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Abstract. Finding the maximum clique in a graph is useful for solv-
ing problems in many real world applications. However the problem is
classified as NP-hard, thus making it very difficult to solve for large and
dense graphs. This paper presents one of the only exact maximum clique
solvers that takes advantage of the parallelism of Graphical Processing
Units (GPUs). The algorithm makes use of bitsets to reduce the amount
of storage space needed and take advantage of bit-level parallelism in
hardware to increase performance. The results show that the GPU im-
plementation of the algorithm performs better than the corresponding
sequential algorithm in almost all cases; performance gains tend to be
more prominent on larger graph sizes that can be solved using more levels
of parallelism.

1 Introduction

A clique, or complete sub-graph, is a subset of the vertices in an undirected
graph, such that there exists and edge between every pair of vertices in the sub-
set. The Maximum Clique Problem (MCP) is one of the most studied NP-hard
problems which consists of finding the largest possible clique in a graph. For any
large or dense graph, MCP often cannot be solved in a reasonable amount of time
even on high end machines due to its exponential time complexity. Despite the
difficulty of the problem, finding a maximum clique has many useful applications
in areas such as bioinformatics, computer vision, robotics, patterns in telecom-
munications traffic, and more [2, 11]. For this reason and the fact that many
real-world graphs do not elicit worst-case behaviour for MCP, new algorithms
and optimizations to the problem continue to be a popular field of research [8].

One emerging trend in research is the use of Graphical Processing Units
(GPUs) for general purpose computing to develop high performance applica-
tions. The release of NVIDIA’s CUDA, a general purpose parallel computing
platform released in 2006, enabled programmers to finally take advantage of the
parallelism and high computational power of NVIDIA’s GPUs while enabling a
low learning curve for developers familiar with standard programming languages
[5].

This paper describes the implementation of a maximum clique algorithm on
GPUs that utilizes bitset representations to reduce memory requirements and
increase performance. The implementation does many things that most maxi-
mum clique solvers to not attempt, despite the popularity of the field of research.



II

The algorithm presented is one of very few maximum clique solvers that runs on
GPUs, makes use of recursion on the GPU, and supports systems with multiple
GPUs.

The rest of the paper is structure as follows: Section II covers background
information necessary to better understand the proposed algorithm and summa-
rizes related maximum clique algorithms. Section III explains the new maximum
clique algorithm in detail. The results, comparisons between the sequential and
parallel GPU algorithm, and an analysis of the results are discussed in section
IV. Finally, conclusions and possible future improvements are stated in Section
V.

2 Background

Basic Maximum Clique Algorithm: A basic method for searching for a
maximum clique in a graph G = (V,E), where V is a finite set of vertices
and E is a finite set of edges that are unordered pairs (u, v) where u, v ∈ V ,
is a branch and bound, depth first search method. The basic implementation
explained in [14] uses two global sets: one to store the current clique Q and
another to store the largest clique found so far, Qmax. A candidate set R is also
stored throughout the search to keep track of which vertices may be added to Q.
When the algorithm starts, Q is empty and R contains all vertices in the graph,
R = V . The search process beings by selected a vertex p from R and adding
the vertex to Q, forming a new current clique, and then proceeds to calculate a
new candidate set R that is the intersection of the current R and the vertices
adjacent to p. This process occurs recursively until R is empty, which means
that Q is a maximal clique and cannot grow any larger, or |Q|+ |R| <= |Qmax|
which means that the Q cannot grow larger than Qmax. When Q is determined
to be maximal, it is compared against Qmax, and if |Q| > |Qmax|, Qmax = Q.
The search then backtracks in order to find other maximal cliques, removing p
from both Q and R and then selected a new p from R and repeating the process
until the search space has been exhausted.

Approximate Coloring: The basic MCP algorithm is much too slow to find
the maximum clique for large or dense graphs in a reasonable amount of time.
One way to increase the performance of the algorithm is to further prune the
search space in order to avoid unnecessary searching. One method of doing so is
to use approximate coloring of the graph vertices, such as the ones used in the
MCQ, MCR, MCS, and BBMC algorithms [11, 14, 6, 15].

Bitset Representations and BBMC: Another alteration to the basic MCP
implementation is the use of bitsets to represent which vertices are in a set.
The BBMC algorithm along with its many variations such as BBMCI, BBMCR,
BBMCL, and BBMCS all use bitsets to represent whether a vertex from the
graph is in a set or not [9–11, 13]. The use of bitsets allows the algorithms
to take advantage of bit-level parallelism in hardware where a single computer
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instruction can operate on a number of bits the size of a word on a processor at a
time (usually 32 or 64 bits in a word). Algorithms using bitsets therefore have two
main advantages: the use of a bitset instead of typical storage implementations
reduces the memory needed by a factor equal to the size of a word on the system,
and common operations can be done in parallel using bit-wise operations.

Parallel MCP Algorithms: A significant way to speed up the search for the
maximum clique in a graph is to take advantage of any available parallelism in
hardware. The majority of parallel implementations for MCP have been writ-
ten to take advantage of multiple CPU cores. The state-of-the-art parallel exact
maximum clique finder in [7] was designed for large sparse graphs to exploit char-
acteristics of social and informational networks and is parallelized on a shared
memory system, but could also be used on a distributed memory architecture.
The implementation achieved approximately linear speedup with respect to the
number of processors used, while sometimes achieving super linear speedup due
to increased pruning caused from workers sharing upper bounds with each other.

A very similar parallel approach was proposed in [4] that searches for the
maximum clique in a graph using multiple threads. The implementation is based
off of the sequential BBMC algorithm that uses bitsets and is implemented in
C++ using C++11 threads and shared memory parallelism.

There are also algorithms that attempt to utilize the GPU to solve MCP,
though there are not every many. One implementation used a neural network
and CUDA to search for the maximum clique in a graph using a GPU [1].
The algorithm was limited, only being able to handle graphs with 800 vertices
maximum due to memory constraints.

3 Parallel GPU Implementation

Parallel Method: The BBMC implementation on the GPU, which will be
referred to as BBMCG, has two distinct dimensions of parallelism. The first
dimension uses block-wise parallelism to divide the search space of the graph
into subtrees in order to traverse the search space in parallel. This method was
inspired by the work queue distribution method proposed in [4], where a work
queue is initially populated by splitting the search space immediately below
the root. In BBMCG, each block is initialized with a current clique Q that
contains one vertex from the graph, indicated by a 1 at the position for the
vertex in the bitset. The corresponding initial candidate set R for each block is
a set containing all the adjacent vertices to the vertex in Q. BBMCG therefore
creates a number of blocks for the algorithm that is equal to the number of
vertices in the graph. Each block then traverses its own search tree recursively
utilizing recursion on the GPU based on the BBMC algorithm described in [6, 11,
12]. A single global variable is shared between the blocks to indicate the current
maximum clique size found. If a block finds a clique in its search space larger
than the current maximum, it atomically updates the global maximum using
CUDA’s built in atomicMax function and stores the maximum clique’s bitset
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in a designated space for the block in global memory. By traversing the search
space in parallel and communicating the largest clique found, more of the search
space is potentially pruned as larger cliques are found faster.

BBMCG’s second dimension of parallelism is thread-wise parallel computa-
tions for bit-wise operations. CUDA lacks a bitset class, so bitsets are imple-
mented using arrays of unsigned integers. In a bitset, a single bit is needed for
each vertex in the graph. The number of unsigned integers needed to represent
a bitset is calculated by dividing the number of vertices n in the graph by the
number of bits in an unsigned integer in CUDA and rounding up. Since unsigned
integers are typically 32 bits long, one unsigned integer is needed to represent
32 vertices in the graph. The adjacency matrix which requires a bitset for each
vertex in the graph could then be represented as a 2-D array of unsigned in-
tegers, but CUDA generally prefers working with contiguous 1-D arrays. The
adjacency and inverse adjacency matrices are stored as 1-D arrays of unsigned
integer mappings of the 2-D array equivalents.

Any bit-wise operation that is not sequential in nature is parallelized by per-
forming the operations using multiple threads per block. The number of threads
used per block is equivalent to the number of unsigned integers needed to rep-
resent a bitset for the graph. BBMCG maps a single thread to each unsigned
integer of a bitset in order for the threads to perform bit-wise operations on
subsections of the entire bitset in parallel. In the base BBMC algorithm, the
majority of computations are bit-wise operations on bitsets such as finding the
first set bit, getting the number of set bits, intersecting bitsets, copying bitsets,
and setting or clearing a bit in a bitset. All of these operations besides setting
and clearing a bit can be executed in parallel to increase performance. For exam-
ple, to calculate the number of bits that are 1 in a bitset, each thread executes
the function popc on its corresponding unsigned integer from the bitset, which
is a built in CUDA function that counts the number of bits set to 1 in an un-
signed int. Results of each thread are then stored in array in shared memory,
and the threads calculate the sum of all the set bits using an efficient parallel
vector reduction algorithm on the array.

Memory Allocation and Management: Although the BBMCG is able to
run on graph sizes larger than those in [1], due to the use of bitsets, some memory
limitations were still encountered. One of the primary memory consumers in
BBMCG is the storage space needed to store the run-time stack for recursion.
Each recursive call in the search needs memory to store local variables, arrays
to store the coloring of vertices to improve pruning, and several bitsets to store
the current clique and candidate set. The maximum number of recursive calls
directly corresponds to the size of the maximum clique in the graph, so the
algorithm needs to allocate enough memory to reach the maximum depth to find
the maximum clique in worst case scenarios. The amount of memory needed is
then multiplied by the number of blocks used, which all make their own recursive
calls as they search. Faster forms of memory, such as local registers and shared
memory (limited to 48 KB on modern cards) are not large enough to store
data at each level of recursion for all blocks. Even constant memory memory is
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limited to 64 KB and is too small to store the adjacency matrices as suggested
in [1]. A single adjacency matrix for a graph size of 700 is approximately the
maximum size that can be stored in constant memory, which would severely
limit the problems BBMCG can run on.

BBMCG makes heavy use of global memory to address the memory limita-
tions of shared and constant memory, but still uses registers to store non-array
based data. Although global memory is much slower than shared and constant
memory, it is necessary in order to run the algorithm on reasonable sizes. Global
memory needed for the for the entire problem is pre-allocated before launching
the kernel. The memory is allocated as several 1-D arrays that each store a single
type of data for all of the blocks in the Kernel. Each block calculates the start-
ing position in the 1-D array for its portion of memory and points to it using a
pointer. Each block’s section of memory in the array is then broken down further
into subsections for levels of recursion where each subsection is big enough to
store the associated data for a single level. When a block makes a recursive call,
a new pointer is created that is offset the size of one subsection of data from the
current pointer position, pointing to a new subsection of space reserved to store
data for the new level of recursion. The 1-D array is created to be large enough
so that each block has enough memory to store data for each level of recursion
all the way down to the maximum calculated level. One disadvantage is that the
amount of memory allocated may be much larger than what is actually used,
because memory is allocated for a number of recursive calls equal to the number
of vertices in the graph for each block. The smaller the maximum clique is in
the graph, the less reserved memory is actually used. CUDA supports dynamic
memory allocation which would only use the amount of memory that is needed
by the algorithm, but it is extremely slow and not worth the storage benefits.

Preprocessing and Post-processing: Several preprocessing steps need to
happen before the BBMCG kernel is launched on the GPU. First the vertices of
the graph need to be initially ordered based on the desired ordering method. The
initial search space subtrees for each block must be generated from the graph
as a pair of bitsets holding a current clique and candidate set. On the CPU the
adjacency and inverse adjacency matrices are represented using a bitset class, so
they must be converted to arrays of unsigned integers to be able to be passed
to the GPU. Before launching the kernel, all of the global memory must be
allocated for various types of data such as current cliques, candidate sets, vertex
color arrays, the adjacency matrices, local maximum cliques, and more. After
memory is allocated and data is correctly represented, data for the adjacency
matrices and block subtrees have to copied to global memory on the GPU.
Lastly, since the algorithm supports the use of multiple GPUs, threads must be
created to launch a BBMCG kernel on each GPU. The multiple GPU variation
of BBMCG is primarily used to increase the amount of available memory and
will be explained in the discussion section. In the post-processing stage, each
thread copies the local maximums of the blocks to CPU memory and finds the
largest clique among the blocks.
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4 Results and Discussion

Sequential Implementation and Test Environment: The sequential ver-
sion of BBMC used in the results and the preprocessing portion of BBMCG
were both written in C++11. The sequential implementation is a port of the
BBMC algorithm provided in [6], which provides explanations of many differ-
ent sequential maximum clique solvers and their implementations in Java. It is
important to note that our C++ version of BBMC is slightly slower than the
Java implementation it was based on. The C++11 version is nearly identical to
the Java implementation, but uses vectors from the standard template library in
place of the ArrayList class in Java and Boost’s dynamic bitset class in place of
Java’s BitSet class. Differences in these class implementations may be the cause
of the performance difference, but further investigation is needed.

The computer used to gather both sequential and parallel GPU results is
composed of a Intel(R) Core(TM) i7 CPU 4790K @ 4.00 GHz, two NVIDIA
GTX 970’s with 1664 CUDA cores running at 1050 MHz and 4 GB of memory
each, and 16 GB of DDR3 system memory. Randomly generated graphs and a
subset of the DIMACS benchmark graphs [3] were used to compare the sequential
BBMC and parallel BBMCG algorithms.

Results: The randomly generated graphs are used to show trends for the se-
quential and parallel algorithms as graph size and edge density change. Figure
1 compares the running times on randomly generate graphs with 200 vertices
and edge probabilities p. In the graph each pair of vertices has a probability of
p to be an edge in the graph. The results show that at a size of 200 vertices,
the sequential algorithm outperforms BBMCG in all cases, but the two have
similar growth rates with respect to increasing edge probability. It can also be
seen the preprocessing stage for BBMCG takes approximately 0.1 seconds, and
is slightly higher when running on multiple GPUs than on a single one. It is the
case that preprocessing always take approximately that much time, and there-
fore is negligible in nontrivial problems. A final observation that can be made
is that BBMCG runs nearly identical on multiple GPUs as it does on a single
GPU for nontrivial problems.

Figure 2 compares the running times of BBMC and BBMCG on various
graph sizes. It can be seen that the growth rate for the BBMCG algorithm
with respect to graph size is much lower than the growth rate of the sequential
algorithm. The parallel algorithm outperforms the sequential on all graph sizes
above 400 vertices. Once again, the multiple GPU implementation performs
almost identical to the single GPU implementation in almost all cases.

We ran BBMC and BBMCG algorithms to find the maximum clique in a
subset of the DIMACS benchmark graphs. Results show that on 20 of the 24
selected graphs, BBMCG outperforms the sequential algorithm. The four graphs
where speedup does not occur all have less than 400 vertices, which is consistent
with the results shown in Figure 1 and Figure 2. Typical speedup is between the
1.4 to 4.0 range, with a few more extreme outliers. The results presented use
minimum-width ordering for the initial ordering, which tends to perform best on
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Fig. 1: Growth rate of BBMC and BBMCG run times with respect to graph density on
randomly generated graphs with 200 vertices.

Fig. 2: Growth rate of BBMC and BBMCG run times with respect to graph size on
randomly generated graphs with 0.5 edge probability.

the majority of graphs for BBMC and BBMCG. Experiments found that when
using non-increasing degree or MCR methods for initial ordering the results were
comparable.

Analysis: The results were consistently positive on graphs of 400 vertices or
more. This seems to be the threshold where the BBMCG algorithm can start
taking advantage of the parallel processing power of the GPU. As the size of the
graph increases, both block-wise and thread-wise parallel components increase in
parallelism. The number of blocks used in BBMCG is equivalent to the number
of vertices in the graph. Therefore, larger graphs have more ways to divide
up the search space and consequently can optimally use more blocks to search
different subtrees. The number of subtrees used to split the search space into was
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experimented with, and the ideal number of blocks to use almost always turned
out to be the number of vertices in the graph, not more or less. A performance
gain is much more likely on larger graphs, as many different portions of the graph
are all searched simultaneously with the possibility of containing the maximum
clique. Searching the graph subtrees simultaneously means that large cliques can
be found from subtrees that would not be searched sequentially until later in the
search, further pruning the graph and removing unnecessary searching. This can
sometimes lead to extreme speedup, such as in the case of san400 0.9 1 where
BBMCG obtained 2,3076.9 speedup over BBMC.

Thread-wise parallelism is a much more consistent method of increasing per-
formance. Block-wise parallelism relies on a non-deterministic search method in
an attempt to randomly guess good search paths and find large cliques faster
in the graph, and will in most cases, but the strategy depends heavily on the
characteristics of the graph being searched. Thread-wise parallelism speeds up
many forms of bit-wise operations in the algorithm and does so regardless of the
characteristics of the graph. As the size of the graph increases, the number of
unsigned integers needed in a bitset to represent the graph increases. Since the
number of threads in a block is equivalent to the number of unsigned integers in
a bitset, it means that more threads can be used as the graph size increases. In
order for a block to make use of 32 threads, which is the number of threads in
a warp, the graph must have at least 993 vertices. Since the GPU runs threads
in groups the size of warps, most of the graphs cause BBMCG to run idling
threads. Only 4 of the 24 DIMACS graphs make use of a full warp. As a result,
the majority of graphs tested are not running optimally on the GPU. Another
negative aspcect of thread-wise parallelism is the fact that not all operations can
be parallelized, such as setting a bit, causing all but 1 thread to idle at these
occurrences.

One severe limitation of the BBMCG algorithm is the lack of load balancing.
When a block finishes searching its subtree, it runs out of work and terminates. It
is very unlikely that each block is given an equal amount of work when the kernel
is initialized, so it is very possible the most blocks only work for a fraction of the
run time while a few blocks search the most difficult subtrees. A consequence
of this is that the amount of parallelism reduces as the algorithm runs and
performance is decreased.

The multiple GPU implementation of BBMCG suffers from the same load
balancing issue and is the reason that it performs identically to a single GPU
implementation. In the multiple GPU implementation, the initial subtrees for the
blocks are divided among the multiple GPUs. Unified memory is used to shared
the current maximum clique size between the GPUs and each GPU updates the
maximum size as they find it. Unified memory has to be communicated between
GPUs, causing a slight slow down. Although the additional GPUs do provide
additional computational resources, it is unlikely that they have an even work
load on initialization of the kernel. The benefits of finding and sharing large
cliques faster across GPUs is limited by the lack of load balancing and slow
communication, yielding almost no performance benefits. The block that has to
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search the most difficult subtree has to do it alone regardless of the addition
of more GPUs. Multiple GPUs do provide additional memory however, and
therefore do have some use to BBMCG. A maximum graph size of around 1500
vertices can run on a single GPU, but a maximum of around 2500 vertices can
run on two GPUs.

BBMCG is also slowed down by its reliance on global memory to run. Global
memory is many times slower than other available forms of memory, such as
shared memory. Although shared memory is used when necessary in bitwise
operations and in the coloring process, it is used seldom elsewhere. Another
memory related issue is the maximum stack size CUDA allows. Even at the
maximum size, it was determined that the maximum level of recursion that
could be reached before memory was exhausted was approximately 500 levels.
This limits BBMCG to only being able to search graphs that have a maximum
clique size of about 500 maximum until it run out of memory.

5 Conclusions and Future Work

In this paper, a maximum clique algorithm for GPUs, BBMCG, was presented
based off of one of the leading sequential algorithms, BBMC. The algorithm
addresses memory limitations for maximum clique solvers on GPUs by using
bitsets to reduce memory requirements. Two dimensions of parallelism are uti-
lized on the GPU to divide up and search the graph’s search space in parallel
and to improve computational speed by parallelizing bit-wise operations. The re-
sult achieved is moderate speedup on all but small graph sizes and occasionally
significant speedup on some problems.

It is promising that speedup is consistently achieved regardless of the reliance
on slow global memory, a lack of a load balancing system, and small graph sizes
not utilizing all of the threads in a warp. Future work will attempt to address
the issues to improve performance further. Preliminary work on a load balancing
system suggests that it could be a source for a large boost in performance and
would have the benefit of enabling multiple GPU systems to provide further
speedup. Another possibly significant alteration would be to integrate a managed
memory pool system in global memory with the goal to eliminate the inefficient
allocation of excess memory to blocks caused by not knowing how much memory
is needed to solve the problem.
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