
Microservice-based Architecture for the NRDC

Vinh D. Le, Melanie M. Neff, Royal V. Stewart

Richard Kelley, Eric Fritzinger, Sergiu M. Dascalu, Frederick C. Harris, Jr.
Department of Computer Science and Engineering

University of Nevada, Reno

Reno, Nevada, United States of America

Abstract—The NSF EPSCOR funded Solar Nexus Project is a

collaborative effort between scientists, engineers, educators,

and technicians to increase the amount of renewable solar

energy in Nevada while eliminating its adverse effects on the

surrounding environment and wildlife, and minimizing

water consumption. The project seeks to research multiple

areas, including water usage at power plants, the effect of

power plant construction on the surrounding ecology,

alternative wastewater methods to maintain solar panels,

and interdisciplinary solutions to improve solar energy in

Nevada. In order to organize and analyze this data to

produce effective change, Nexus needs a centralized

database to store collected data. To this end the Nevada

Research Data Center is designed to collect, format, and

store data for scientists to view and consider. This paper

presents a new architecture solution for the NRDC. Based in

microservices, the solution aims to ensure scalability,

reliability, and maintainability of this data center.

Background on NRDC is provided in the paper, together with

details on the proposed solution's software specification,

design, and prototype implementation. A discussion of the

microservice-based architecture's benefits and an outline of

planned directions of future work are also included.

Keywords—Microservice Architecture; Monolithic

Architecture; Software Specifications; Design; Prototype

Implementation; NRDC.

I. INTRODUCTION

In 2013, the state of Nevada started the NSF EPSCOR
funded Nexus project [1]. In order to store early data, an initial
database system was created and implemented. As the Nexus
project evolved over the years, this older database system did
not. Our team has been assigned to redesign the current
Nevada Research Data Center (NRDC) [2], formerly the
Nevada Climate Change Portal (NCCP) [3]. We were tasked
with reconstruct the system with a microservice architecture,
an improvement from the original monolithic architecture.
Microservice architecture is a relatively new approach to web-
based service distribution, relying on independent instances of
services that communicate directly to the client rather than the
entire system. A microservice architecture will allow for rapid
deployment of services, scalable resources, and dependable
data management for the NRDC. An increase in demand of
services paired with changing requirements for incoming data
required a change in structure to the NCCP. These changes
will bring about new avenues of growth and flexibility as the
project itself progresses into its second year of development.

Our current microservices run from five flask servers, each
housing a service to access one of five PostgreSQL databases.
We have implemented a GUI for easy, quick access to database
information. Entries in databases can be edited or destroyed
through a terminal with proper authority, and new database
entries can be added, with their unique ids individually
generated. These modules are to eventually be linked to
databases with data from Nexus sites, updated regularly by
data loggers. The five modules are as follows: Person, Project,
System, Component, and Service Entry. Each module is
defined by the database information it possess and provides
access to.

This paper, in its remaining part, is structured as follows.
Section II provides background on NRDC; Section III presents
details of our proposed solution's software specification;
Section IV describes in detail the new microservice-based
architecture for NRDC; Section V presents the prototype
created to demonstrate the microservice-based architecture;
Section VI includes a discussion about microservice-based
architecture's benefits as a normal distributed service
architecture; and finally, Section VII contains our conclusions
and several pointers to future developments.

II. NRDC

NRDC and NCCP were both created by the
Cyberinfrastructure component of the NSF Nevada Nexus
Track 1 Projects [1, 4] to gather and hold data for the
scientists associated with the project. The Nexus Project’s
goal is to increase research, awareness, and productivity of
alternative energy sources and the conservation of natural
resources in the state of Nevada. The University of Nevada,
Reno; the University of Nevada, Las Vegas; and the Desert
Research Institute all cooperate across multiple disciplines as
part of the NSF EPSCOR Track 1 Nexus Project.
Cyberinfrastructure is the data management, storage,
processing, and distribution component that all other
components rely on to accurately interpret raw data. The
remaining five components are the different fields of science
that relate to the Nexus Project’s goals [3, 4].

The Current NCCP system architecture, including the
NevCAN sensor system, were described in the prior
publications [5, 6, 7, 8, 9]. NRDC, as heir of NCCP,
encompasses not only data, but also research results, including
new CI methods and accompanying tools, such as DEMETER
[10, 11], ATMOS [12], SUNPRISM [13], WEDMIT [14], and
VISTED [15].

The current NRDC was created following the development
of the NCCP, in order to handle unforeseen issues with its
flexibility, scope, and complexity. Unfortunately, many faults
from the monolithic architecture of the NCCP had persisted in
haunting the current NRDC site. There was virtually no form
of network monitoring, maintenance on the system required
complete suspension of services, and the scalability limited
the site’s very own growth. Our design addresses these
oversights of the system architecture, effectively decoupling
the front and back ends of the system architecture so we can
add new services like these at will.

The redesigned NRDC prototype aims at tackling each of
these faults and provide a robust and efficient system. Instead
of continuing work with the current architecture, the purpose
of the redesign is to begin anew with a microservice
architecture in mind. This entails the creation of separate
enclosed services existing outside the scope of each other,
completely autonomous and unaware of its fellow
services[16]. Each service will be independent of one another
and answer to a greater service registry for communication.
Services are completely self-directed, with no dependencies
on each other. The impact of this architecture design will
bring about a drastic change in two major ways. First, the new
NRDC will now be able to persistently remain actively live,
even during a time of maintenance. Shutting down one service
will not affect the overall site, as the other services will be live
to support the website. As long as one service remains active,
so will the entire site. Secondly, the architecture supports the
swapping, addition, or removal of services. This feature
finally allows the site a solution to the scalability issue,
allowing for immense potential in growth.

Although the NRDC prototype itself is uniquely based
around Nexus Track 1 Project, the idea of Microservice
architecture is not. Throughout the development of this
project, distribution models such as Netflix’s Video Streaming
Application and Amazon.com served as main sources of
inspiration. Netflix and Amazon both use a cloud-based
microservice architecture through Amazon Web Services
(AWS). The idea behind the architectures is tentatively the
same as the redesigned NRDC website, as to both host a vast
amount of services at a given time to perform their basic
functionality. However, a noticeable difference between
Netflix or Amazon with the NRDC site is that the NRDC will
be hosting its services on physical servers, as opposed to the
instanced servers on AWS.

III. SOFTWARE SPECIFICATIONS

In terms of the Functional Requirements, a base level
requirement of the NRDC will be providing subsequent
service modules in accordance to the amount of services
desired. As of the current iteration, the amount of services
total up to 6, including People, System, Service Entries,
Components, Deployments, and Projects. Although the
services have a plethora of relationships amongst each other,
the services will remain independent and communicate to each
other by means of the Service Discovery requirement further
along in this section. Another base level requirement will be
the NRDC’s ability to monitor network traffic, detect and
handle anomalies, and acquire statistics like website hits. This

gives the site the means to provide its administrators with the
ability to track in-going and out-going requests, calls, etc. It
will help sustain the site and optimize resource efficiency and
distribution. The last base level requirement will be granting
each service the ability to Create, Read, Update, and Delete
entries in its database. To clarify, as the project is RESTful in
nature, the services will enable these abilities via various
POST and GET calls to specialized URLs.

Aside from the base level requirements, the NRDC will
contain 3 secondary level requirements. The first requirement
in this level deals with the creation of a centralized Service
Discovery in order to locate and affect currently active
services. As mentioned above, the Service Discovery deals
primarily with the relationships amongst the independent
services. However, this will be explained in depth in the
Software Design section to come. The second requirement
will be having the actual NRDC system remain active even
while a service is inactive. The last requirement pertains to the
ability for a service currently in use by the system to be
swapped out for another at any given moment. This
requirement is a key component of the NRDC’s scalable
architecture. Should a service in use become due for an
upgrade, a separate service with the necessary specifications
can be spawned and integrated in place of the previous
outdated service. Or, should a service overhaul become
necessary, the old version can remain in production until the
development of the update is complete.

The NRDC additionally contains a singular third level
requirement in the form of utilizing Amazon Web Services
(AWS) to spawn services virtually instead of physically on a
given server. Although this is not implemented in our current
iteration, more discussion and information can be found
further along in the Future Developments section.

In terms of Non-Functional Requirements, the NRDC
Redesign currently hosts 5 main requirements. The first
requirement is that the new NRDC system utilize the python
programming language as its primary coding language. The
second requirement is for the NRDC to contain the ability to
deploy on any platform, be it Windows, Linux, or otherwise.
The third requirement is to utilize Python Flask as the main
library and framework for each service. The fourth
requirement is that each service utilize the Python Requests
library in conjunction with Python Flask. Finally, the last
requirement would be for the NRDC’s database to be that of a
PostgreSQL. More detailed information can be found below in
the Software Design section.

IV. SOFTWARE DESIGN

The redesign of the NRDC consists of five major parts:
modules, service discovery, website, the database and the
Application Program Interface (API). The modules take the
place of the typical monolithic server-side application, and use
the service discovery as a type of local DNS to learn the
locations of the other services. Their relation to each other can
be seen in Figure 1.

The modules are the different services that receive input
from the Service Discovery and the API to retrieve and
present information requested from the databases. These

autonomous modules do not communicate directly, and are
only aware of each other through querying of the Service
Discovery table. The modules’ independence is an essential
characteristic of the microservice architecture. This allows
modules to be taken down, adjusted, or created without having
to halt or alter any of the other modules. The modules are the
only component of the NRDC that makes calls to the database
for requested information. The current list of modules include:
People, Projects, Service Entry, and Deployments.

The Service Discovery component communicates directly
with the modules and acts as a lookup table to find the
locations of the other modules by IP address and port number.
Service Discovery holds the locations of each service as each
service does not know the address of the other. If new
instances of services were to be created their new address
would be registered with the Service Discovery until that
service was terminated. In some instances a module may
request information from another module; the service
discovery would be responsible for the communication
between the two modules. In a way, the service discovery acts
as a local DNS server, relying information about addresses
and locations to services that request it. Our current Service
Discovery system is Netflix’s Eureka system. Eureka allows
for both service discovery and monitoring of services. Eureka
was originally designed to be used in Amazon Web Services
(AWS) in a cloud-based distribution system, which will be
covered in the upcoming section Future Development.

The website acts as the main interface, GUI, and the front
end for the NRDC. Information about the services and the
Nexus Project will be presented here, as well as information
visualization. As mentioned earlier, as a component of Track
1, the website will emphasize not only information about the
NRDC, but other associated research and helpful, educational

Fig. 1. NRDC software design diagram

links and materials related to Nexus. The overarching goal of
the Nexus project is to further renewable energy ambitions in
Nevada, and we will reflect this goal in the NRDC. This
website will act in the same way as the NCCP website did
previously, providing users with project information and a
simple way to view database entries. This is the most common
purpose of the NRDC. A prototype of the website [3] has
already been created as shown in Figure 2.

Fig. 2. Current NRDC website

The API is an alternative way to access functionality in the
NRDC. Users have the option of using either the website or
the API to access the NRDC. The API is accessed through a
command line and uses a RESTFUL API design to make calls
to the NRDC. The API primary function is to allow users to
write scripts or programs to interface with the NRDC. These
functions include: creating, updating, reading, and deleting of
information depending on the user’s authentication level.
Currently, information sent back to the user is in the form of a
JSON array, and information that needs to be sent to the
NRDC must come in the form of a JSON. This way,
information can be quickly translated into other forms, and is
easily readable to the human eye.

Fig. 3. NRDC relational database diagram

The database holds all information that is accessed or as a
local DNS server, relying information about addresses added
by the services. The databases being used are PostgreSQL
databases. PostgreSQL was chosen because it is a relational
database and is highly regarded for its robustness [17]. We
anticipate high amounts of data in many complicated formats,
and chose a database that could handle such a large task. Like
all SQL databases, information is stored in relational tables.
Each table’s name and variables are determined by what
modules are currently in use in the NRDC. There are many
relations between tables, as displayed in Figure 3, so JOIN
tables are created to link certain information from one table to
another.

As an example, if a user wants to make a simple request to
the NRDC to read information from the People Module, the
user will access either the NRDC API or the NRDC Front End
Website. From there, information from their chosen interface
is sent to the Service Discovery to locate the appropriate
service, where it is then sent to the respected module of the
request. The People Module makes a SQL call with the related

information from the Service Discovery to the Database. The
Database sends the information back to the People Module
and that information is relayed back to the user.

V. PROTOTYPE DETAILS

The current prototype of the NRDC is a collection of
essential services running on Flask servers. These services,
which are congruent with the modules described above,
manage PostgreSQL databases and are written in the Python
programming language.

We chose to use the Python programming language due to
its incredible ease of use and vast amounts of libraries that add
almost limitless functionality. Compared with other
programming languages, Python is hailed as one of the easiest
and most useful languages, and its popularity facilitates the
creation of multiple useful software tools for Python
programs. The readability of Python was also taken into
consideration as it is a much simpler language to read and
understand with little to no programming experience.
Considering that this project will be maintained and developed
by other individuals after the team’s graduation, Python was a

natural choice to ensure that our code was optimally
understandable. Python’s string concatenation is very easy to
use and allows for better control when creating SQL
commands from the modules. As mentioned earlier, the
modules pass information through a JSON between database
and end user. Python allows for easy JSON parsing of both
incoming and outgoing JSON, providing us full control of data
processing without additional overhead.

The Flask microframework provides a flexible, ideally
minimal template for our microservices, giving us the
opportunity to select our own database. Flask, a python web

Fig. 4. NRDC demonstration GUI

application framework, allows not only the independent
deployment of servers, but also incredible flexibility to
administer each server. These Flask servers are coded
independently and can be uploaded to Github as templates for
future development of modules, which can then be easily
added on the fly.

It provides tools to expand the framework, such as
FlaskAdmin, but we opted to design our own tool for database
manipulation using CRUD. We evolved the prototype from
the original Django framework because we feel Django’s
central “project” structure is contradictory to our microservice
modularity goals. Flask’s microframework for web
applications corresponds nicely with our microservice design.
In our Flask servers we use the psycopg2 library to perform
the necessary SQL operations on our PostGRES databases, yet
another useful Python library. An important factor in our
design is the ability to constantly change it. We could write a
new service in a different programming language, or using a
different framework, if it better suited the function of that
module. For our current modules, Flask and Python were just
concise, modular, and elastic enough to fit our changing
needs.

Once the database information is retrieved, it is presented
in JSON format through our GUI. The JSON formatter tool
helps organize and format data in a way that is readable to the
human eye, which is helpful for our GUI, since its sole
purpose is to read data. Figure 4 shows our GUI that was
solely for demonstration purposes and does not reflect what
the final or the current NRDC will look like. Our GUI is a
simple website, designed with jquery, that displays the raw
JSON data and all its attributes based on which module was
called at the time. The GUI updates in real time, since it only

makes calls to the respected module at the time the user make
a request. As a part of a recent demonstration, we developed
the GUI and linked it to our services, then proceeded to add
users to the database. Without having to refresh the webpage,
the user can simply select the respected module and the
information within will be displayed through the GUI. As
mentioned earlier, this idea will be further implemented in the
NRDC as more data becomes available to us for processing
and presentation.

VI. DISCUSSION

To examine the benefits of a microservice architecture,
one must first understand a monolithic architecture. A
monolithic architecture is generally composed of some
centralized server application that handles requests, a client-
side application that makes requests, and a database where
information is fetched and stored. Everything runs from a
single executable, and any interaction must spin up the entire
application. This style has many limitations and shortcomings.
Design choices such as coding language, application
frameworks, and database selection are fixed, and need to be
consistent throughout the application. Scalability is greatly
limited, as any additions only add to the size of the original
executable, which is already limited by hardware and web
container specifications [3]. On a developer level, monolithic
code is difficult to understand and modify because of its
massiveness, and making changes requires extensive
reworking of the code as a whole.

A microservice architecture seeks to alleviate these
problems, and provide a scalable, maintainable, and flexible
structure that is easy to modify and renovate[18]. A single
microservice is a completely autonomous unit of execution
with a single, clearly-defined purpose. Microservices are
deployed individually of any central structure, and can have
unique characteristics and components relevant to its provided
function. They can be written in different languages or using
different web frameworks, and implement differing database
structures. New microservices can be created easily, and
without making changes to other services already in
production. Microservices can even be replaced completely by
new updates, with considerably reduced maintenance
downtime. Microservices allow for modularity in program
design, so code is easily understandable and recognizable.
They also lend a certain intuitiveness to software
development, as teams of engineers can work on various
respective services with clearly defined goals and tasks.

As software engineers, we are constantly being asked to
change, to adapt, and to evolve as technology continues to
present new opportunities. The microservice style of software
application design provides a means for meeting these
demands by maintaining system integrity with growth through
clear modularity, and by allowing the use of multiple differing
program languages, frameworks, and software tools within a
single application. Most importantly, its suite of independently
deployable, maintainable, and upgradable services offer an
efficient alternative to the clunky, limited monolithic
architecture of the past.

VII. CONCLUSION AND FUTURE DEVELOPMENTS

This paper has presented a new architecture for NRDC
based on the modern solution offered by microservices. The
main characteristics of the proposed new architecture have
been described via software specification, design components,
and prototype details. We believe this architecture brings
several significant benefits to NRDC, including scalability,
reliability and maintainability.

Future developments of NRDC include transferring all
services and modules to a cloud based operation. This allows
for more rapid deployment of services, easier scalability, and
easier administration of services for the future. NRDC could
implement its own cloud service or an existing service such as
Amazon Web Services.

The microservice architecture lends itself naturally to a
cloud-based system. Services would each run their own
instance of a server, whose size could be fitted exactly to the
requirements of each service, ultimately optimizing hardware
usage and efficiency. Moving to the cloud would eliminate
hardware limitations, and allow virtually infinite access to
resources, which could be scaled up or down in parallel with
the microservices.

In the future, we imagine the NRDC to be among the most
relevant and important data systems for scientists in Nevada.
This means the amount of data, and the complexity of that
data, will certainly increase. The NRDC could eventually
implement a big data solution such as Apache Hadoop and
Google MapReduce, to facilitate data analytics and data
management with distributed processing. While PostGRES
databases are robust, the NRDC already handles a large
amount of raw data, and we will eventually need to explore
new strategies to handle its processing in order to
accommodate new projects and new avenues of research
beyond the Nexus project.

ACKNOWLEDGMENT

This material is based in part upon work supported by the
National Science Foundation under grant number IIA-
1301726. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES

[1] Nevada System Sponsored Programs and EPSCoR.
http://epscorspo.nevada.edu/ [last accessed on February 17, 2015]

[2] Nevada Climate Change Portal. http://sensor.nevada.edu/ [last accessed
on February 17, 2015]

[3] Nevada Research Data Center. http://sensor.nevada.edu/nrdc/ [last
accessed on February 17, 2015]

[4] NSHE Solar Nexus Project. http://nvsolarnexus.org/ [last accessed on
February 17, 2015]

[5] S. Dascalu, F.C. Harris, Jr., M. McMahon Jr., E. Fritzinger, S. Strachan,
R. Kelley, “An Overview of the Nevada Climate Change Portal“
Proceedings of The 7th International Congress on Environmental
Modelling and Software (iEMSs 2014) , Vol 1, pp 75-82, June 15-19,
2014, San Diego

[6] M.J. McMahon, Jr., S. Dascalu, F.C. Harris, S. Strachan, and F. Biondi
(2011). Architecting Climate Change Data Infrastructure for Nevada, in
Salinesi, C. and Pastor, O. (eds.), Advanced Information Systems

Engineering Workshops CAISE-2011, Lecture Notes in Business
Information Processing, LNBIP-83, June 2011, Springer, pp. 354-365.

[7] M.J. McMahon, Jr., F.C. Harris, Jr., S. Dascalu, and S. Strachan (2011).
S.E.N.S.O.R.- Applying Modern Software and Data Management
Practices to Climate Research, Procs. of the 2011 Workshop on Sensor

Network Applications (SNA-2011), Nov. 2011, Honolulu, HI, pp. 147-
153.

[8] R. Motwani, M. Motwani, F.C. Harris, and S. Dascalu (2010). Towards
a Scalable and Interoperable Global Environmental Sensor Network
Using Service-Oriented Architecture, Proceedings of the 6th

International Conference on Intelligent Sensors, Sensor Networks and

Information Processing (ISSNIP-2010), December 2010, Brisbane,
Australia, pp. 151-156.

[9] Mensing, S. S. Strachan, J. Arnone, L. Fenstermaker, F. Biondi, D.
Devitt, B. Johnson, B. Bird and E. Fritzinger. 2013. A network for
observing Great Basin climate change. EOS, 94(10):105-112.

[10] S. Dascalu, E. Fritzinger, S. Okamoto and F.C. Harris, Jr. (2011).
Towards a Software Framework for Model Interoperability, Procs. of

the 9th IEEE International Conf. on Industrial Informatics (INDIN

2011), July 2011, Lisbon, Portugal, IEEE Computer Society, pp. 705-
710.

[11] E. Fritzinger, S.M. Dascalu, D.P. Ames, K. Benedict, I. Gibbs, M.
McMahon, and F.C. Harris (2012). The Demeter Framework for Model
and Data Interoperability. Proceedings of the International Congress on

Environmental Modeling & Software (iEMSs-2012), Leipzig, Germany,
July 2012, pp. 1535-1543.

[12] A. Dittrich, S. Dascalu, and M. Gunes (2013). ATMOS: A Data
Collection and Presentation Toolkit for the Nevada Climate Change
Portal. Proceedings of the International Conf. on Software Eng. and

Applications (ICSOFT-EA 2013), Reykjavik, Iceland, July 2013, pp.
206-213.

[13] S. Okamoto, R.V. Hoang, S.M. Dascalu, F.C. Harris, and N. Belkhatir,
(2012). SUNPRISM: An Approach and Software Tools for
Collaborative Climate Change Research. Procs. of the 13th Intl. Conf.

on Collab. Tech. and Systems (CTS-2012), May 2012, Denver, CO, pp.
583-590.

[14] J. Patel, S. Okamoto, S.M. Dascalu, and F.C. Harris (2012). Web-
Enabled Toolkit for Data Interoperability Support. Procs. of the

International Conference on Software Engineering and Data
Engineering (SEDE-2012), Los Angeles, CA, June 2012, pp. 161-166.

[15] L. Ravi, Q. Yan, S.M. Dascalu, and F.C. Harris, Jr. (2013). A Survey of
Visualization Techniques and Tools for Environmental Data.
Proceedings of the 2013 Intl. Conference on Computers and Their
Applications (CATA 2013), March 2013, Honolulu, Hawaii.

[16] M. Fowler, “Microservices”. ThoughtWorks.
http://martinfowler.com/articles/microservices.html [last accessed on
February 17, 2015]

[17] P. Shaughnessy, “Following a Select Statement Through Postgres
Intervals”.http://patshaughnessy.net/2014/10/13/following-a-select-
statement-through-postgres-internals [last accessed on February 17,
2015]

[18] C. Richardson, “Pattern: Microservices Architecture” Microservices.io.
http://microservices.io/patterns/microservices.html [last accessed on
February 17, 2015]

