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Abstract 

 
This paper presents an overview of the research and 

development of Brain Computer Interfaces (BCIs), focused 
mainly on the software component. A classification of BCIs 
is proposed, providing a general sense of the various ways 
one can approach such systems. The different types of BCI 
systems are the main focus of the paper, and related research 
and development efforts are explored. The proposed 
classification is based on several major characteristics of 
BCIs: independent versus dependent, invasive versus non-
invasive, and exogenous versus endogenous. Issues and 
limitations currently faced by BCI researchers and 
developers as well as several existing BCI applications are 
also surveyed. In addition, directions of future work 
pertaining to BCIs are briefly discussed. 
 
1 Introduction 
 

Advances in Human Computer Interaction (HCI) continue 
to play an important role in society. One growing 
development in HCI is the concept of a direct Brain 
Computer Interface (BCI). The goal of BCI is to improve 
the quality of one’s life, and its full potential has been yet to 
be explored. Much of the research so far mainly focused on 
people with severe motor disabilities, but BCIs also have 
potential in the domain of immersive video games, 
communication, and robotics. However, many challenges 
arise in the development of such systems. The main factors 
that affect the performance of a BCI system include the type 
of brain signals used as data, data acquisition methods, the 
algorithms that are used to translate the obtained data, the 
hardware that facilitates user control, the type of feedback 
the user receives when executing commands, and the 
characteristics of the users themselves. Therefore, future 
improvements in BCI systems require structured, well-
controlled studies that evaluate and compare alternative and 
combinations of signals, various data acquisition methods, 
alternative translation algorithms, and various control 
applications offered to different users. 
 

 

 
Unfortunately, most current BCI systems do not readily 

support such structured research and development [1]. 
Though many have tried to accomplish this (e.g., [2], [3]), 
up to now BCI research has only offered previews of the 
lackluster capabilities of current BCI systems. So far, there 
only exist demonstrations of systems that one or few users 
can control a certain device if a certain brain signal is 
recorded and measured in a specific way, and translated 
into control commands by a certain algorithm [4]. These 
systems are still unable to fully unleash the true capabilities 
of BCI, which might be achieved by utilizing and 
comparing various brain signals and processing methods. 
By demonstrating the impressive capabilities of this yet 
underrated form of interaction through innovation, a more 
immersive means to operate this technology could be 
achieved. This is important because through immersion, not 
only can BCI boost the standard of living, the bulk our 
society’s unyielding mindset towards operating such new 
technology may also improve. Therefore, further progress 
in BCI research and development is needed.  
 

This paper aims to provide an overview of the research 
and development of BCIs. In Section 2, we propose and 
describe our taxonomy of BCI systems, breaking them 
down into three main categories: independent and 
dependent, invasive and noninvasive, and endogenous and 
exogenous. In Section 3, the development of BCI systems is 
explored. In Section 4, we present existing applications 
created as a result of BCI research. In Section 5, we discuss 
the surveyed research and development. Finally, in Section 
6, we provide our concluding statements, and discuss the 
directions of future work BCI has to offer. 

 

2 Proposed Classification  
 
 BCI development is traditionally divided into several 
categories: independent or dependent, invasive or 
noninvasive, and exogenous or endogenous. Figure 1 
illustrates our suggested taxonomy on BCI development, 
presenting the various types of current BCI that fit into their 
respective categories. 
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Figure 1: Abstract taxonomy of BCI development

Independent vs. Dependent 
 
 Independent and dependent BCI systems are distin-
guished by how reliant the system is on additional types of 
activity in order to function. An independent BCI does not 
depend on the brain’s pathways (i.e., peripheral nerves or 
muscles); activity in such brain output is unnecessary to 
create the brain activity (e.g. EEG) required to execute a 
certain command [4]. For example, a user can choose a 
specific letter by solely thinking about it. In the BCI 
system described by Farewell and Donchin, the user is 
presented a matrix of sequentially flashing letters [5], [6]. 
As the letters flash, the user produces a P300 potential, 
allowing for the user to select the currently lit letter. It 
should be noted that the generation of the appropriate 
signals depends on the user’s intent instead of the direction 
of the user’s gaze. Instead of relying on such peripheral 
nerves, independent BCIs provide the brain with a new 
communication path, which could be more useful and 
theoretically interesting than dependent BCIs. In addition, 
independent BCIs may deem useful towards those with 
severe neuromuscular disabilities. 
 In contrast to independent, dependent BCIs use the 
activity in the  brain’s  normal output pathways to generate  

 
 
the brain the brain activity (e.g. EEG) required for the 
system to function. Similar to the previously mentioned 
system for independent BCI, Sutter described a dependent 
BCI system that also presents the user with a matrix of 
sequentially flashing letters [7]. However, with this system, 
the user was able to select a specific letter by looking at it. 
As the user looks directly at the flashing letters, his/her 
visual evoked potential (VEP) was recorded over the visual 
cortex for each flashing letter; the largest recorded 
potential determined the user’s selected letter. In this 
system, the EEG component of the brain is used to carry 
out its task, but the signal is generated through the 
direction of the user’s gaze.  
 
Invasive vs. Noninvasive 
 
Invasive and noninvasive BCI systems are distinguished by 
their method of data extraction. Invasive BCI requires 
implanting foreign materials into the subject’s body. Such 
materials may include large electrode setups or chemical 
molecules. However, in order for invasive research to be 
safe enough for humans, it must first require animal 



research. It is to no surprise why invasive BCI methods are 
shied from, due to social pressures to stop funding of such 
research. Invasive BCIs operate by monitoring single-
neuron activity within the subject’s brain [8]. While such 
systems have an improved spatial resolution and might 
deliver control signals with numerous degrees of freedom, 
BCIs that depend on electrodes within the subject’s cortex 
face considerable difficulties in attaining and sustaining 
unwavering long-term recordings. However, due to 
encapsulation, it is likely that the signals within the 
invading electrodes will eventually degrade [9]. In 
addition, small changes in the locations of the electrodes 
can move the recording sites away from areas that are 
easily recorded. These issues are crucial obstacles that 
currently prohibit their clinical use in humans. 
 

Invasive BCI can also be performed through electro-
corticography (ECoG), also known as intracranial EEG 
(IEEG), which is the practice of placing electrodes directly 
on the brain to record electrical activity. Due to the low 
signal-to-noise ratio of EEG signals, ECoG is usually an 
alternative method to extracting data from brain activity. 
Electrical signals must also be conducted through the 
subject’s skull when using EEG, and since bone has a low 
electrical conductivity, ECoG would contain a much higher 
spatial resolution. In addition, ECoG is expected to be 
safer and have a greater stability in the long-term, 
compared to the mentioned approach above. This is due to 
the subdural electrode arrays that are used to record 
ECOG, which takes away the need for electrode that 
penetrate into the cortex [9]. 
 

On the other hand, non-invasive procedures do not 
require any kind of implantation and the subject gets to 
interface with the machine through wearable devices. Most 
non-invasive BCI systems use electroencephalogram 
(EEG) signals; i.e., the electrical brain activity recorded 
from electrodes placed on the scalp. Non-invasive BCI is 
comparably, more convenient, safe, and inexpensive. 
However, as mentioned before, this method results in low 
spatial resolutions. In addition, artifacts such as 
electromyographic (EMG) signals may obscure readings, 
and non-invasive BCI systems usually require extensive 
training for users [10]. 
 

To further classify BCI systems, non-invasive BCIs can 
be classified as “evoked” or “spontaneous”. An evoked 
BCI depends heavily on evoked potentials, which reflects 
the immediate automatic responses of the brain to some 
external stimuli. In principle, it is easy to detect evoked 
potentials through scalp electrodes. The P300 and steady- 
state visual potential (SSVEP) are the most commonly 
explored in BCI research. In addition, Slow Cortical 
Potentials (SCP) are also sometimes used in evoked BCI 
systems. The necessity of external stimulation does, 
however, restrict the applicability of evoked potentials to a 
limited range of tasks. 

In contrast, spontaneous BCI systems allow the user to 
carry out cognitive processes freely [11] because it 
eliminates the need for external stimulation. This allows 
for the user to interact with the system in a more natural 
manner through intent. Such a method is especially 
beneficial when controlling robotic devices. Some signals 
spontaneous BCI may depend on are event related 
de/synchronization (ERD/ERS) and Steady State Evoked 
Potentials (SSEP). 

 
Exogenous vs. Endogenous 
 
A BCI system is classified as exogenous or endogenous 

depending on the nature of the recorded signal. Exogenous 
BCI systems depend on neuron activity evoked by external 
stimuli. Such stimuli include VEPs or auditory evoked 
potentials. Exogenous BCI systems do not require 
intensive training since it is easy to setup their control 
signals (SSVEPs and P300) [12]. In addition, the signal 
controls can be detected with a single EEG channel, 
capable of an information rate of up to 60 bits/min [12]. 

 
In contrast, endogenous systems do not rely on an 

external stimulus; it is based mainly on brain rhythms and 
other potentials. The users have to learn the skill of 
producing specific patterns, which will be decoded by the 
system. Training the users using neurofeedback usually 
does this. The length of the training varies by subject as 
well as the experimental strategy and training environment. 
The strategy chosen for the experiment determines how the 
user learns and what they must do to produce the required 
brain activity patterns. Graimann et al describes two 
approaches for endogenous systems: Operant conditioning 
and performance of specific mental tasks [12].  

 
BCI systems that use the operant conditioning strategy 

train using feedback. The user must rely on the feedback to 
learn to produce the intended brain activity. This is a 
similar strategy proposed in calibration- free robotics [13]. 
In contrast, motor imagery is the most common mental task 
used to produce brain patterns that can be reliably 
produced and distinguished. Motor imagery is activated 
through the imagination of movements of limbs. The users 
are to perform such mental tasks without physically 
executing the corresponding movement. Doing so produces 
de-synchronization (ERD) and event-related synchroni-
zation (ERS) [11]. 

 

3 BCI Development  
  

In this section we look first at the typical development 
framework for BCIs, then briefly survey modern BCI 
systems. Related issues and limitations are also examined. 

  



3.1 Development Framework 
 

At initial stages of development, all BCI systems follow 
a similar framework, as shown in Figure 2. 

 
First, the user is either monitored for specific mental 

states or brain activity, or the user intentionally executes a 
mental task by modifying his/her brain state [14]. Raw 
brain signals resulting from the execution or monitoring 
are then acquired, which get preprocessed in the 
preprocessing stage. Here, the effects of artifacts and noise 
will be reduced to improve the signal-to-noise-ratio. 
Features from the reprocessed data are then extracted, 
informing the system on what it is supposed to detect. 
These features become translated into labels with logical 
meaning, which become inputs to the control interface. 
These inputs become semantic controls for the application 
or device, which will provide feedback, shown through the 
output. The feedback gets delivered back to the user, and 
the cycle restarts.  

 
3.2 Modern BCI Systems 

Modern BCI systems fall into five groups: VEPs, slow 
cortical potentials; P300 evoked potentials; mu and beta 
rhythms (sensorimotor rhythms); and neuronal action 
potentials [4]. They are distinguished as such based on the 
type of brain signals they use. Slow cortical potential 
interfaces rely on VEPs, which classify them to be 
dependent BCIs. On the other hand, the other four groups 
are classified to be independent BCIs. The following 
section discusses systems that have been developed using 
these five groups. 

Visual evoked potentials 

VEPs refer to electrical potentials that are evoked by 
brief visual stimuli. These potentials are recorded from the 
visual cortex and its waveforms are extracted from the 
EEG. VEPs are mainly used to measure the visual 
pathways from the eye to the brain’s visual cortex. In 2000, 
Middendorf et al presented a method for using VEPs to 
determine the direction of the user’s gaze [15].  

The user faces a screen displaying several virtual buttons 
that flashed at different rates. Once the user directs his/her 
gaze at a button, the system determines the frequency of 
the photic driving response over the user’s visual cortex. 
When the frequency matches that of a displayed button, the 
system concludes that the user wishes to select it. 

Slow cortical potentials 

Slow cortical potentials (SCPs) are slow voltage shifts 
within an EEG that can last from one to several seconds. 
SCP’s correspond to the changes in the level of cortical 
activity. Positive SCPs are related to the decreased activity 

in neurons, whereas negative SCPs are associated with 
neuronal activity [16]. These signals can be self- regulated 
by any type of user to control external devices through 
BCI. Shifts in SCP can be used to move a cursor and select 
targets presented on a computer screen. People can be  

 

Figure 2: Generic model of BCI development cycle 

trained to generate these shits using a thought-translation 
device. This device shows visual-auditory marks so that 
the user can learn how to shift the SCP levels [17]. 

P300 evoked potentials 

P300 evoked potentials are the peaks found in an EEG 
due to infrequent visual, auditory, or somatosensory 
stimuli. The use of P300-based BCI systems does not 
require any training. However, its performance may be 
reduced since the user eventually adapts to the infrequent 
stimulus, causing the P300 amplitude to decrease [18]. 
Typical applications of P300-based BCI systems comprise 
of matrix of symbols in which selection of such symbols 
depends on the user’s gaze.  

Mu and beta rhythms 

Mu and beta rhythms combine to create sensorimotor 
rhythms, which are oscillations in the brain activity 
localized in the mu and beta bands respectively. 
Sensorimotor rhythms are associated with motor imagery 
without any movement [19]. 

This makes sensorimotor rhythms possible for designing 
endogenous BCIs. Extensive user training is vital because 



people tend to struggle with motor imagery. Imagining 
visual images of the corresponding real movements is 
insufficient for a BCI system. This is because sensorimotor 
rhythm patterns are dissimilar to motor imagery. 
Therefore, training should emphasize kinesthetic 
experiences rather than visual representations of the 
movements.  

One well-known system, presented by Graz, uses 
sensorimotor rhythms as control signals [20]. The Graz 
BCI system is based on ERD and ERS of sensorimotor 
rhythms. The user participates in an initial session to select 
a motor imagery paradigm. In each series of timed trials, 
the user imagines an action while EEG is submitted for 
feature extraction. After interpreting the user’s motor 
imagery into an output, it is presented back to the user in 
the form of online feedback. In contrast, with the 
Wadsworth BCI system, people learned to control a cursor 
in one or two dimensions to target on a computer screen 
[21]. During the initial sessions, most users employ motor 
imagery to control the cursor. However, as they continued 
to train, imagery becomes less important and users moved 
the cursor from pure muscle memory. 

Neuronal action potentials 

In BCIs that rely on action potentials, cone electrodes 
are inserted into the motor cortex to detect the single 
cortical neuron-induced potentials [3]. So far, only one 
user has been able to control neuronal firing rates and uses 
this ability to move a cursor to select items on a computer 
screen. Although recurring illness and medication effects 
limited training, the results have been encouraging. By 
demonstrating this control in people who are nearly 
completely paralyzed, this initial data propose that cortical 
neurons can support an independent system [4]. 

3.3 Issues and Limitations 

Several issues obscure the further development and 
widespread application of brainwave technology. The first 
issue is the information transfer rate. The maximum 
information rates of current BCI devices are offered at 5-
25 bits/min [22]. Increasing this rate would be potentially 
useful in developing applications where the users need to 
interact with their environment in a timely fashion. 
Another issue lies in the training time for users to familiar 
themselves with the system. In spontaneous BCI systems, 
user training is unnecessary, but evoked BCIs often require 
extensive training. However, one of the main challenges of 
a spontaneous BCI system is the non-stationary nature of 
the EEG signals, which is apparent in the differences 
between the training and test data sets [13]. In addition, 
changes in the user’s brain processes (e.g., due to 
distractions, fatigue, etc.) during online operation may 
affect the system’s performance as well. 

Intuitively, the less invasive the technique, the more 
likely it can be used in a wide range of applications. 
Implanted electrodes provide stability of location, freedom 
from artifacts, and much higher signal-to-noise ratio 
(SNR). But one difficulty in such a system is how to 
determine the locations and the number of the electrodes. 
Another difficulty is how to keep the system stable over 
long periods. 

4    BCI Applications 
Robotics 

Within the last ten years, researchers were able to 
successfully perform invasive procedures that allowed 
primates to control machines with their brains. Carmena et 
al demonstrated a primate’s to learn to control a robot arm 
through brain-machine interfaces [23]. In addition, Serruya 
et al suggested that neural based control of movement 
might be suitable for humans through multi-electrode array 
implant [24]. This theory was based on a monkey’s success 
in moving a computer cursor to any new position in its 
workspace. 

For humans, non-invasive methods based on EEG 
signals are preferable because of ethical concerns and 
medical risks. Despite their poor signal-to-noise ratio, 
recent experiments have shown for the first time that EEG 
is sufficient for humans to continuously control a mobile 
robot similar to a wheelchair. In Galán et al’s paper, 
experimental results have shown that subjects can quickly 
master their EEG-based BCI to control a wheelchair [25]. 
They can also autonomously operate the BCI over a long 
period of time, which demonstrated it’s the system’s ability 
to allow continuous mental control for the user. 

 In a paper written by Millán et al, two human subjects 
learned to drive the robot between rooms in a house-like 
environment by mental control only [26]. Furthermore, 
mental control was only marginally worse than manual 
control on the same task. It was also shown that a device 
was able to operate through BCI-based control without any 
calibrations prior [13]. This device was able to learn an 
intelligent behavior solely through feedback received after 
performing each action.  

Entertainment 

Recent developed BCI applications have focused on 
those who do not have any disabilities. One of such 
applications incorporates BCI with gaming. Researchers at 
University College Dublin and MediaLabEurope have 
created a BCI-based virtual reality game, MindBalance 
[27]. The character is balancing on a tightrope, and the 



goal of this game is to maintain its balance using only 
EEG. 

One of the more popular novel devices in present-day is 
the cat ears headband, manufactured by the company 
NeuroSky. Popular among cosplayers, these cat ears will 
move in correspondence with the user’s mood. Though not 
very useful, this headband is used mainly as an accessory 
to a costume.  

5    Discussion 
We believe that non-invasive BCI systems will become 

more predominant due to ethical and safety reasons. 
Unfortunately, the frustrations that arise due to the non- 
invasive approach will continue to remain and hinder a 
rapid progression in the field, as discussed in Section 4. 
However, this is not to say that BCI research for fully 
capable and robust systems will eventually reach a dead 
end. Some issues may be resolved if BCI systems were not 
so heavily dependent on specific brain signals. So far, 
existing BCI systems rely on methods that require 
intensive user calibration. This opens up many 
opportunities for false detection within input brain signals. 

We have shown that BCI can play a significant role in 
AI research due to the varied and promising potential it 
possesses. Judging from its integration with AI up until 
now, we can expect a BCI research to continue in this 
direction. Within the last ten years, the progress of BCI 
development was revealed through its integration with 
robotics. It was shown that a device was able to operate 
through BCI-based control without any prior calibrations 
[13]. This device was able to learn an intelligent behavior 
solely through feedback received after performing each 
action. As shown by the paper by Millán et al, two human 
subjects learned to drive the robot between rooms in a 
house-like environment by mental control only [26]. These 
examples demonstrate how easily the two fields 
complement each other.  

To further exploit the potentials of BCI, machine 
learning methods can be applied to BCIs as well [28]. A 
successful BCI system, capable to learn, possesses the 
ability to classify various features obtained from the user’s 
brain activity and performs an action as a result. 
Classification, essentially, is what allows for the ‘mind 
control magic' to occur in BCIs. Unfortunately, 
classification methods in general still have not been 
perfected. Furthermore, classification becomes difficult in 
BCIs because one must distinguish brain activity intended 
for control from other types of activity.  

 

6    Conclusion 
In this paper we have provided a general overview of 

research and development for BCI systems. The paper 
focused on the software end of BCIs, providing a general 
sense of the various ways one can approach BCI 
development. The three categories of BCIs were discussed, 
in addition to their relationships to modern BCI systems. 
Issues and limitations that BCI development currently 
faces as well as several existing applications developed 
were also presented. Furthermore, possible improvements 
and directions of future work were briefly discussed. 
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