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Abstract—As the era of Moore's Law and increasing CPU clock 

rates nears its stopping point the focus of chip and hardware 

design has shifted to increasing the number of computation cores 

present on the chip. This increase can be most clearly seen in the 

rise of Graphic Processing Units (GPU) where hundreds or 

thousands of slower cores work in parallel to accomplish tasks. 

Programming for these chips represents a new set of challenges 

and concerns. A visualization of sound waves in the room was 

desired so that phenomena like standing waves could be quickly 

identified. In order to produce the visualization quickly, some 

form of acceleration would be required. The GPU was chosen as 

the accelerator using CUDA to produce the data for the 

simulation. The prototype was tested on a computer with an Intel 

Core2 Quad core CPU Q9450 and an NVidia GeForce GTX 480 

GPU which contains 15 groupings of 32 compute cores for a total 

of 480 compute cores and has 1.5 GB of on board memory. 
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I.  INTRODUCTION  

Computational Acoustics is largely based on the physical 
modeling of the propagation of sound waves. This propagation 
is governed by the linearized Euler equations [13]. There have 
been many methods developed to model the propagation of 
sound waves; these methods fall into one of two categories: 
geometric and numeric.   

The geometric methods tend to be based on a technique 
called ray tracing, more commonly used to create computer 
graphics. These ray tracing methods are able to quickly model 
the acoustic properties of a room by assuming that high 
frequency sound waves behave similarly to a ray of light. 
However, these methods have a critical flaw. Because the 
wavelengths of audible sounds are on the order of commonly 
found objects, sound waves exhibit diffraction (bending) where 
light would not. Because of this recently these geometric 
methods have fallen out of favor as more accurate models have 
become accessible.  

The numeric methods attempt to directly solve the Wave 
Equation. The benefit of this approach is that phenomena such 
as diffraction are accounted for. However, numerically 
approximating the wave equation can become expensive, 
especially for FDTD (Finite Difference Time Domain) methods. 
This is due to the requirements for memory and computation 
scaling up as the sampling rate desired increases. With the time 

step T defined as 𝑇 = 1
𝑓𝑠

⁄  and the grid spacing g defined as 𝑔 =

(344 ∗ √3) 𝑓𝑠⁄ , it can be seen that as the sampling rate increases 

not only does the time step of the simulation get smaller, but the 

size of the grid also increase. These factors combined have 
meant that until recently FDTD solutions for the acoustic wave 
equations have been prohibitively expensive.  Recently solutions 
using CUDA have shown promising results in accelerating 3D 
FDTD solutions to the wave equation [12, 14]. 

This paper presents a GPU based approach to sound 
simulation and visualization in a simple room.  The rest of this 
paper is structured as follows: in Section II we cover the problem 
background and present information on GPUs, CUDA, and 
OpenGL.  In Section III we present an overview of the 
application, this is followed in Section IV by a discussion of the 
implementation.    Results are presented in Section V and this is 
followed in Section VI with Future Work. 

II. PROBLEM BACKGROUND 

Throughout the history of computing a primary concern for 
practitioners has been the speed at which results can be 
computed. Due to this, an active area of research has been the 
acceleration of computing. The strongest driver for the increase 
in the performance of computers has historically been the 
approximate doubling of the number of transistors in any given 
integrated circuit every two years [10].  This doubling along with 
Dennard Scaling powered the steady increase in single core 
processor performance [1]. However, heat and power problems 
have forced chip manufacturers to develop processors with a 
larger number of slower cores to use the extra transistors each 
year [3]. While both Moore's law and Dennard Scaling have 
improved the computational power of chips, another path to 
improving the performance of programs has been the addition of 
specialized hardware to perform computationally expensive 
tasks. This specialized hardware often takes the form of a 
coprocessor or a Graphics Processing Unit.   

A. Graphic Processing Units 

Initially rendering tasks were handled in software using the 
CPU. Commonly, an FPU was used to help provide newer and 
better graphical techniques at an acceptable level of 
performance. However as the focus of the graphical techniques 
moved from 2D to 3D, specialized coprocessors were designed 
to keep up with increasingly high standards of performance. 
The design settled on a massively parallel SIMD architecture in 
which many pipelines are used to take geometry data, in the 
form of vertices, and transform it into color values to be 
displayed on the screen. This SIMD architecture enables many 
simple processors to work together to produce output 
simultaneously.   

As GPU manufacturers packed more and more vertex and 
fragment processors into their GPU chips, the appeal of using 



the GPU for things other than graphics grew.  By using the 
fragment shader in conjunction with framebuffer objects, it was 
possible to compute many things in parallel [5,6,9]. This 
practice called General Purpose GPU (GPGPU) programming 
allowed many scientific application programmers to accelerate 
all kinds of calculations. However it required not only 
knowledge of the problem domain, but also knowledge of the 
underlying graphic constructs and the API to control it. Despite 
this limitation, GPGPU enabled some applications to achieve 
performance gains [4] 

B. CUDA 

As GPGPU became more widespread GPU, manufacturers 
began to take note.  Starting with the G80 series of graphics 
cards, NVidia unveiled a new underlying architecture called 
Compute Unified Device Architecture (CUDA) to ease the 
struggles of programmers attempting to harness the GPU's 
computing power [8]. While the new architect did not change 
the pipeline for graphics programmers, it did unify the 
processing architecture underlying the whole pipeline. Vertex 
and fragment processors were replaced with groups of Thread 
Processors (CUDA Cores) called Streaming Multiprocessors 
(SM).  Initially with the G80 architecture, there were 128 cores 
grouped into 16 SMs. The Kepler architecture has 2880 cores 
grouped into 15 SMs as shown in Figure 1. In addition to the 
new chip architecture, CUDA also included a new 
programming model which allowed application programmers to 
harness the data parallelism present on the GPU. The primary 
abstractions of the programming model are kernels and threads. 
Each kernel is executed by many threads in parallel; CUDA 
threads are very lightweight and allow many thousands of 
threads to be executing on a device at any given time. 

 
Figure 1.  A block diagram of the Kepler architecture SMX.[11]. 

 

C. CUDA Streams 

CUDA expose the computational power of the GPU through 
a C programming model. It additionally provides an API for 
scheduling multiple streams of execution on the GPU. This 
allows the hardware scheduler present on CUDA enabled GPUs 
to more efficiently use all of the compute resources available. 
When using streams, the scheduler is able to concurrently 
execute independent tasks. In order to fully use streams for all 
including memory transfers, the CUDA driver must allocate all 
memory on the host that will be used for CUDA API calls. This 
ensures that the memory is pinned (page-locked) so that Direct 
Memory Access (DMA) can be enabled.   

However, using streams is the only way to get the full 
performance of the GPU using CUDA, and it comes with some 
concerns. The first concern is that pinned memory cannot be 
paged out and can therefore impact the amount of paging for 
any other memory that is virtually allocated. This means that if 
too much pinned memory is allocated, other components of an 
application may see a performance loss. In addition care must 
be taken to order CUDA memory transfers and kernel launches 
in such a way that the scheduler is able to properly schedule 
each of the actions concurrently. Additionally some advanced 
memory features like shared memory or texture memory can 
become restricted when using streams. 

D. OpenGL 

OpenGL is an API for rendering 2D and 3D computer 
graphics. It was originally developed by Silicon Graphics Inc. 
It provides a portable API for creating graphics which is 
independent of the underlying hardware. It is widely used for a 
variety of applications ranging from Computer Aided Design 
(CAD) to scientific visualizations.   

At its core, the OpenGL API controls a state machine. This 
state machine maintains the hardware and is in charge of 
ensuring the proper resources are loaded at the proper time. It is 
important to note that for performance reasons this state 
machine was not designed to be used with multiple threads. The 
OpenGL driver can be made to run in a multithreaded way, but 
the driver does nothing to protect the programmer from race 
conditions. The API has calls for uploading geometry data, 
texture data and more to the GPU. In addition, it also exposes a 
compiler for the GLSL shading language.   

The GLSL shading language (shaders) gives the application 
programmer more control over the functions of OpenGL. The 
programmer can use these shaders to accomplish advanced 
rendering techniques such as lighting effects, producing rolling 
ocean waves or programmatically generating textures or 
geometry.    

One technique of interest to the application discussed in this 
paper is the rendering of volumetric data. There are many 
techniques for accomplishing this task [7]. A popular method 
for volume rendering uses the texture mapping hardware of the 
GPU and alpha blending to render volume metric data. The 
technique involves rendering many semi-transparent slices of 
the volumetric data as shown in Figure 2. 

 

. 



 
Figure 2.  Texture Mapped Volume Rendering: a technique which uses alpha 
blending to quickly render volumetric data.[2]. 

III. OVERVIEW 

The application presented in this paper uses a 3D FDTD 
method for simulating sound in a room. A couple of assumptions 
are made. A simplified model of the sound absorbance is used in 
lieu of a more computationally expensive one and that all 
sources of sound are omnidirectional. 

The application is structured as a chain of producers and 
consumers. Once the simulation has begun, the simulation 
manager begins to produce simulation data.  This raw form of 
the data is both unsuitable for visualization and is also located in 
a section of GPU memory which the OpenGL driver is unable to 
access directly.  The simulation manager therefore publishes this 
raw data to a queue for processing.  The memory manager takes 

this raw data, copies it to the CPU and puts it into a form suitable 
for visualization using OpenGL. These processed frames are 
published to a queue until they can be uploaded to the OpenGL 
driver. The renderer is responsible for all the calls to the OpenGL 
API. After uploading the current frame as a texture, the frame is 
drawn using texture mapped volume rendering. An overview of 
this structure can be seen in Figure 3 

IV. IMPLEMENTATION 

The application is structure into three major components: 
the renderer, the simulation manager and the memory manager. 
Each of these components is run on its own thread to allow as 
many concurrent actions to occur as possible. An overview of 
each component's execution is shown in Figure 4. Care was 
taken to design each component in such a way that a component 
could be redesigned and replaced easily. For instance if the data 
set would not fit on a single GPU then the simulation manager 
could be rewritten to accommodate this and the rest of the 
application could remain unchanged.  

A. Render/Main Thread 

The first action taken by the main thread is to initialize the 
state of the OpenGL driver, create a window and initialize a 
OpenGL context within that window. These actions are all 
required to begin making any other calls using the OpenGL API.  
Assuming that there are no errors, the next thing done is the 
loading of the model information and test sound sample. For this 
prototype, a test room was made. For the simulation it is 
important that the model contains both geometry and absorbance 
information for each point in the grid. The geometry data 
consists of a 3D array of values encoding whether or that point 
in the grid is connected its neighbors. Once both the room and 
sound sample are loaded from disk, the data is used to construct 
the initial state of the simulation. After the simulation is 
initialized, both the simulation manager and memory manager 
are started and the rendering tasks begin.

 

 

Figure 3.  An overview of the structure of the application.  
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Figure 4.  An overview of the work done by each of the three threads in the application 

 

 

Figure 5.  The communication between the three components (shown in yellow) using the various communication queues (shown in blue) 

The first of the rendering tasks is to initialize the state of 
OpenGL, this includes loading the shaders required to perform 
texture mapped volume rendering as well as preparing OpenGL 

geometry data required for the technique. Once this initialization 
has been done, the render thread falls into the render loop.  

 

 



The render loop primarily consists of two actions: uploading 
frames to OpenGL memory and performing the volume 
rendering. Uploading frames to OpenGL memory is the first task 
done. The renderer checks to see if any processed frames have 
arrived in its queue, shown in Figure 5 If a processed frame has 
been published then it is uploaded to OpenGL memory and the 
now blank frame is published back to the memory manager. The 
renderer then volume renders the current frame that is in 
OpenGL. This loop continues until a user inputs the exit 
command or the simulation reaches its completion. 

B. Simulation Manager 

The simulation manager's first action is to allocate all the 
memory required for the simulation (room information, blank 
simulation state arrays and input/output arrays). It then transfers 
the encoded grid representing the room, the absorbance values 
for each point in the grid and the input for the simulation. Once 
all of the CUDA memory has been allocated and all of the initial 
simulation state has been transferred onto the GPU, the 
simulation manager waits to be told to start.   

Once the signal to start is received, the simulation acquires 
three simulation blanks, representing the 𝑡𝑛−1 t, 𝑡𝑛  and 𝑡𝑛+1 
simulation states, from the simulation blanks queue. With that 
last bit of preparation done, the simulation manager drops into 
the main simulation loop. 

The first step of the simulation is to update all of the input 
into the simulation. Each input source has a location associated 
with it that is updated. After that the simulation kernel is run. 
The kernel uses an equation in the form of the following 
equation where 𝑝𝑛is the acoustic pressure for 𝑡𝑛 to numerically 
approximate the propagation of the wave. 

𝑝𝑛+1(𝑥, 𝑦, 𝑧) =  
1

3
[𝑝𝑛(𝑥 + 1, 𝑦, 𝑧) + 𝑝𝑛(𝑥 − 1, 𝑦, 𝑧)

+ 𝑝𝑛(𝑥, 𝑦 + 1, 𝑧) + 𝑝𝑛(𝑥, 𝑦 − 1, 𝑧)
+ 𝑝𝑛(𝑥, 𝑦, 𝑧 + 1) + 𝑝𝑛(𝑥, 𝑦, 𝑧 − 1)]
− 𝑝𝑛−1(𝑥, 𝑦, 𝑧) 

 
The form of the equation depends on the value of the 

encoded geometry for that point on the grid. Care is taken to 
ensure that memory accesses are sequential for the warps 
assigned to the kernel. The kernel is run in its own stream, 
which allows the hardware scheduler to schedule both the 
kernel and any copies that the memory manager is scheduling.  
If the kernel was not run in its own stream, then the hardware 
scheduler would not have enough information to schedule the 
two tasks concurrently. Once the kernel has finished, any 
listeners present in the model room are updated. The simulation 
manager then decides whether it's time to publish a raw frame 
to the unprocessed frame queue as shown in Figure 5. 

C. Memory Manager 

The memory manager is the simplest of the three 
components of the application. As seen in Figure 3 the memory 
manager acts as a bridge between the simulation and the 
visualization. The memory manage takes the raw frames 
published by the simulation and normalizes them before 
publishing them to the renderer. The only major concern for the 
memory manager is that memory transfers off of the GPU must 
be run in a separate stream of execution than the simulation 

kernel. If this is not done, then any memory transfers will block 
the execution of the simulation kernel.   

D. Communication 

The application uses three threads to run the three 
components concurrently. These threads communicate using 
thread safe queues. The reason that queues were chosen as the 
data structure for the message passing between the thread is that 
they both naturally preserve ordering and allow the simulation 
and visualization to not outpace each other. The application is 
essentially a producer-consumer problem where both the 
producer and consumer are fighting for the same resource. If 
there was not some way to limit which component controls most 
of the GPU time, then the contention for the GPU would cause 
problems in either the simulation or the visualization. 
Additionally, the use of queue as the inter-thread communication 
medium makes any future attempts to use multiple machines or 
devices easier by allowing the queue to hide the origin of any 
information 

V. RESULTS. 

The prototype was tested on a computer with an Intel Core2 
Quad core CPU Q9450 and an NVidia GeForce GTX 480 GPU 
which contains 15 groupings of 32 compute cores for a total of 
480 compute cores and has 1.5 GB of on board memory. Two 
different test signals were used, one a music sample and the 
other a 8kHz sin wave. The test room modeled was 12m x 12m 
x 3m with a pillar in the center of the room.  When using the sin 
wave the simulation modeled standing waves where standing 
waves would be expected to form. Figure 6 and Figure 7 show 
the visualization during a test run using the music sample.  

 

 
Figure 6.  The initial state before simulation initialization 

VI. FUTURE WORK 

This paper presented an application that benefited greatly 
from the use of GPU acceleration. The problem presented 
exhibited data parallelism which assisted in the implementation 
of the kernel. This acceleration allowed the simulation to run at 

 



a quick enough pace to facilitate the creation of a visualization 
alongside the simulation.   

Despite this, there are issues that should be addressed in 
future work. Currently, the simulation is limited in size and 
frequency range due to memory concerns. This could be 
remedied by replacing the current single GPU simulator with a 
simulator that uses multiple GPUs if present on the computer or 
even a clustered simulator. Additionally, the visualization 
requires that the user has some understanding of the mechanics 
of wave propagation to be useful. If a user wanted to use the 
simulator and visualizer to place speakers in a room, it might be 
more helpful for the visualizer to analyze the frames coming 
from the simulation to programmatically find good speaker 
placements.  

 

 

Figure 7.  A rendering from the simulation while running 
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