
UNR Sim: A Simulated Computer
for Computer Engineering Education

Andrew M. Olson Dwight D. Egbert Frederick C. Harris, Jr.

Computer Science and Engineering
University of Nevada, Reno

Reno, NV, USA
egbert@cse.unr.edu

Abstract

UNR Sim is a decimal based Von Neumann
architecture computing device simulator.
Chronologically precedent simulators did not include
factors we considered necessary or desirable, each
in and of itself. Actualized by these inadvertent
omissions, we decided to integrate all the desirable
behaviors instantiated in these simulators while either
neutralizing or negating their undesirable aspects.
This design inspiration resulted in a robust computing
device simulator suitable for pedagogical functionality
at the introductory level with extensions available for
more advanced students to continue their exploration
of fundamental Von Neumann architecture computing
systems.

Keywords: Computer Architecture, Interactive
Teaching Tools, Simulation.

1 Introduction

“The very idea of a computer science program that
did not provide students with an insight into the com-
puter would be strange in a university that purports to
educate students rather than to merely train them.”[8]

Electrical engineering students are taught the fun-
damentals of semiconductor behavior in order to un-
derstand how integrated circuits function. In a sim-
ilar manner, computer engineering students need to
understand the fundamentals of computing machin-
ery behavior in order to understand how computers
function. Concurrently and in conjunction with the
understanding of fundamentals, is the preference for
education over training. This implies a need for such ab
initio internalization of the manner in which computing
devices function.

The fundamental facet addressed by UNR Sim is the
simplest form of the Von Neumann cycle, as shown
below in Figure 1. Each element in this sequence is
demonstrated through illumination of the conductive
path connecting the two components in each step, in
nomine, fetch, increment and execute.

From our beginning, the discussion initiates with an
examination of historical and paradigmatic pedagogical
computer simulations in Section 2. Following our
discussion of previous implementations of pedagogical
educational paradigms, we have a design discussion of
UNR Sim in Section 3. Following this, we consider the
details of the implementation of UNR Sim in Section 4.
The paper concludes with a discussion of conclusions
and future development work in Section 5.

Figure 1: The von Neumann Cycle.

2 Background

Four distinct phyla make up the the taxonomy of
computer simulators preceding UNR Sim. The most
significant of these, as it is the precursor and most
correlative to UNR Sim, is Simulated Computer II. The
most primitive level of computer simulation, or in our
context, most basic taxonomic phylum, consists of gate

978-1-943436-00-2 / copyright ISCA, CAINE 2015 
October 12-14, 2015, San Diego, California, USA



and logic level simulators, in this document represented
by Logisim. On a similar conceptual level, focusing
on the Von Neumann cycle instead of simple hardware
elements, is the the Little Man Computer. Occupying
the contrasting position, of representing primarily the
computing hardware conceptualizations using hexadec-
imal notation, is Easy 4, and its succeeding upgrade,
Easy 8.

The primary consequence of these distinctly variant
approaches is a paucity of integration across these
aspects, most decidedly the three points of decimal
notation, focus on data movement in accordance with
the Von Neumann cycle and finally, and not trivially,
the ability to run the simulator on a wide range of
modern computers without secondary emulation. UNR
Sim addresses these issues both individually and in
toto. Regarding the first, UNR Sim primarily functions
in decimal mode, analogous to Simulated Computer II
and the Little Man Computer, although unlike those,
it is possible to display and input data in hexadecimal
mode as well to show the relationship between the
two. The Von Neumann cycle is displayed in UNR
Sim by highlighting the wire bus connection between
the two data involved in the particular step of the
Von Neumann cycle, unlike Simulated Computer II
which implies a more directional movement of the
data rather than the data occupying a connection
specified by addressing. Lastly, although important,
arguably least critical, UNR Sim can be run on all
three major platforms, Windows, Linux and OS X
without specialized knowledge of emulators of obsolete
hardware.

2.1 Simulated Computer II

In 1982, Carousel Software released Simulated Com-
puter II for the Atari 800 and Commodore 64.[6]
During this chronological period, software development,
particularly game development, was wildly divergent,
with numerous small companies creating a broad range
of offerings. So while Simulated Computer II did
win the award of “Best Microcomputer Software of
1982” from Learning Magazine, amid so many software
offerings on the market of all quality levels, it was not
surprising to find it did not find wide spread adoption as
evidenced by the rarity of copies of Simulated Computer
II.[6]

Notwithstanding such factors, Simulated Computer
II is notable for its elegant implementation of the
concepts underpinning the Little Man Computer and
demonstrating how those concepts apply in the most
fundamental level to a non-specific Von Neumann
architecture computing device as show in Figure 2.

Figure 2: Simulated Computer II.[6]

Unfortunately, while Simulated Computer II is an
excellent pedagogical tool, it is not as fully actualized
as could be implemented today. The primary difficulty
posed by Simulated Computer II is the fact it was
written for what is now obsolete hardware, requiring
functional knowledge of emulation software. However,
as has already been shown, due to its obvious strengths,
something similar to Simulated Computer II is certainly
a desirable tool and so it is pedagogically valuable to
create a computing device simulator with the positive
qualities of Simulated Computer II without these neg-
ative factors.

2.2 Logisim

No discussion of simulation would be truly complete
without examining at least one simulator of the most
basic kind, id est a component level simulator like
Logisim, shown in Figure 3. As stated by the creator of
Logisim, Carl Burch, “Logisim can be used (and is used)
to design and simulate entire CPUs for educational
purposes.”[1] Acknowledging this as true, however, does
little to ameliorate the fact such an endeavor can be
an entire class, not merely a single session or module
in a class focused on computational device design and
architecture in general.

This extensive knowledge base required to apply
Logisim to the pedagogical challenge of the fundamen-
tals of computer architecture design, in particular the
function of the Von Neumann cycle concomitant with
simplified decimal interface, renders Logisim unsuitable
for our purposes. In addition to this challenge, the fact
that the input is all wires and signals places Logisim as
perhaps a way to create a simulator at the conceptual
level of UNR Sim, it is not inherently at that level by
itself.



Figure 3: Logisim.[1]

2.3 Little Man Computer

The Little Man Computer, a conceptual computing
device simulator was created in 1965 by Stuart Madnick
of MIT.[10] The primary focus of the Little Man
Computer is the fetch and execute cycle, ultimately an
integral part of the basic Von Neumann cycle, albeit not
even all the necessary components, as implemented by
UNR Sim. Typical implementations of the Little Man
Computer are instantiated in decimal, not hexadecimal,
correlative with the minimalist ideal of this simulator.
The Little Man Computer, shown in Figure 4 is the
paradigmatic representation of the most minimal char-
acteristics of the Von Neumann cycle.

In contrapositive effect, Little Man Computer is
not a single implemented computing device simula-
tor, but rather a conceptual exercise which has been
instantiated in different ways creating inconsistencies
in ultimate effectiveness for pedagogical application.
Concurrently, Little Man Computer also obfuscates
certain details inherent to the internal functioning of
a typical central processing unit for the prototypical
Von Neumann architecture computing device by means
of oversimplification.

Figure 4: Little Man Computer.[10]

2.4 Easy4 Computer

In increasing order of complexity from Simulated
Computer II and UNR Sim is Easy4 Computer, a
Microsoft Windows based application included in PC
Architecture from Assembly Language to C.[9] This
application, as shown in Figure 5, is restricted to
an accessible memory domain of sixteen locations due
to its functional range of sixteen inputs for Easy 4.
architecture.

Easy 4 and Easy 8 both use hexadecimal notation
for all memory and functional behaviors. This is an
additional complexity often seen to impede student
assimilation of more critical concepts forming the fun-
damental basis of computational machine behavior.

Figure 5: Fundamental EasyX Architecture.[9]

3 UNR Sim Components

The cardinal aspect of computer architecture to be
taught by UNR Sim is the von Neumann cycle, with
the use of decimal notation, connection highlighting and
accessibility substantive to this pedagogical focus, as in
Figure 6.

The first elements of UNR Sim were based on the
behavior and appearance of Simulated Computer II,

Figure 6: Fundamentals Contributing to the Von
Neumann Cycle.



with its components from Little Man Computer and
replicated later in Easy 4. Visual characteristics were
updated for current student expected environmental
experiences and also kept simple, to reflect the funda-
mental nature of the lessons under study. Immediately
accessible controls and codes were left as similar to
the original Simulated Computer II, however a few
were discarded as excess to requirements and many
were added although not included in the primary
documentation. The animation of data movement was
changed from the disingenuous slowly traveling light to
a highlight of the entire connection, showing the nature
of wire exclusivity. Lastly, a sound generator was
adapted from Simulated Computer II to give students
something more responsive to interact with.

3.1 Visual Characteristics

UNR Sim in its basic configuration is shown below in
Figure 7. At the top left of the display is the screen.
At the bottom left of the display is the CPU. At the
top right of the display are the control buttons. At
the bottom right of the display are the memory banks.
The lines connecting the screen, CPU and memory
are representative of the wire connecting these three
simulated components of an entire computing device.

The first thing we removed was the teletype output,
replacing it with a single screen for input and output as
found on modern computing systems. Students often
found the dual system confusing, as many had never
experienced a teletype machine. The colors were chosen
to accentuate the three primary interface means, in
nomine the screen, the CPU and the memory. The
control buttons were drawn in black so as to be the
same as the wires, in that they are both representa-
tions of concepts more than exact representations of
components in the machine.

3.2 Commands, Mnemonics and Errors

Arithmetic systems are rarely integrated fluidly into
mathematical education to allow naive computer sci-
ence and engineering students to intellectually assimi-
late material such as the binary and hexadecimal sys-

Figure 7: Fundamental Mode of UNR Sim.

tems used in computer science and engineering without
difficulty. This dual assimilation issue, that of the
difficulty in comprehension of both the von Neumann
cycle and hexadecimal notation concurrently, is avoided
by the primary numerical system used in UNR Sim (as
it had been in Simulated Computer II) is decimal. This
is a continuation of the decimal arithmetical system
used by the Little Man Computer.[10] In addition, the
top left button in Figure 7 toggles the display and input
between hexadecimal and decimal.

The commands selected for UNR Sim, as shown in
Table 1, are very similar to those used by Simulated
Computer II. The fundamental commands to load and
run code are unchanged. However, the ability to reset
the simulation such that it starts with a cleared CPU
but the same memory values was added as well as
the ability to clear the memory completely. We did,
however, remove the command input to change between
operation codes and mnemonics, replacing it with a
button located above the memory.

Command Command Effect
RUN Starts Program Running at 00
RUNxx Starts Program Running at xx
RNSxx Starts Program Running at Speed xx
NEW Clears All Memory
RST Resets the CPU
LOAD Starts Loading at Location 00
LOADxx Starts Loading at Location xx

Table 1: UNR Sim Control Commands

All the mnemonics were continued from Simulated
Computer II and many were added. However, the
equivalent operation codes were maintained between
the earlier program and the current program, with the
added mnemonics added sequentially after the original
mnemonics. A table of operation codes and mnemonics
that are shared between UNR Sim and Simulated
computer are shown in Table 2

Error messaging was updated due to the loss of the
output teletype as well as to reflect the more typical

OpCode Mnemonic Function
001 LDAxx LoaD ACC with xx
002 STAxx STore ACC in xx
003 ADDxx ADD xx to ACC
009 JMPxx JuMP to xx
010 SKZ Skip Next if ACC = 0
011 SNZ Skip Next if ACC != 0

Table 2: Example OpCodes and Mnemonics



Error Code Error
OVF Overflow
UDF Undefined Location
INV Invalid Instruction
DVZ Divide by Zero
NAS Not a Sound

Table 3: UNR Sim Error Messages

Figure 8: Bus Highlighting for LoaD Accumulator

behavior of modern computer systems to respond with
error codes at the time of failed execution of a com-
mand. Table 3 displays the formally documented error
codes.

3.3 Wire and Bus Displays

The primary display mechanism used by UNR Sim is
to highlight the entire wire and bus connection between
the two points of interest for the particular stage of
the Von Neumann cycle in particular. The three
fundamental steps displayed are when the simulated
computer fetches the instruction. The second step
displayed is when the computer increments the program
counter. The final step under examination is when the
computer executes the function, see Figure 7. Each of
these steps is shown as a change in color of the whole
connection.

The practice of highlighting the entire wire and bus
connection was implemented to echo the step function
of the Von Neumann cycle. For each step of the cycle,
one connection is highlighted.

3.4 Audio Generator

The original Simulated Computer II had a simple
sound generator capable of sounding discrete tones
a single time. UNR Sim generates a sine wave of
a single frequency with programmable duration and
volume. Unlike normal functions, when the tone is done

playing, the simulator progresses to the next step in the
program. This was done so that students could program
the simulator to reproduce a melody, by setting the
run time to maximum speed to minimize delay between
tones.

The purpose of the audio generator is to give students
an application upon which to apply their programming
skills. In a similar manner to Simulated Computer
II, the audio generator in UNR Sim can be used for
programming assignments.

4 Implementation

The primary tool used to design UNR Sim was
Python 2.7.9[5] and the Pygame 1.9.1[4] library. These
were chosen because both Python and Pygame are
transportable across all major operating systems,
Python is the sixth most popular programming
language by normalized rating,[3] and is normally
packaged with the code in plain text so it is easily
modifiable by end users.

The visual layout was organized by percent of full
scale as opposed to on a per pixel basis. This way all of
the individual components can be referenced by a static
spatial orientation and location scheme. Using this
methodology, every location on the screen is referred
to on a scale from zero to one hundred. Pygame was
used to display all the graphic and text elements in an
independent window.

Commands and mnemonics are implemented with
individual logic statements, to allow for ease of replace-
ment or modification. No command or mnemonic is
dependent on any other, to prevent the possibility of
cascading errors causing a system wide failure. The
commands were selected from the original Simulated
Computer II commands. The basic mnemonics and
opcodes were transferred from Simulated Computer
II, however the advanced mnemonics were adapted
from the Motorola 68000 opcodes.[2] Error codes were
selected from Simulated Computer II and observation
of common user errors.

Wire highlighting was accomplished by locating all
nodes of the wire and bus combination used to carry
the signal between the two points and then overwriting
that wire and bus combination with another color. This
remains highlighted until the next step of the Von
Neumann cycle is taken. This was done to explicate the
nature of a wire connection, that being it is intact no
matter where the signal is on its transmission between
two points.

The tone for the sound generator is created from a
discrete array representation of a sine wave at a specific
frequency. These discrete values are then sent through



the Pygame sound generator to the sound system on
the device UNR Sim is currently run on.

All the keyboard handling was implemented in
Pygame as well. In addition, mouse location and
status was implemented in Pygame, particularly for
the control buttons.

5 Conclusion and Future Work

5.1 Conclusion

It has long been a proverb that one is unable to
construct a building descendant from the rafters. In
the context of computers, this inherently implies a
fundamental applicable knowledge and understanding
of the foundation and seminal basis for computer
functionality. For von Neumann architecture com-
puting devices, this mechanism is the von Neumann
cycle. UNR Sim explicates this cycle after excising all
possible extraneous distracting complications, such as
hexadecimal numeration and recondite user experience
abstractions.

5.2 Future Work

Future work for the Simulated Computer 2015 project
includes the addition of non-core features; exempli
gratia, the implementation of a turtle graphics module
to allow students to draw pictures or methods to save
and load external code.

Other types of future work include the migration onto
a more general purpose platform such as Unity,[7] giving
access to smart phones, tablets, consoles, web platforms
and other operating systems and hardware.

References

[1] Logisim. http://www.cburch.com/logisim/

index.html. Accessed: 2015-04-03.

[2] Motorola 68000 Family Programmer’s Reference
Manual. http://www.freescale.com/files/

archives/doc/ref_manual/M68000PRM.pdf. Ac-
cessed: 2015-04-27.

[3] Programming Language Popularity. http://

langpop.com/. Accessed: 2015-04-27.

[4] Pygame; Modules for Writing Games in Python.
http://pygame.org/news.html. Accessed: 2015-
04-28.

[5] Python programming language. https://www.

python.org/. Accessed: 2015-04-28.

[6] Simulated Computer II atari mania.
http://www.atarimania.com/game-atari-400

-800-xl-xe-simulated-computer-ii_4681.

html. Accessed: 2015-04-03.

[7] Unity. https://unity3d.com/. Accessed: 2015-
04-27.

[8] Why Do We Teach Computer Architecture? http:

//alanclements.org/teachingarchitecture.

html. Accessed: 2015-04-28.

[9] D. Hergert and N. Thibeault. PC Architecture
from Assembly Language to C. Prentice Hall, 1998.

[10] W. Yurcik and H. Osborne. A crowd of little man
computers: visual computer simulator teaching
tools. In Simulation Conference, 2001. Proceedings
of the Winter, volume 2, pages 1632–1639 vol.2,
2001.




