
GUI – Enhanced Activity Diagarams with Application to the Design of AVISTED

Likhitha Ravi, Sergiu M. Dascalu, Frederick C. Harris
College of Engineering
University of Nevada

Reno, USA
(ravi, dascalu, fredh)@cse.unr.edu

Abstract

Software design is worthwhile if it paves the way to a good
and useful functional software. In this paper, we propose a
new tool entitled GUI-Enhanced Activity diagrams
(GEAD). This tool facilitates a new approach of software
design consisting of UML activity diagrams with links to
their respective interface snapshots. Notably, GEAD is
more efficient for web applications that have numerous
graphical user interfaces. To illustrate GEAD, we introduce
a new toolset entitled ‘Analysis and Visualization Toolset
for Environmental Data’ (AVISTED). AVISTED is a
generic web-based visualization toolset which is used by
climate researchers for visualizing large climate datasets.
This paper introduces the design aspects of AVISTED by
leveraging the concepts and strategies of GEAD. The links
between the designs of the webpages and the activities in
UML diagrams help showing clear connections between the
backend and frontend activities. This comprehensive view
helps developing the desired software that meets the user
requirements more efficiently by improving collaboration
and decreasing development time.

Keywords: GUI-Enhanced Activity Diagrams; UML;
Software Design; Data Visualization, Web application;

I. INTRODUCTION
Software Design is one of the most important steps in

the process of software development. It helps the
developers, testers, users and the stockholders in
understanding the functions of the software system
thoroughly [1]. It also helps in planning a solution and
approach for the software system.

Software systems are composed of components,
subsystems, modules, design patterns, interfaces, and
activities. These individual elements and their
interdependencies can be shown through UML Diagrams.
There are two types of UML diagrams: Static and Behavior
Diagrams. A static diagram depicts the structure of the
software system where as the behavior diagrams shows the
dynamic behavior of the components in the system [2].
Examples of static diagrams include class diagrams, object
diagrams, system level diagrams and user interface
snapshots. Examples of behavior diagrams include use-

case diagrams, sequence diagrams, and activity diagrams.
With GEAD we intending to link the static and behavior
diagrams. The snapshots of user interface and the activity
diagrams are linked. It is a very new technique which is not
used in designing software systems.

The purpose of GEAD is to provide a comprehensive

view for developers and testers. It will provide them with a
user interface view for each significant activity. This helps
in identifying activities that belong to a single view and
activities that are common in a group of views. These
connections are very helpful in software systems that are
implemented using MVC architecture. This technique will
also help users and stakeholders in getting a modest link
between the execution and the interface. GEAD is
applicable in many fields such as web development, video
game development and mobile/desktop apps. In this paper,
we apply this technique to a web based application
AVISTED.

AVISTED is a web based visualization toolset. It
helps climate researchers in finding the trends, change of
variables with time, and dependencies between variables.
AVISTED supports User Authentication, User
Authorization, Model Output Management, Model
Operation, Tools Upload, and Archives of Visualization
and Download. It supports the datasets in netCDF, JSON,
and CSV formats. Users can perform extraction,
visualization, view, download and save operations on the
dataset. Visualizations that are developed using the toolset
can also be saved in the user accounts for future use. Also,
to support extensibility users are allowed to upload their
own tools for data processing with the administrator’s
approval.

 The rest of the paper is structured in five sections.
Section II presents the motivation and concepts for the
GEAD technique. Section III gives an overview of
AVISTED. Section IV discusses how we applied the
GEAD technique for designing AVISTED. Section V
gives a summary of related tools used for designing
software systems. Finally, Section VI concludes the paper
by presenting some directions of future work for this
approach.

978-1-943436-01-9 / copyright ISCA, SEDE 2015
October 12-14, 2015, San Diego, California, USA

II. MOTIVATION AND CONCEPTS FOR THE
GEAD TECHNIQUE

The design aspects of the AVISTED led to the
requirement of the new technique GEAD. AVISTED is a
web application. It allows users to visualize climate data
using several visualization techniques. This functionality
presents the user with a different view for each
visualization technique but some actions are common
regardless of the view. For example getting user input, data
extraction from NetCDF files, and performing statistics.
And some actions are common among the all views, for
instance scaling the data based on the visualization
technique. In such a big application with many GUI
designs that have similar activities and some page specific
activities, it is very important to identify all the activities
and actions before the development phase.

In traditional UML activity diagrams, there is no link
between the user interface snapshots and activity diagrams.
As there is no link, it is very hard for the testers, users and
the stakeholder’s to relate things. Also, it is very time
consuming for the developers to find the common tasks
and view specific tasks. Figure 1 shows a traditional
activity diagram of Visualization Toolset of Environmental
Data (VISTED). VISTED is non-generic version of
AVISTED with minimum functionalities. The main
purpose of VISTED is to visualize the climate modeling
data which is provided by the Nevada climate change
portal. Climate modeling data is available from 1980 to
2009 in NetCDF format with variables like Precipitation,
Temperature, surface winds, and solar radiation [3].

Figure 1: Traditional Activity diagram of VISTED

The activity diagram of VISTED in figure 1 shows the
actions involved in displaying the data extracted by the
AVISTED upon users request. User selects the required

variables/parameters, resolution, time period, location and
submits the form to view, download or visualize the
selected data. If the user input is valid, data is extracted
and presented it to the user else an error message is sent to
the user. Although these actions can be clearly stated using
the traditional activity diagrams it is time consuming for
the team to search for the related designs associated with
activity diagram.

Figure 2: User Input Form of VISTED

A new technique GEAD that allows connections

between actions in the activity diagrams and their
corresponding GUI designs of the user interface will help
magnificently in identifying the common actions and view
specific actions of a software system. Linking the designs
in Figure 2, 3 to the actions of the activity diagram in the
Figure 1 will allow the team to check the related designs
quickly.

GEAD provides them a comprehensive view of the
system so the team will understand the process much
clearly. Figure 4 shows an activity diagram of AVISTED
with GEAD approach. The small rectangular box at the
bottom of each action has a link to the corresponding GUI
design of the application. The actions Delete tool, Select
tool, and Sort tool are linked to the same design shown in
the Figure 5.

If an action has more than one design linked to it, it
can be considered as a common task for the linked designs.
So the implementation for such actions can be placed in a
global scope for reuse. With MVC architecture all the
common actions can be placed in a common controller and
the actions that are specific to a view can be placed in the
controller of that view. This saves a lot of development
time for the developers.

Figure 3: Data View of VISTED

Using GEAD designers can identify if more designs

are needed for a particular state of the application. Imagine
a game application where the design of the game changes
with the state of the game. As GEAD necessitates the
designs for major actions there is less probability of
missing a design for the application. GEAD can also
identify missing activity diagrams when the significant
designs have not been linked to any actions.

Figure 4: Activity diagram with GEAD approach

In large organizations, GEAD allows the development
team to plan the development effectively and improves the
collaboration within the team. For an instance, a backend
developer can easily find the front end developer who is
working on the view related to the actions he is working at
the backend. A manager can easily divide the tasks among
the team members without any duplication in actions.

Figure 5: Snapshot of the design of AVISTED

It should be noted that all actions may not have links

to their corresponding designs. And the GUIS may not
exactly look as GUIS that will be developed.

III. OVERVIEW OF AVISTED
 VISTED[4] is a web based visualization toolset for
visualizing climate dataset. It allows users to view,
download, and visualize climate datasets. Based on the
users selection, data is extracted from NetCDF files. It also
supports input data formats such as CSV, and ASCII. The
backend is implemented using C# and frontend logic is
implemented using HTML, JavaScript, and D3.

 AVISTED is an extended version of VISTED. The
extension was needed to make the application applicable to
other models in environmental sciences. Features such as
Model Output Management, Tools upload, Archives and
Download make AVISTED more generic and unique.
Model Output is a common feature of AVISTED and
VISTED. Figure 6, 7 shows the activity diagram of
AVISTED with all the features. Users can use AVISTED
in four modes. They are User Mode, Admin Mode, New
User, and Guest. Guests have limited options.

 Model Output Management provides a list of models to
the user. The author, date of creation, file format, size and
description of all the models are also provided.
Administrators are allowed to select and delete a model but

users and guests are not allowed to delete a model. Guests
are only provided with few default models.

 The selected model is displayed to the user by Model
Output. It will extract all the parameters from the selected
Model. To further extract data from the Model a time range

and location options are provided based on the availability
in the model. Also, to further extend this feature user can
select a plug-in from the available set of tools. After the
data extraction some statistics are performed on the data
based on the selected plugins. User can download, view or
visualize the extracted data.

Figure 6: Activity Diagram with all features

 Tools upload is another significant feature of
AVISTED. It makes the application plug-in based which
allows it to be extended without any recompilation.
Administrator of the application manages all the plugins.
He or she can either upload or delete a plugin. Users can
select a plugin from the available list. Guests are not
provided with this feature.

 The last and exciting feature of AVISTED is Archiving
and Download. A user can view the saved images of the
visualizations and download a preselected data.
Administrator manages this feature. He or she can add or
delete an image or user download selection.

 Figure 7: Snapshot of the GUI design with all the features
of the AVISTED

IV. APPLYING GEAD TO DESIGNING
AVISTED
 AVISTED has been designed using the GEAD
approach. Figures 6, 8, 10 show the activity diagrams with
their respective designs in Figure 7,9,11.

 All features of AVISTED are shown in the activity
diagram in Figure 6. All the actions are linked to a GUI
design. Interestingly all the four features of AVISTED are
linked to the same design 105 because they are presented
to the user on the same web page. Figure 7 shows the GUI
design of the webpage. The GUI name starts with the 105.
This naming convention links it back to the actions in the
activity diagram.

Figure 8: Activity Diagram with all the Modes

 The four modes of the AVISTED are shown in the
Figure 8. The action “Display Home Page” is linked to the
GUI design of Home page with link number 101. The
design in

the Figure 9 has been inspired from VISTED and is
relinked back to the activity diagram by naming it with
number 101.

 Similarly, Figure 10 shows another activity diagram
with the Guest features. The guests of AVISTED are only
provided with Model Output Management and Model
Output Features. The design of guest Main page is shown
in the Figure 11. If guest wants to select a model from
Model Output Management it will be navigated to the
webpage with design name starting with 301 but if he/she
wants to
select a default Model it will be navigated to the webpage
with design name starting with 202.

Figure 9: Snapshot of the AVISTED home page

 Currently there is no tool to make these links between
the actions and the interfaces. We are intending to
implement the technique by following a naming
convention. A tool with this feature will greatly help the
software development team.

Figure 10: Activity diagram with Guest Features of
AVISTED

Figure 11: Designs of AVISTED with GEAD approach

 In the next section we will discuss about the existing
tools used in designing software systems.

V. RELATED WORK
At present there are many tools available for designing

software applications. They can be classified into
categories based on their features like general purpose,
special purpose, specific language, code generation,
executable UML, desktop application, mobile application,
online application, open source, commercial and freeware
[5].

Some of the popular UML drawing tools include

Rational Rose, SmartDraw, Microsoft Visio, Rational
Rose, LucidDraw, and ArgoUML [6]. Some have support
for activity diagrams and GUI builders, some have for GUI
builder and some have for both like Visio, but they are
static. None of them provide links between activity
diagrams and GUI. These links are possible by building a
HMTL based UML tool which allows drawing UML
diagrams, GUI and providing HTML links between them.
A similar HTML web application that allows drawing
UML diagrams online is Diagramo [7]. It allows building
UML designs online but it does not support links. Tools
used in building such applications are Dreamweaver,
sublime, Coda 2, and Brackets [8]. Tenzer [9] developed
an interactive game to improve the UML designs. The user
of the game is allowed to explore several variations of the
designs while playing the game. This allows the users to
improve their designs interactively.

VI. FUTURE WORK AND CONCLUSION
To conclude, we have presented a new approach

GEAD for software design. This approach links the static
and behavioral diagrams. We have also introduced the
software application AVISTED and illustrated the GEAD
approach using it. And, finally we have discussed about
tools used for software design. In future, we will be
working on the development of a supporting tool for
GEAD. By using the new tool in other software
development projects GEAD approach can be refined

further in terms of usability. Additionally, we will be
completing the implementation of AVISTED.

ACKNOWLEDGMENT
This material is based in part upon work supported by the
National Science Foundation under grant number IIA-
1329469. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES
1. “Software Design “ Accessed on July 6, 2015,

available at
<https://en.wikipedia.org/wiki/Software_design>.

2. “UML 2.4 Diagrams Overview” Accessed on July
7, 2015, available at <http://www.uml-
diagrams.org/uml-24-diagrams.html>.

3. “Modeling Output”, Accessed on July 7, 2015,
available at
<http://sensor.nevada.edu/NCCP/Downloads/Mod
eling%20Output.aspx>.

4. Likhitha Ravi, Sergiu M. Dascalu, Frederick C.
Harris, Jr., John Mejia, and Noureddine Belkhatir,

“ VISTED: A Visualization Toolset for
Environmental Data”, Proceedings of The 2015
International Conference on Computers and Their
Application (CATA 2015), pp. 335-342, March 9-
11, 2015.

5. "UML tools classified by categories", Accessed
on July 13, 2015, available at <http://modeling-
languages.com/uml-tools/#generic>.

6. “List of Unified Modeling Language tools”,
Accessed on July 12, 2015, available at
<https://en.wikipedia.org/wiki/List_of_Unified_
Modeling_Language_tools>.

7. “HTML5 diagram editor”, Accessed on July 13,
2015, available at <
http://diagramo.com/editor/editor.php>.

8. “Choosing the Right Text Editor | Brackets,
Sublime Text, Coda, and more” , Accessed on
July 13, 2015, available at <
http://blog.digitaltutors.com/brackets-coda-
sublime-text-text-editor-choose/>.

9. Tenzer, J. "Improving UML design tools by
formal games", IEEE International Conference on
Software Engineering, pp.75 - 77, May 2004.

