
Submit: An Online Submission Platform for Computer Science Courses

Nolan Burfield Hardy Thrower Brandon Worl
Sergiu M. Dascalu Frederick C. Harris, Jr.

Department of Computer Science
University of Nevada, Reno

Reno, Nevada 89503

Abstract

Computer Science class sizes have increased for
several years and will continue to grow. Consequently,
instructors dedicate more time grading the increased
number of programming assignments they receive.
Grading programs individually by hand is inefficient
and error prone. Submit implements a deployable web
platform that alleviates the problem of inefficiency
by automating the grading process, simplifying the
submission, and providing instant feedback to students.
The Submit web platform allows both students and
instructors to focus on their work without additional
complexities of managing submissions. As class sizes
grow, solutions such as Submit will become necessary
to a ensure smooth and efficient work-flow.

1 Introduction

Submit is an Internet-based submission platform
for computer science classes. The platform targets
students, instructors, and graders. Students are able to
enroll in courses and submit the source code for their
programming assignments. Submit will automatically
grade the assignments. The parameters for a grade is
derived from test cases defined by the instructor. The
success rate of the test case determines the grade of the
assignment, but may be modified by the instructor. The
automated grading feature reduces the grading time for
instructors and graders. Submit allows the students
to receive instant feedback regarding their assignment.
These simple functions of Submit makes the platform
a necessary program with the rise in computer science
enrollment.

Based off statistics from the Computing Research As-
sociation (CRA) [3] class sizes have been growing since
2007 and this trend is likely to continue. As the number
of enrolled students increase in a class, an instructor’s
spends less time focused on class content and more
on grading the assignments. With a scalable online

submission platform, the burden of manually running
and examining student code is eliminated. This means
that class sizes can grow without forcing instructors to
make compromises by removing necessary content from
assignments to make more time for instruction. Submit
allows Instructors give more instruction and one-on-
one time since they will spend less time managing the
logistics of potentially hundreds of files turned in every
week.

In addition to usability improvements and added
functionality, Submit needs security. Submit will super-
sede an older submission platform that is written with
PHP, which is insecure if not implemented correctly.
This security is a flaw with outdated software that
is a vulnerability in a web site not updated regularly
[7]. Submit takes advantage of Ruby on Rails, which
is a modern web application framework. Rails has
security features for a web platform that is built into
the foundation [6]. The security features of rails will
protect users data from both outside attacks as well as
internal tampering by users trying to find exploits in
the application.

2 Similar Platforms

The University of Nevada, Reno currently has a pro-
gram similar to Submit. The current system grades as-
signments, handles files, and provides grades.However,
the system does not provide an adequate user interface,
security, or modern design. These flaws are attributed
to ten year old software that is not updated, written in
PHP code, and uses a file storage system on a server.
Submit implements numerous usability improvements
including an efficient user interface, more interactivity,
and a secure and organized file storage system. More
courses will be able to take advantage of the system due
to the improved interface and dynamic back end that
submit offers. The old submit platform also has the
security errors as discussed in the introduction section.

Blackboard Inc. [8] offers a course management

978-1-943436-00-2 / copyright ISCA, CAINE 2015 
October 12-14, 2015, San Diego, California, USA



platform that can be taken advantage of by an entire
university. The software developed by Blackboard
provides students with online access to their courses,
data associated to the courses, and submission options.
Instructors are able to make assignments, upload files,
and give grades all on the Blackboard site. Students
are able to view the assignments and turn in projects,
quizzes, and tests. When a student takes quizzes
or tests on the platform their grades are calculated
and added to the overall grade. This grading feature
is only available to multiple choice assignments, and
not capable of code handling. Submit differs from
Blackboard by having the ability to compile and grade
the student programs.

A similar online software for course management is
built by Instructure Inc. [9]. This platform offers all
the same features as Blackboard. Students are able to
turn in assignments, but there is not the same grading
option that Submit will offer to users.

3 Requirements Specification

The requirements specification section for Submit is
formatted based off Ian Sommerville’s book Software
Engineering [12].

3.1 Functional Requirements

Submit shall provide the following functions and
features. (Functional Requirements are labeled as (F)):

F01 Allow users to make accounts.
F02 Allow users to edit their accounts.
F03 Allow users to edit files within the web page.
F04 Allow students to enroll in courses.
F05 Allow students to submit files to assignments.
F06 Allow students to view assignment grades and

grader comments.
F07 Allow instructors and admins to create courses.
F08 Allow instructors to create new assignments.
F09 Allow instructors to open-close course enrollment.
F10 Allow instructors to specify the how to compile and

run uploaded submissions.
F11 Allow instructors to specify start and due dates on

an assignment.
F12 Allow instructors to mark students as a grader of

the course.
F13 Allow graders to function as an instructor without

the ability to create courses.
F14 Allow graders to run submissions against test

cases.
F15 Allow graders to create comments on a student’s

submission.

3.2 Non-Functional Requirements

Submit shall provide the non-functional
requirements. (Labeled as (NF)):
NF01 Be developed with Ruby on Rails.
NF02 Be fast at serving pages and files.
NF03 Be intuitive and quick to learn.
NF04 Be compatible across all major web browsers.
NF05 Support many students in multiple courses.

4 Use Cases

The use cases of the system outlines the function-
alities provided. Use cases specify user(s) and the
functionality provided to them. In the Submit system
there are four types of users: Administrator, Instructor,
Grader, and Student.

UC01 Sign Up: All users must have an account
to access Submit. They are required to give an email,
name, and password.

UC02 Enroll in Courses: Students and graders
need to enroll in a course to access the assignments.
Courses have a twelve character registration token that
must be given out by the instructor to enroll in the
course.

UC03 Grade Submissions: Instructors and
graders should be able to grade student submissions,
either one at a time or all at once.

UC04 View and Comment on Submissions:
Instructors and graders should be able to view code
submitted by a student and provide feedback through
comments.

UC05 Edit Users: The Submit administrator
should be able to view all enrolled users and edit their
information and roles.

UC06 Create Courses: Instructors should be able
to create new courses, specifying the course name, term,
and year.

UC07 Create Assignments: Instructors should be
able to create new assignments in courses that they have
created.

UC08 Create Test Cases: Instructors should be
able to create test cases which consist of inputs and
expected outputs, which all submitted code for a given
assignment will be tested against.

UC09 Manage Enrolled Students: Instructors
should be able to view all students enrolled in a course
and edit their roles or remove them from the course.

UC10 Submit Assignments: Students should
have the ability to submit their assignment once they
are satisfied with their work. Once submitted, files may



Submit domain model

Assignment

description text ∗
due_date datetime ∗
lock boolean
name string ∗
start_date datetime ∗
total_grade float (24) ∗

Submission

grade float (24)
note text
submit_time datetime
submitted boolean

TestCase

core_size integer
cpu_time integer

Comment

contents text ∗
line integer ∗

Course

description text ∗
join_token string
name string ∗
open boolean
term string ∗
year integer ∗

HABTM_Courses

user_id integer

HABTM_Users

role_id integer

User

crypted_password string ∗
current_login_at datetime
current_login_ip string
email string ∗
failed_login_count integer ∗
last_login_at datetime
last_login_ip string
last_request_at datetime
login_count integer ∗
name string ∗
password_salt string ∗
perishable_token string ∗
persistence_token string ∗
single_access_token string ∗

HABTM_Roles

user_id integer

Input

data text
description text
name string
output binary
student_visible boolean

RunSave

difference binary
output binary
pass boolean

Role

name string
resource_id integer
resource_type string

RunMethod

description text
name string
run_command string

UploadDatum

contents binary (16777215)
file_type string
name string ∗
shared boolean

Figure 1: A graphical representation of the Submit database and table relationships.

not be edited any more, but grader comments will be
visible to the student.

UC11 Run Test Cases: Students, graders, and
instructors should be able to run a submission’s code
against the set of test cases at any time. Certain test
cases may be marked as hidden, and will only be visible
to graders and instructors.

UC12 Edit Submissions: Students should be
able to edit their submission by adding, removing, or
modifying their uploaded files. Additionally, files may
be edited directly with Submit’s built in text editor.

5 Design Overview

Submit is a web platform built with Ruby on Rails.
Rails is a web application framework that uses model-
view-controller (MVC) architecture. Rails offers simple
integration with a MySQL database, Syntactically Awe-
some Stylesheets (SASS), jQuery, and asynchronous
JavaScript and XML (Ajax) [5]. The MVC design aids
in the separation of tasks for similar page requests,
user interaction, and database implementation [4]. The
views section holds the information on how to display
the web page, the controllers handle requests, and the

models handle data. The MySQL database is what the
model integrates with and stores all the data associated
with the Submit web site.

5.1 View Design

A view generates an output for the user. Submits
views include a visually appealing graphical design and
simple user interface. Each view is connected to a
controller action that will communicate data between
the two. A Rails view is built in a HTML/Embedded
Ruby file, which allows both HTML/CSS integration
and Ruby logic. Rails builds the web display based off
the view file and the controller specified data.

5.2 Controller Design

Submit is driven by a set of controllers that are
responsible for linking the front-end views with the
back-end models and database. Each controller is
responsible for a particular component of Submit, such
as user sessions, courses, or uploaded files. These
controllers are further divided into actions which are
linked to the application’s routes. When a particular
route is taken, the associated controller action locates



Figure 2: The file editor showing a simple program with comments made on the page.

the required models and passes them to a specific
view. The controller uses Ajax to remove the need for
reloading page content for simple tasks such as deleting
a file; Ajax will call the necessary controller and update
the page with JavaScript [11].

The controllers that Submit uses are outlined below
with a description of the controller functionalities. All
the controllers unless specified handle the functionality
of create, read, update, and destroy (CRUD).

Application: This is the base controller created by
Rails. All other controllers extend this Application
controller. There are no views or models associated
with it.

Assignments: This module handles everything di-
rectly relating to assignments. The Assignments model
runs several validations to make sure due dates make
sense, all required fields are set, and that all students
get a submission object made within the assignment
object.

Comments: This module handles the creation and
deletion of the comments. The placement of comments
in a file is handled by the Upload Data controller.

Courses: This module manages courses. The course
model runs several validations to make sure all required
data is set and within acceptable value ranges. Courses
do not perform much logic, they are mostly used as a
container of assignments and for enrollment purposes.

Inputs: This module processes an input for a test
case on an assignment.

Run Methods: This module is a container for
multiple input objects and the run command. The run
command specifies how to run the compiled program.

Submissions: This module contains all of the files
and grade information for a student’s submission to an
assignment. Submissions can be locked, at which point
they will be graded and can no-longer be modified.

Test Cases: This module processes the test cases
that get configured by the course instructor for an

assignment. The controller sets constraints on how an
assignment is ran, such as the max core dump size
and runtime in seconds. This object also contains a
collection of run method objects. Test case objects con-
tain the instructor’s source code, which the controller
uses to automatically generate correct outputs for input
objects.

Upload Data: This module handles uploaded files.
It runs several validations to ensure that names are
not duplicated, both amongst the upload data in a
submission and the shared upload data in a test case.

User Sessions: This module handles user authenti-
cation, and is part of the AuthLogic gem, which handles
the session logic.

Users: This module handles user account informa-
tion, such as user name and email.

5.3 Model Design

A Model represents a singular object in Rails. They
are responsible for validating data and then saving data
to the database. They can also have methods attached
to them to perform certain actions [10]. For example,
the assignment model has a method that can clear all
run-saves associated with itself, which is useful when
the assignment’s test cases change, thus rendering old
run-saves obsolete.

5.4 Database Design

Submit uses a MySQL database to store all data
associated with the website. This includes user data
with encrypted and salted passwords, uploaded file
data, course information, and more. The database
structure is relational, meaning that relationships exist
between database tables, such as “has-many”, “belongs-
to”, and “has-and-belongs-to-many” [2]. The database
relationships can be seen in Figure 1.



Figure 3: An instructor view of the test cases. From this page an instructor uploads a program, creates run methods,
adds inputs to the run methods, and sets program parameters.

Figure 5: This is a cutout section of the instructor
course management page. In this view the student
join token can be seen, the enrolled students can be
accessed, all student grades, and the assignments for
the course are managed.

6 User Interface

The interface for all four users is designed to be
intuitive, and remove tedious web site navigations. This
is the main improvement that was made from the
original Submit website. The interface can be broken
down into two different views: one for students, and the
other for instructors. The student view is the default
view for users that are not assigned a role; this is due
to the restrictive use of the site a student user is given.
As an instructor role this allows the creation of classes,
an instructor class management page can be found in
Figure 5. Students are given enrollment tokens which
are specific to each class, these tokens allow students to
enroll in the class.

Automatically grading assignments is Submits main
feature. An instructor and grader create assignments
in a course. Each assignment contains test cases that
specify how to run a program. A view of the test case
page is in Figure 3. In a test case, the instructor will
upload a working program that will be used to generate
correct outputs. These outputs are derived from the
inputs created within a run method. A run method
specifies the command line call to run the programs for
an assignment. There are two parameters that will set
the max run time on a CPU the program will run for
to prevent infinite loops, and the max core dump size



Figure 4: This shows the output view for running a program. The input data, output, expected output, and difference
are shown. If an output is incorrect a red box is placed around the input name and the output result, as shown in
bottom box.

from a program to prevent large files being stored on
the server.

Submit focuses on instant student feedback. To
achieve this, an output of student code is compared
to the expected output from the test cases. Submit
calculates the difference between the two outputs and
generates a form for the user to see correct results or
erroneous results. A view of the output with a correct
result and incorrect result can be found in Figure 4.

A major improvement Submit makes upon its pre-
decessor is the ability to edit code directly online. A
user has access to Ace, a high performance code editor.
Ace has built in functionality that makes code editing
easy [1]. This feature adds additional support to the
student and grader use. A student is able to make minor
modifications to code in order to fix output errors.
The instructor/grader is able to comment directly on
students code as well. This enables the student to
remove the need for tedious uploads, and for quicker
and more thorough grading of code. The editor and
comments is displayed in Figure 2.

7 Conclusion

The Submit web platform brings features to the
computer science classes that enables simple code sub-
mission as a student and quick grading as an instructor.
Submit is built with Ruby on Rails and takes advan-
tages of its security, simplicity, and the easy integra-
tion with Ajax, MySQL database, and SASS. Submit
enables students to join classes, manage programming
assignments, and test their programs online.Instructors
benefit from Submits automatic grading feature and
course management system. Submit offers efficient
grading and submitting of programming assignments.

8 Future Work

Submit is capable of automatically testing student
code, but there are many more features that can be
added to it. Anonymous peer-review of submitted code
is one planned future feature that would allow students
to anonymously comment upon another student’s code
to provide feedback and suggestions. When it comes to
assignments cheating needs to be spotted. The ability
to flag any submissions that appear to be cheating
would be a necessary function. This could include



submitted code that matches other submissions for
that same assignment, or code that appears to have
been copied from another location on the Internet. To
allow the management of local programs and Submits
database is a useful function for students.

Acknowledgements

This material is based in part upon work supported
by the National Science Foundation under grant no.
IIA-1301726. Any opinions, findings, and conclusions
or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views
of the National Science Foundation.

References

[1] AlloyUI. Tutorial-ace editor, 2013. http://

alloyui.com/tutorials/ace-editor/ Last Ac-
cessed 4/21/2015.

[2] David Aragon. Introduction to database design
on rails, 2012. https://quickleft.com/blog/

introduction-to-database-design-on-rails/

Last Accessed 4/21/2015.

[3] Computer Research Association. Undergrad
computer science enrollments rise for fifth straight
year, 2013. http://cra.org/govaffairs/

blog/2013/03/taulbeereport/ Last Accessed
4/21/2015.

[4] Kalid Azad. Intermediate rails: Understanding
models, views and controllers, 2007.
http://betterexplained.com/articles/

intermediate-rails-understanding-models-

views-and-controllers/ Last Accessed
4/21/2015.

[5] Ryan Bigg. Rails guides, 2014. http://guides.

rubyonrails.org/getting_started.html Last
Accessed 4/21/2015.

[6] Ryan Dewhurst. Ruby on rails security basics,
2014. https://www.netsparker.com/blog/web-

security/ruby-on-rails-security-basics/

Last Accessed 4/21/2015.

[7] Anthony Ferrara. Is php secure? “it is if you
do it right”, 2015. http://www.acquia.com/

nl/resources/podcasts/acquia-podcast-69-

php-security-anthony-ferrara Last Accessed
4/21/2015.

[8] Blackboard Inc. Blackboard, 2015. http://www.

blackboard.com/ Last Accessed 4/21/2015.

[9] instructure Inc. instructure, 2015. http://www.

instructure.com/ Last Accessed 4/21/2015.

[10] Will Little. How to design and prep a
ruby on rails model architecture, 2013.
http://www.startuprocket.com/blog/how-to-

design-and-prep-a-ruby-on-rails-model-

architecture Last Accessed 4/21/2015.

[11] Tutorials Point. Ajax on rails tutorial,
2014. http://www.tutorialspoint.com/ruby-

on-rails/rails-and-ajax.htm Last Accessed
4/21/2015.

[12] Ian Sommerville. Software Engineering. Addison-
Wesley, Harlow, England, 2010.




