A Software Environment for Watershed Modelling

Moinul Hossain, Sergiu Dascalu and Frederick C Harris, Jr.
Dept of Computer Science and Engineering
University of Nevada, Reno

Reno, NV, USA
hossain@nevada.unr.edu, dascalus@cse.unr.edu, fredh@cse.unr.edu

Abstract

Watershed scientists use different computer based
modelling tools to model the physical processes around
watersheds. In this work we have created a software
environment for assisting watershed scientists in their
research. This software environment will provide a
platform to share different data with fellow scientists
and run different models in the cloud through web
services. It will also provide option for the scientists
to have social discussion on the data and the models
created and ran in the system.

keywords: software environment; watershed; web
services; modelling

1 Introduction

Modelling of physical processes is a core part of the
scientific enquiries. Scientists in all domains including
earth science build computer models to investigate
physical phenomena. Softwares are becoming a very
important part of the modern scientific research as a
result. Quality, scalability and maintainability are big
concerns for scientific softwares, but there has not been
a substantial amount of research in the community
on creating sustainable softwares by adhering software
engineering principles. Software processes like agile
practice or test driven development are not much
popular in the area of academic scientific softwares
as they are in the area of commercial softwares. As
a result softwares in academia end up being ad-hoc
products that are not compatible with other research
products. This is a problem in the area of scientific
modeling as well. Model coupling is a hard problem
due to the the different reasons including nature of
data or the process being modelled. Issues like data
storage, retrieval, running and coupling models are hard
problems and require extra care from the perspective
of software engineering. Designing integrated systems
that provides means to handle all these issues can be a
challenging job.

978-1-943436-01-9 / copyright ISCA, SEDE 2015
October 12-14, 2015, San Diego, California, USA

Building software tools and frameworks for scientific
research can be interesting for many reasons. With
the advancement of computing power in recent decades,
scientific research is creating more and more data and
models independently built by scientific researchers.
This is an exciting field where software engineering
can assist this emergence by facilitating the creation
of distributed software systems and frameworks to
assist scientists have collaboration on these data and
models in a global scale. Another great aspect of this
field is, being an interdisciplinary field it poses lots of
challenges in terms of barriers of communication and
team building among different communities involved in
the process.

The rest of the sections include related works done
before in the area of software system for assisting
scientific modelling, the problem description, the details
description of the design and finally some initial results
and prototypes.

2 Adhering to Software
Engineering Principles in
Building Scientific Software

The most challenging job in conducting software
engineering research in collaboration with scientific
community is how to adopt the software engineering
processes and principles. Building software systems for
scientific community is different from building commer-
cial softwares in many different ways, thus it poses
numerous obstacles making softwares following the
software engineering way. There has been numerous
studies on how software engineering principles can be
adapted in a collaboration project with scientists.

Scientific research in academia often under appreci-
ated the use of software methodologies in developing re-
search tools [1]. Researchers spend enormous amounts
of time developing niche, ad-hoc software solutions to
answer their individual research questions which are
not applicable to other research questions, datasets, or

researcher needs. Numerous studies on developing the
quality of software products made for scientific research
by adapting software engineering processes has been
conducted by several research groups.

Sletholt et al. discussed on adoption of agile prac-
tices in scientific software development [7]. Software
Engineering best practices and research have rarely
been adopted in software developed by scientists for
scientists. The authors surveyed and analyzed how
much and how well current scientists employ best
software engineering practices for scientific computing.
In particular the authors investigated the use of agile
practices for scientific software development. The
authors investigated several use cases of scientific soft-
ware development projects that adopted some form of
agile practice. A comparative analysis across multiple
use cases is presented. Common agile practices are
compared across these selected projects to show what
practices are adopted in which projects. The overall
finding of this study shows that agile practices are not
adhered by the project teams with a few exception of
some self organized teams.

Another study by Christopherson et al. talks about
developing quality software for scientific research
through community engagement process [2]. The
quality of academic software, tends to be lower
than commercially-developed software because of the
lack of adoption of software process like test driven
development. The authors investigated different
barriers in engaging software process in scientific
software development process and proposed their
method of community engagement process.

Wilson describes a different approach called soft-
ware carpentry rather than software engineering to
help scientific researchers write their codes in a more
engineered way by following the software engineering
principles [10]. The author created a 150 hours long
course to help the scientists understand the need of
following software process in their development process.
The authors conclude that the barriers in adhering
software engineering principles in scientific software
development are more social than technical.

Another work by Segal describes a case study of
software engineers developing a library of software
components for a group of research scientists, using
a traditional, staged, document-led methodology [6].
The case study reveals two concerns with the use
of the methodology. The first is that it demands
an upfront articulation of requirements, whereas the
scientists had experience, and hence expectations, of
emergent requirements; the second is that the project
documentation does not suffice to construct a shared
understanding.

3 Related Software Products

There has been numerous research on creating soft-
ware frameworks and environments to facilitate sci-
entific research by different interdisciplinary research
groups. Several successful collaborative research work
on software frameworks and environments in the fields
related to earth science are discussed in brief in this
section.

3.1 CSDMS: The Community Surface
Dynamics Modeling System

The Community Surface Dynamics Modeling System
(CSDMS) project started in 1999 to facilitate earth sur-
face modellers by creating a community driven software
platform. CSDMS applies a component-based software
engineering approach to the integration of plug-and-
play components as development of complex scientific
modeling system requires the coupling of multiple,
independently developed models [5]. There are several
benefits CSDMS brings to the community of modellers.
Firstly, it provides means for the modellers from differ-
ent backgrounds to write their components in any of the
popular languages. CSDMS achieves this via language
interoperability using Babel language interoperability
tool. CSDMS treats components as precompiled units
which can be replaced, added to, or deleted from an
application at runtime via dynamic linking. This gives
modellers the option to use components created by
others in the community to use in their simulation
easily. The key design criteria that drove the design
of CSDMS include support for multiple operating sys-
tems, language interoperability across both procedural
and object oriented programming languages, platform
independent graphical user interfaces, use of established
software standards, interoperability with other coupling
frameworks and use of HPC tools integrate parallel
tools and models into the ecosystem.

3.2 HydroShare

The Consortium of Universities for the Advancement
of Hydrologic Science, Inc (CUAHSI) is one of the
leading research organizations representing universities
and international water science-related organizations
to develop software infrastructure and services for
advancing water science. CUAHSI has several software
projects such as HydroShare and CUAHSI HIS to
provide infrastructure for water science research.

HydroShare is an online, collaborative software sys-
tem for sharing hydrologic data and models. The
goal of HydroShare is to help scientists to discover
and access data and models, retrieve them to their

Working Directory

Console

Figure 1: The graphical user interface of CSDMS
Modelling Tool (CMT) where modellers can setup and
run their models to experiment with minimal effort [5].

desktop or perform analyses in a distributed computing
environment that may include grid, cloud or high
performance computing model instances [8]. Scientists
can also publish outcomes of their research whether
its data or model into HydroShare, using the system
as a collaboration platform for sharing data, models
and analyses with other modellers. HydroShare is
built using a python based technologies. The main
components are built on top of Django Web Application
Framework. Django is an application framework to
facilitate web oriented architectures. It has several com-
ponents designed for the end users to communicate with
the system. HydroDesktop, a web service based desktop
client is designed for the end users for hydrologic data
discovery, download, visualization, and analysis.

Python Client API

Client

| Server web interface | | Service interface (REST API) |

| Server Functions API |

1
Django

Resources (Data II Party’s (Users II Records
and models and groups’

Figure 2: The high level architecture of HydroShare [8].

The architecture of HydroShare separates the web ap-
plication interface layer from the service layer, exposing
the functionality through an application programming
interface (API) to enable direct client access and inter-
operability with other systems [8].

3.3 Other Related Products

McGuire and Roberge designed a social network for
assisting collaborations between watershed scientists
[4]. Being highly available, hydrologic data has not been
integrated in a single system and no system exists to
facilitate collaboration for scientists, citizen scientists,
and the general public. This work presents the design
of a collaborative social network aimed at multiple user
groups who are focused on hydrology and watershed
science.

The Demeter Framework by Fritzinger et al. is an-
other attempt to bring software framework for assisting
scientists in the area of climate change research. This
work presents an overview of a software framework
named the Demeter Framework that proposes a new
solution to the model coupling problem by taking
a component-based approach that allows almost any
standard or type of component to be integrated within
the system.

Walker and Chapra proposed a web based client-
server approach to solve the problem of environmental
modeling compared to the traditional desktop based
approach [9]. With improvement in modern day web
browsers, client-side approaches allow for improved
user interfaces that is better than traditional desktop
softwares, as well as the ability to perform simulations
and visualizations within the browser.

The Geographic Storage, Transformation and Re-
trieval Engine (GSToRE) is a project initiated by the
Earth Data Analysis center at the University of New
Mexico which provides a data framework for data
discovery, delivery and documentation for scientific
research specializing in earth science. It has been
developed as a flexible, scalable data management,
discovery and delivery platform that supports a com-
bination of open and community standards. It is built
upon the principle of a services oriented architecture
that provides a layer of abstraction between data and
metadata management technologies.

4 The Problem

The main goal of this work is to provide a software
environment for the watershed scientists to run their
models, share their data and models and have social
interaction with the fellow scientists. The key func-
tionalities include:

e Ability to share data and model with other scien-
tists with multiple level of privacy

e Ability to run the models in cloud through a web
client

e Ability to have social interactions to on the data
and the models with fellow scientists.

The key concern is the software should be an easy
to use and accessible for the scientists to share their
knowledge. There are numerous challenges needs to
be solved in order to build such software environment.
Different scientists use different models not only in
terms of data formats but also programming language,
OS platform etc. Designing a generic interface to share
the data is an important task to tackle. Designing
a generic interface for running the models requires
substantial amount of research as well.

5 The Design of the System

Cloud and micro service based solutions are becoming
more and more popular. We have proposed cloud based
solution to the problem of data storage and model
run integration. Figure 3 shows a depiction of the
architecture. The main idea behind the design is to
expose different models as web services.

P i
Run Madel / Retrieve Result —
W =] :>
—

Web Adapter

Data Storage/Retrieval

'WEB SERVICES
[SEARCH || UPLOAD | [DOWNLOAD | METADATA

. FileSystem

Figure 3: The main architecture of the system.

Model A Adapter

Model B Adapter

mo-<3m®m @mz

Model Z Adapter

Clearly we have two different components in our
system. One is storage component for the data and
another is computation components for the models. A
web service wrapped around databases, file system and
a search engine can act as the end point for data storage
and retrieval. The main advantage of this approach is
we can expose data in different formats allowing to use
data converters intercepting the web service to provide
data as needed for different models.

The other components in system are the models
which are computing resources. As models have dif-
ferences in terms of programming language, file format,
os etc the best way to expose models are through web
services as well. Exposing 'models as a service’ gives
the benefit of having platform independent cloud ready
system. For that purpose the models needs to be
wrapped around with a service adapter. Each model
can live in its own computing node exposing the model

capabilities though a common web service interface. A
thin client (e.g., a web application) can be easily created
to extract data and run some model on the data by
using the common web service interface. Figure 4 shows
the architecture of a model server. Each model server
contains self contained web service wrapper with its
own lightweight database to keep track of model runs
and a model adapter is wrapped around the model to
implement the common web service interface. Figure 4
shows couple of possible web service methods as well.

CREATE MODEL RUN -
r» ADAPTER |3 |TEMP DB
]
UPLOADDATA | / Y
TEMP
. | A
DATA i
QUERY PROGRESS [f - \

N |
OBTAIN RESULT
MODEL

MODEL SERVER

Figure 4: The design of a model server

6 Results and Discussions

We have created a web application client to demon-
strate the idea as a proof of concept of the design. The
web application works as a thin client of the system
where it utilizes different web services to accomplish
tasks like data storage and retrieval and model runs.
Figure 5 shows a simple interface for searching data in
the system.

Figure 5: The search interface of the system

A search client communicates with the data server
through web service to retrieve the metadata of the
data shared by the other users. User can wish to
download the data in a specified format by invoking
a data converter tool. The system provides a generic
web service interface so that users can register their own

|
e ®

Login Yes

Logout chosen? ?

Delete
model if

action from
main menu

Show help

useris
owner

Yes
i /\
Enter query L

parameters }

and search Delete model chosen?
for data

Show
Search

Result

Define data

page

ati
and upload

Choose
Data from

result
—

Figure 6: The activity flow of the system

data converter that they wish to use. Figure 7 shows a

data upload / download interface of the system.

Add/Remove files to resource: Moinul PRMS resource updated

Click on the add files button or drag and drop fiels into the window to upload file
Created By Moinul Hossain 2
title Moinul PRMS resource updated
model context prms

description whatever updated

0.00KB input

000KB input

Figure 7: The data upload / download interface of the
system

A user can wish to upload /download data of a model
by simply drag and drop the data files into browser.
The storage server is communicated through the web
service to transfer / receive the data.

Figure 8 shows the interface for model run. A user
can invoke a model on a dataset through a single click of
the mouse setting up the parameters for a run. This is
another benefit of the architecture where the users are
not required to setup their local instance of the models
in order to run them with some data. If a model is once
registered with the system through web services it can
be used to run on datasets without have to worry about
setting up.

E=
Resource Files =

CreatedBy: M sain2 filetype filename size

Resource Title: Moinul PRMS resource updated

input t1.12 3txt 008
Model Context
parameter param 008

input ut txt 008

Resource Title

Description

Figure 8: The model run interface of the system

7 Future Work and Conclusion

We have tried to create a generic extensible envi-
ronment for watershed science research. The main
contribution of this work is the design of web service
based components which makes the system scalable and
easily integrable between components. The system is
currently in a prototype stage and requires more care
to make it more robust. Currently the architecture
is monolithic for model run through web services.
Future works include making the model run interface
distributed as micro services to make it more robus and
accessible. And allowing users to register their own
data converters through web services will also make
the system more usable in terms of data storage and

<<enumel

ModelContextType

ration>>

1 1

) —

ISNOBAL
PRMS

ModelRun

User

-id : String
- parentModelRunld : int
- modelContext
ModelContextType
- modelRunuser : User
- description : String
- inputFiles : List<ModelFile>
- outputFiles : List<ModelFile>
- parameterFiles
List<ModelFile>
- dateCreated : Date

-id - int
- email - String
- password : String
- institution : String
- state : String
- city : String

SearchResult

1 - total - int
- results : Li
- queryDate : Date

SearchQuery

- id zint
- parentiodelRunld : int
- modelContext : ModelContextType

- user: String

AuthenticationController

- uService : UserService HomeController

ModelFile - description : String
~ hame: String ; ModelFile Type
- type : ModelFileType i
- url: String o INPUT
- dateCreated : Date il
VWClient
SearchController
- httpClient: HTTPClient
- vwClient: VWClient
1 + search(SearchQuery) : SearchResult
: void o— | + createModelRun(ModelRun)

+ search()

void

+ renderSearch(SearchQuery) :

ModelRun

+ updateModelRun(ModelRun)
odelRun

+ ing) : bool

1 +login() - LoginForm _ uService : UserService |

+authenticate(LoginForm) : void

+register() : void

+index() : void
+ doRegistration(RegistrationForm) : void + profile() : void

ModelRunController

+ hashPassword (String) : String + updateProfile(User)
+logout() : void void

- wwClient: VWClient
- mservice: ModelRunService

+help() : void

UserService

+ updateParams(ModelRun) : void
+ runModel(ModelRun): void
+saveModelRun (ModelRun): void

ModelRunService

1 1 1 T
+ createUser(User) : User

+ updateUser(user) : User
User
User

+ deleteUser(User)
+getUserByld(String)

]

- httpClient : HTTPClient

+ runModel(ModelRun): ModelRun
+ updateParams(ModelRun) :
ModelRun

Figure 9: The class diagram of the system

retrieval.

References

[1]

Stan Ahalt, Larry Band, Laura Christopherson,
Ray Idaszak, Chris Lenhardt, Barbara Minsker,
Margaret Palmer, Mary Shelley, Michael Tiemann,
and Ann Zimmerman. Water science software
institute: Agile and open source scientific software
development. Computing in Science & Engineer-
ing, 16(3):18-26, 2014.

Laura Christopherson, Ray Idaszak, and Stan
Ahalt. Developing scientific software through the
open community engagement process. Technical
report, Technical Report 790723, figshare, 2013.
http://dx. doi. org/10.6084/m9. figshare. 790723.

E Fritzinger, S Dascalu, DP Ames, K Benedict,
I Gibbs, Michael J McMahon Jr, and Harris FC Jr.
The Demeter framework for model and data in-
teroperability. In Proceedings of the International

Congress on Environmental Modeling and Software
(IEMSS-2012), pages 1535-1543, 2012.

Michael P McGuire and Martin C Roberge.
The design of a collaborative social network for
watershed science. In Geo-Informatics in Resource

Management and Sustainable FEcosystem, pages
95-106. Springer, 2015.

[5]

[10]

Scott D Peckham, Eric WH Hutton, and Boyana
Norris. A component-based approach to integrated
modeling in the geosciences: The design of
CSDMS. Computers & Geosciences, 53:3-12, 2013.

Judith Segal. When software engineers met
research scientists: A case study. Empirical
Software Engineering, 10(4):517-536, 2005.

Magnus Thorstein Sletholt, Jo Erskine Hannay,
Dietmar Pfahl, and Hans Petter Langtangen.
What do we know about scientific software
development’s agile practices? Computing in
Science € Engineering, 14(2):24-37, 2012.

DG Tarboton, R Idaszak, JS Horsburgh, D Ames,
JL Goodall, LE Band, V Merwade, A Couch,
J Arrigo, RP Hooper, et al. Hydroshare: an
online, collaborative environment for the sharing of
hydrologic data and models. In AGU Fall Meeting
Abstracts, volume 1, page 1510, 2013.

Jeffrey D Walker and Steven C Chapra. A client-
side web application for interactive environmental
simulation modeling. Environmental Modelling €
Software, 55:49-60, 2014.

Greg Wilson. Software carpentry. Computing in
Science € Engineering, 8:66, 2006.

