
GPU Based Sound Simulation and Visualization

Torbjorn Loken, Sergiu M. Dascalu, and Frederick C Harris, Jr.

Department of Computer Science and Engineering

University of Nevada

Reno, Nevada, USA

Fred.Harris@cse.unr.edu

Abstract—As the era of Moore's Law and increasing CPU clock

rates nears its stopping point the focus of chip and hardware

design has shifted to increasing the number of computation cores

present on the chip. This increase can be most clearly seen in the

rise of Graphic Processing Units (GPU) where hundreds or

thousands of slower cores work in parallel to accomplish tasks.

Programming for these chips represents a new set of challenges

and concerns. A visualization of sound waves in the room was

desired so that phenomena like standing waves could be quickly

identified. In order to produce the visualization quickly, some

form of acceleration would be required. The GPU was chosen as

the accelerator using CUDA to produce the data for the

simulation. The prototype was tested on a computer with an Intel

Core2 Quad core CPU Q9450 and an NVidia GeForce GTX 480

GPU which contains 15 groupings of 32 compute cores for a total

of 480 compute cores and has 1.5 GB of on board memory.

Keywords-CUDA; GPU; Sound Simulation; Visualization

I. INTRODUCTION

Computational Acoustics is largely based on the physical
modeling of the propagation of sound waves. This propagation
is governed by the linearized Euler equations [13]. There have
been many methods developed to model the propagation of
sound waves; these methods fall into one of two categories:
geometric and numeric.

The geometric methods tend to be based on a technique
called ray tracing, more commonly used to create computer
graphics. These ray tracing methods are able to quickly model
the acoustic properties of a room by assuming that high
frequency sound waves behave similarly to a ray of light.
However, these methods have a critical flaw. Because the
wavelengths of audible sounds are on the order of commonly
found objects, sound waves exhibit diffraction (bending) where
light would not. Because of this recently these geometric
methods have fallen out of favor as more accurate models have
become accessible.

The numeric methods attempt to directly solve the Wave
Equation. The benefit of this approach is that phenomena such
as diffraction are accounted for. However, numerically
approximating the wave equation can become expensive,
especially for FDTD (Finite Difference Time Domain) methods.
This is due to the requirements for memory and computation
scaling up as the sampling rate desired increases. With the time

step T defined as 𝑇 = 1
𝑓𝑠

⁄ and the grid spacing g defined as 𝑔 =

(344 ∗ √3) 𝑓𝑠⁄ , it can be seen that as the sampling rate increases

not only does the time step of the simulation get smaller, but the

size of the grid also increase. These factors combined have
meant that until recently FDTD solutions for the acoustic wave
equations have been prohibitively expensive. Recently solutions
using CUDA have shown promising results in accelerating 3D
FDTD solutions to the wave equation [12, 14].

This paper presents a GPU based approach to sound
simulation and visualization in a simple room. The rest of this
paper is structured as follows: in Section II we cover the problem
background and present information on GPUs, CUDA, and
OpenGL. In Section III we present an overview of the
application, this is followed in Section IV by a discussion of the
implementation. Results are presented in Section V and this is
followed in Section VI with Future Work.

II. PROBLEM BACKGROUND

Throughout the history of computing a primary concern for
practitioners has been the speed at which results can be
computed. Due to this, an active area of research has been the
acceleration of computing. The strongest driver for the increase
in the performance of computers has historically been the
approximate doubling of the number of transistors in any given
integrated circuit every two years [10]. This doubling along with
Dennard Scaling powered the steady increase in single core
processor performance [1]. However, heat and power problems
have forced chip manufacturers to develop processors with a
larger number of slower cores to use the extra transistors each
year [3]. While both Moore's law and Dennard Scaling have
improved the computational power of chips, another path to
improving the performance of programs has been the addition of
specialized hardware to perform computationally expensive
tasks. This specialized hardware often takes the form of a
coprocessor or a Graphics Processing Unit.

A. Graphic Processing Units

Initially rendering tasks were handled in software using the
CPU. Commonly, an FPU was used to help provide newer and
better graphical techniques at an acceptable level of
performance. However as the focus of the graphical techniques
moved from 2D to 3D, specialized coprocessors were designed
to keep up with increasingly high standards of performance.
The design settled on a massively parallel SIMD architecture in
which many pipelines are used to take geometry data, in the
form of vertices, and transform it into color values to be
displayed on the screen. This SIMD architecture enables many
simple processors to work together to produce output
simultaneously.

As GPU manufacturers packed more and more vertex and
fragment processors into their GPU chips, the appeal of using

the GPU for things other than graphics grew. By using the
fragment shader in conjunction with framebuffer objects, it was
possible to compute many things in parallel [5,6,9]. This
practice called General Purpose GPU (GPGPU) programming
allowed many scientific application programmers to accelerate
all kinds of calculations. However it required not only
knowledge of the problem domain, but also knowledge of the
underlying graphic constructs and the API to control it. Despite
this limitation, GPGPU enabled some applications to achieve
performance gains [4]

B. CUDA

As GPGPU became more widespread GPU, manufacturers
began to take note. Starting with the G80 series of graphics
cards, NVidia unveiled a new underlying architecture called
Compute Unified Device Architecture (CUDA) to ease the
struggles of programmers attempting to harness the GPU's
computing power [8]. While the new architect did not change
the pipeline for graphics programmers, it did unify the
processing architecture underlying the whole pipeline. Vertex
and fragment processors were replaced with groups of Thread
Processors (CUDA Cores) called Streaming Multiprocessors
(SM). Initially with the G80 architecture, there were 128 cores
grouped into 16 SMs. The Kepler architecture has 2880 cores
grouped into 15 SMs as shown in Figure 1. In addition to the
new chip architecture, CUDA also included a new
programming model which allowed application programmers to
harness the data parallelism present on the GPU. The primary
abstractions of the programming model are kernels and threads.
Each kernel is executed by many threads in parallel; CUDA
threads are very lightweight and allow many thousands of
threads to be executing on a device at any given time.

Figure 1. A block diagram of the Kepler architecture SMX.[11].

C. CUDA Streams

CUDA expose the computational power of the GPU through
a C programming model. It additionally provides an API for
scheduling multiple streams of execution on the GPU. This
allows the hardware scheduler present on CUDA enabled GPUs
to more efficiently use all of the compute resources available.
When using streams, the scheduler is able to concurrently
execute independent tasks. In order to fully use streams for all
including memory transfers, the CUDA driver must allocate all
memory on the host that will be used for CUDA API calls. This
ensures that the memory is pinned (page-locked) so that Direct
Memory Access (DMA) can be enabled.

However, using streams is the only way to get the full
performance of the GPU using CUDA, and it comes with some
concerns. The first concern is that pinned memory cannot be
paged out and can therefore impact the amount of paging for
any other memory that is virtually allocated. This means that if
too much pinned memory is allocated, other components of an
application may see a performance loss. In addition care must
be taken to order CUDA memory transfers and kernel launches
in such a way that the scheduler is able to properly schedule
each of the actions concurrently. Additionally some advanced
memory features like shared memory or texture memory can
become restricted when using streams.

D. OpenGL

OpenGL is an API for rendering 2D and 3D computer
graphics. It was originally developed by Silicon Graphics Inc.
It provides a portable API for creating graphics which is
independent of the underlying hardware. It is widely used for a
variety of applications ranging from Computer Aided Design
(CAD) to scientific visualizations.

At its core, the OpenGL API controls a state machine. This
state machine maintains the hardware and is in charge of
ensuring the proper resources are loaded at the proper time. It is
important to note that for performance reasons this state
machine was not designed to be used with multiple threads. The
OpenGL driver can be made to run in a multithreaded way, but
the driver does nothing to protect the programmer from race
conditions. The API has calls for uploading geometry data,
texture data and more to the GPU. In addition, it also exposes a
compiler for the GLSL shading language.

The GLSL shading language (shaders) gives the application
programmer more control over the functions of OpenGL. The
programmer can use these shaders to accomplish advanced
rendering techniques such as lighting effects, producing rolling
ocean waves or programmatically generating textures or
geometry.

One technique of interest to the application discussed in this
paper is the rendering of volumetric data. There are many
techniques for accomplishing this task [7]. A popular method
for volume rendering uses the texture mapping hardware of the
GPU and alpha blending to render volume metric data. The
technique involves rendering many semi-transparent slices of
the volumetric data as shown in Figure 2.

.

Figure 2. Texture Mapped Volume Rendering: a technique which uses alpha
blending to quickly render volumetric data.[2].

III. OVERVIEW

The application presented in this paper uses a 3D FDTD
method for simulating sound in a room. A couple of assumptions
are made. A simplified model of the sound absorbance is used in
lieu of a more computationally expensive one and that all
sources of sound are omnidirectional.

The application is structured as a chain of producers and
consumers. Once the simulation has begun, the simulation
manager begins to produce simulation data. This raw form of
the data is both unsuitable for visualization and is also located in
a section of GPU memory which the OpenGL driver is unable to
access directly. The simulation manager therefore publishes this
raw data to a queue for processing. The memory manager takes

this raw data, copies it to the CPU and puts it into a form suitable
for visualization using OpenGL. These processed frames are
published to a queue until they can be uploaded to the OpenGL
driver. The renderer is responsible for all the calls to the OpenGL
API. After uploading the current frame as a texture, the frame is
drawn using texture mapped volume rendering. An overview of
this structure can be seen in Figure 3

IV. IMPLEMENTATION

The application is structure into three major components:
the renderer, the simulation manager and the memory manager.
Each of these components is run on its own thread to allow as
many concurrent actions to occur as possible. An overview of
each component's execution is shown in Figure 4. Care was
taken to design each component in such a way that a component
could be redesigned and replaced easily. For instance if the data
set would not fit on a single GPU then the simulation manager
could be rewritten to accommodate this and the rest of the
application could remain unchanged.

A. Render/Main Thread

The first action taken by the main thread is to initialize the
state of the OpenGL driver, create a window and initialize a
OpenGL context within that window. These actions are all
required to begin making any other calls using the OpenGL API.
Assuming that there are no errors, the next thing done is the
loading of the model information and test sound sample. For this
prototype, a test room was made. For the simulation it is
important that the model contains both geometry and absorbance
information for each point in the grid. The geometry data
consists of a 3D array of values encoding whether or that point
in the grid is connected its neighbors. Once both the room and
sound sample are loaded from disk, the data is used to construct
the initial state of the simulation. After the simulation is
initialized, both the simulation manager and memory manager
are started and the rendering tasks begin.

Figure 3. An overview of the structure of the application.

.

Figure 4. An overview of the work done by each of the three threads in the application

Figure 5. The communication between the three components (shown in yellow) using the various communication queues (shown in blue)

The first of the rendering tasks is to initialize the state of
OpenGL, this includes loading the shaders required to perform
texture mapped volume rendering as well as preparing OpenGL

geometry data required for the technique. Once this initialization
has been done, the render thread falls into the render loop.

The render loop primarily consists of two actions: uploading
frames to OpenGL memory and performing the volume
rendering. Uploading frames to OpenGL memory is the first task
done. The renderer checks to see if any processed frames have
arrived in its queue, shown in Figure 5 If a processed frame has
been published then it is uploaded to OpenGL memory and the
now blank frame is published back to the memory manager. The
renderer then volume renders the current frame that is in
OpenGL. This loop continues until a user inputs the exit
command or the simulation reaches its completion.

B. Simulation Manager

The simulation manager's first action is to allocate all the
memory required for the simulation (room information, blank
simulation state arrays and input/output arrays). It then transfers
the encoded grid representing the room, the absorbance values
for each point in the grid and the input for the simulation. Once
all of the CUDA memory has been allocated and all of the initial
simulation state has been transferred onto the GPU, the
simulation manager waits to be told to start.

Once the signal to start is received, the simulation acquires
three simulation blanks, representing the 𝑡𝑛−1 t, 𝑡𝑛 and 𝑡𝑛+1
simulation states, from the simulation blanks queue. With that
last bit of preparation done, the simulation manager drops into
the main simulation loop.

The first step of the simulation is to update all of the input
into the simulation. Each input source has a location associated
with it that is updated. After that the simulation kernel is run.
The kernel uses an equation in the form of the following
equation where 𝑝𝑛is the acoustic pressure for 𝑡𝑛 to numerically
approximate the propagation of the wave.

𝑝𝑛+1(𝑥, 𝑦, 𝑧) =
1

3
[𝑝𝑛(𝑥 + 1, 𝑦, 𝑧) + 𝑝𝑛(𝑥 − 1, 𝑦, 𝑧)

+ 𝑝𝑛(𝑥, 𝑦 + 1, 𝑧) + 𝑝𝑛(𝑥, 𝑦 − 1, 𝑧)
+ 𝑝𝑛(𝑥, 𝑦, 𝑧 + 1) + 𝑝𝑛(𝑥, 𝑦, 𝑧 − 1)]
− 𝑝𝑛−1(𝑥, 𝑦, 𝑧)

The form of the equation depends on the value of the

encoded geometry for that point on the grid. Care is taken to
ensure that memory accesses are sequential for the warps
assigned to the kernel. The kernel is run in its own stream,
which allows the hardware scheduler to schedule both the
kernel and any copies that the memory manager is scheduling.
If the kernel was not run in its own stream, then the hardware
scheduler would not have enough information to schedule the
two tasks concurrently. Once the kernel has finished, any
listeners present in the model room are updated. The simulation
manager then decides whether it's time to publish a raw frame
to the unprocessed frame queue as shown in Figure 5.

C. Memory Manager

The memory manager is the simplest of the three
components of the application. As seen in Figure 3 the memory
manager acts as a bridge between the simulation and the
visualization. The memory manage takes the raw frames
published by the simulation and normalizes them before
publishing them to the renderer. The only major concern for the
memory manager is that memory transfers off of the GPU must
be run in a separate stream of execution than the simulation

kernel. If this is not done, then any memory transfers will block
the execution of the simulation kernel.

D. Communication

The application uses three threads to run the three
components concurrently. These threads communicate using
thread safe queues. The reason that queues were chosen as the
data structure for the message passing between the thread is that
they both naturally preserve ordering and allow the simulation
and visualization to not outpace each other. The application is
essentially a producer-consumer problem where both the
producer and consumer are fighting for the same resource. If
there was not some way to limit which component controls most
of the GPU time, then the contention for the GPU would cause
problems in either the simulation or the visualization.
Additionally, the use of queue as the inter-thread communication
medium makes any future attempts to use multiple machines or
devices easier by allowing the queue to hide the origin of any
information

V. RESULTS.

The prototype was tested on a computer with an Intel Core2
Quad core CPU Q9450 and an NVidia GeForce GTX 480 GPU
which contains 15 groupings of 32 compute cores for a total of
480 compute cores and has 1.5 GB of on board memory. Two
different test signals were used, one a music sample and the
other a 8kHz sin wave. The test room modeled was 12m x 12m
x 3m with a pillar in the center of the room. When using the sin
wave the simulation modeled standing waves where standing
waves would be expected to form. Figure 6 and Figure 7 show
the visualization during a test run using the music sample.

Figure 6. The initial state before simulation initialization

VI. FUTURE WORK

This paper presented an application that benefited greatly
from the use of GPU acceleration. The problem presented
exhibited data parallelism which assisted in the implementation
of the kernel. This acceleration allowed the simulation to run at

a quick enough pace to facilitate the creation of a visualization
alongside the simulation.

Despite this, there are issues that should be addressed in
future work. Currently, the simulation is limited in size and
frequency range due to memory concerns. This could be
remedied by replacing the current single GPU simulator with a
simulator that uses multiple GPUs if present on the computer or
even a clustered simulator. Additionally, the visualization
requires that the user has some understanding of the mechanics
of wave propagation to be useful. If a user wanted to use the
simulator and visualizer to place speakers in a room, it might be
more helpful for the visualizer to analyze the frames coming
from the simulation to programmatically find good speaker
placements.

Figure 7. A rendering from the simulation while running

REFERENCES

[1] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.

LeBlanc. Design of ion-implanted MOSFET's with very small physical
dimensions. Solid-State Circuits, IEEE Journal of, 9(5):256-268, 1974.

[2] S. Eilemann. Volume rendering, 2011. http://www.equalizergraphics.
com/documents/design/volumeRendering.html.

[3] H. Esmaeilzadeh, E. Blem, R. St Amant, K. Sankaralingam, and D.
Burger. Dark silicon and the end of multicore scaling. In Computer
Architecture (ISCA), 2011 38th Annual International Symposium on,
pages 365-376. IEEE, 2011.

[4] K. Fok, T. Wong, and M. Wong. Evolutionary computing on consumer-
level graphics hardware. IEEE Intelligent Systems, 22(2):69-78, 2007.

[5] R.V. Hoang. Wildfire simulation on the GPU. Master's thesis, University
of Nevada, Reno, 2008.

[6] R.V. Hoang, M. R. Sgambati, T. J. Brown, D. S. Coming, and F. C. Harris
Jr. Vfire: Immersive wild fire simulation and visualization. Computers &
Graphics, 34(6):655-664, 2010.

[7] M. Ikits, J. Kniss, A. Lefohn, and C. Hansen. Volume rendering
techniques. GPU Gems, 1, 2004.

[8] D. Kirk. NVIDIA CUDA software and GPU parallel computing
architecture. In ISMM, volume 7, pages 103-104, 2007.

[9] D. Luebke, M. Harris, N. Govindaraju, A. Lefohn, M. Houston, J. Owens,
M. Segal, M. Papakipos, and I. Buck. GPGPU: general-purpose
computation on graphics hardware. In Proceedings of the 2006
ACM/IEEE conference on Supercomputing, page 208. ACM, 2006.

[10] G. E. Moore. Cramming more components onto integrated circuits.
Electronics, pp. 114–117, April 19, 1965.

[11] NVIDIA. NVIDIAs next generation CUDA compute architecture: Kepler
GK110. http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-
GK110-Architecture-Whitepaper.pdf.

[12] J. Sheaffer and B. M. Fazenda. FDTD/K-DWM simulation of 3D room
acoustics on general purpose graphics hardware using compute unified
device architecture (CUDA). Proc. Institute of Acoustics, 32(5), 2010.

[13] C. KW. Tam and J. C Webb. Dispersion-relation-preserving finite
difference schemes for computational acoustics. Journal of omputational
physics, vol. 107(2):262-281, 1993.

[14] C. J. Webb and S. Bilbao. Computing room acoustics with CUDA-3D
FDTD schemes with boundary losses and viscosity. In Acoustics, Speech
and Signal Processing (ICASSP), 2011 IEEE International Conference on,
pages 317-320. IEEE, 2011.

