add or delete lines, change the
color of a line, zoom in or zoom out within a graph,
change the vertical dimensions of a graph, pause a
graphs’ reporting state, resume a graphs’ reporting
state, record the current state of the graph as an ani-

mated GIF or static SVG.

3.2.1 Use Cases - Reports

UC01 Add Line Graph or Raster Plot
A user has the ability to add reporting windows that
can abstract the data in the form of a Line Graph or
a Raster Plot.
UC02 Zoom In or Zoom Out
A user can zoom into or out of a reporting window to
accomodate their viewing preferences. The differences
in zoom levels can be viewed in Figure 7.

Figure 7: An example of multiple zoom levels and win-
dow dimensions.

UC03 Change Color
A user can choose to change the color of a line in a
line graph to any color using a gradient color picker
for easier viewing of a certain cell as seen on Figure 8.

Figure 8: An example of multiple cell channels and
color changes to facilitate easy interpretation.

UC04 Play or Pause
As a graph is dynamically reporting data, a user can
choose to pause the reporing process and the graph
will halt at the current data shown. When the user is
ready, he or she may continue to view the reports by
pressing the play button. Play and pause buttons are
viewable in Figure 9.
UC05 Position Slider
Should the user wish to view old data that has already



Figure 9: An example of the raster plot reporting win-
dow.

been reported, the user may drag the position slider
as nesessary to view data as they wish.

UC06 Graph Recording
A user has the ability to record a frame of the graph
and save to file. Upon the recording options is an
animated GIF, a static GIF, or an SVG.

4 Conclusion and Future Work

4.1 Conclusion

The NCR project follows a fundamental princi-
ple: a fluid harmony between the powerful back end
brain simulator and the intuitive front end array of
tools is essential to the human paradigm of easy to
use, easy to share, and easy to understand. NCR al-
lows users to view available brain models with ease
and intuitively view a graphical abstraction of the sim-
ulation output. Combined, these various components
form a product which encourage an easy work flow of
user control when interacting with something as com-
plex as the NCS.

4.2 Future Work

Future work for the NCR project includes the
addition of non-core features; for example, the imple-
mentation of a note taking tool to attach notes or com-
ments to models in the database, or a discussion forum
for users so as to expand their collaborative potential
with other users across the world. Other ideas include
the ability to copy brain models from other existing
databases, and the flexibility to accept different types
of models that may not currently be compatible with
the database.

Other types of future work include the migration
onto other platforms such as mobile devices like smart
phones or tablets. Adapting the application to table
type technology or other touch screen devices may in-
clude utilizing the full potential of a touchscreen in-
terface; for example, allowing the user to pinch-zoom
a graph within the reports tab, or to swipe through

a listing of brain models pulled from the database in-
stead of clicking through a pagination scheme.

References

[1] J. Berlinski, C. Rowe, D. M. Chavez, N. M. Jor-
dan, D. Tanna, R. V. Hoang, S. M. Dascalu,
L. C. J. Bray, and F. C. Harris, Jr. NeoCorti-
cal Builder: A Web Based Front End for NCS.
In Proceedings of the 27th International Confer-
ence on Computer Applications in Industry and
Engineering (CAINE-2014), 2014.

[2] M. Bostock. D3.js: Data-driven documents.
http://d3js.org/, 2014. (Retrieved May 19,
2014).

[3] J. E. Cardoza, A. K. Jones, D. J. Liu, R. V.
Hoang, D. Tanna, L. C. Jayet Bray, S. M. Das-
calu, and F. C. Harris, Jr. Design and Implemen-
tation of a Graphical Visualization Tool for NCS.
In Proceedings of The 2013 International Confer-
ence on Software Engineering and Data Engieer-
ing (SEDE 2013), 2013.

[4] R. V. Hoang. An Extensible Component-
based Approach to Simulation Systems on
Heterogeneous Clusters. PhD thesis, Uni-
versity of Nevada, Reno, 2014. http:

//www.cse.unr.edu/~fredh/papers/thesis/

PHD-010-Roger-Hoang/dissertation.pdf

(Retrieved July 24, 2014).

[5] R. V. Hoang, D. Tanna, L. C. Jayet Bray, S. M.
Dascalu, and F. C. Harris, Jr. A Novel CPU/GPU
Simulation Environment for Large-Scale Neural
Modeling. Frontiers in Neuroinformatics, 7, 2013.

[6] N. M. Jordan, K. Perry, N. Narala, L. C. Jayet
Bray, S. M. Dascalu, and F. C. Harris, Jr. Design
and implementation of an NCS-NeuroML trans-
lator. In Proceedings of the International Confer-
ence on Software Engineering and Data Engineer-
ing (SEDE 2012), Los Angeles, CA., June 2012.

[7] MongoDB Inc. MongoDB. http://www.

mongodb.com/, 2014. (Retrieved May 19, 2014).

[8] Namlook. MongoKit. http://namlook.github.

io/mongokit/, 2014. (Retrieved May 19, 2014).

[9] A. Ronacher. Flask. http://flask.pocoo.org/,
2014. (Retrieved May 19, 2014).

[10] The jQuery Foundation. jQueryUI. http://

jqueryui.com/, 2014. (Retrieved May 19, 2014).


