
CUDA Implementation of Computer Go Game
Tree Search

Christine Johnson1, Lee Barford1,2,
Sergiu M, Dascalu1, and Frederick C. Harris, Jr.1

1 Department of Computer Science and Engineering, University of Nevada, Reno
2 Keysight Laboratories, Keysight Technologies

c johnson72@hotmail.com, lee barford@ieee.org, Fred.Harris@cse.unr.edu

Abstract. Go is a fascinating game that has yet to be played well by
a computer program due to its large board size and exponential time
complexity. This paper presents a GPU implementation of PV-Split, a
parallel implementation of a widely used game tree search algorithm
for two-player zero-sum games. With many game trees, it often takes
too much time to traverse the entire tree, but theoretically, the deeper
the tree is traversed, the more accurate the best move found will be.
By parallelizing the Go game tree search, we have successfully reduced
the computation time, enabling deeper levels of the tree to be reached
in smaller amounts of time. Results for the sequential and GPU imple-
mentations were compared, and the highest speedup achieved with the
parallel algorithm was approximately 72x at 6 levels deep in the game
tree. Although there has been related work with respect to game tree
searches on the GPU, no exact best move search algorithms have been
presented for Go, which uses significantly more memory due to its large
board size. This paper also presents a technique for reducing the amount
of required memory from previous game tree traversal methods while
still allowing each processing element to play out games independently.

1 Introduction

Computer Go has been a popular research topic for over 50 years [14] due to
its classification as a PSPACE-hard problem, meaning it is at least as hard as
the most difficult problems in the PSPACE class, and it has not been proven
to be solved using a polynomial amount of space [11]. The characteristic of this
problem that attributes to its exponential time complexity is the number of
possible games is ≈ 10171 [1], and a program needs to check all of these games to
determine which one yields the best score for a player. Thus, running multiple
of these checks in parallel is a reasonable way of reducing the computation time.

Graphics Processing Units (GPUs) have become popular devices for parallel
computing due to their low price to performance ratio. NVIDIA has allowed
programmers to take advantage of their GPUs for general-purpose computing
with the CUDA platform. CUDA C has been one of the most successful lan-
guages ever designed for parallel computing [10], making it an optimal choice for
reducing program execution time by accelerating computation with the GPU.



II

The remainder of this paper is structured as follows. Section 3 provides the
necessary background information, such as the rules for playing Go and game tree
search methods. Section 3 references related research on the Go game tree search
and parallel game tree searches. Section 4 discusses the GPU implementation of
the Go game tree search. Section 5 compares the sequential and parallel results,
and explains analyses of those results. Finally, Section 6 concludes and discusses
future work.

2 Background

Although researchers have been studying the complexity of Computer Go since
1962, the game of Go was invented in China around 2300 B.C.. The first program
that was capable of beating a novice player was written in 1968 [14]; however,
there has yet to be a program written that can beat any expert player [3].
Such a program is challenging for a number of reasons: the search space of all
possible moves is very large, it is difficult to construct long-term strategies, and
determining the end of the game is not intuitive in a program [13]. The latter two
reasons are the most difficult to address, so most research is aimed at speeding
up the necessary computation needed to search the possible move space.

Go is often compared to Chess, due to them being similar with regards to
being two-player strategy games [1]. However, Chess is considered a solved game
because a Chess program was written that successfully defeated the world cham-
pion [4]. The search space of Chess is estimated to be ≈ 1070 where the search
space of Go is estimated to be ≈ 10171 [1]. Additionally, Chess has a distinct
end game, such as a checkmate state, where Go does not [13], as mentioned
previously.

2.1 Rules

Go has many rules for specific board states; however, only the basic rules and
those relevant to the presented research will be listed. The following rules are
referenced from [14, 13].

Standard Go is played on a 19x19 board, creating 361 possible intersections,
or places for players to place their stones. There are two players, one black
and one white, who take turns placing their stones on the intersections of the
game board. The black player has 181 stones and white has 180, the sum of
them equaling the number of intersections. Stones of the same color that occupy
consecutive intersections on the board are called blocks. The number of liberties
for a stone is the number of neighboring intersections that are not occupied
by any stones. A stone can have a maximum amount of four liberties. When
the opponent’s stones occupy all of a stone’s liberties, the stone is considered
captured by the opponent, and is removed from the board. Blocks of stones can
be captured as well if the entire block is surrounded by the opponent’s stones.

The black player always goes first, and komi applies, meaning the white
player receives a small amount of extra points on the final score since he or she
is at the disadvantage of going second.



III

Objective The objective of the game is to control the most territory. Stones
are strategically placed to protect stones from being captured, and to capture
the opponent’s stones.

Scoring There exist two variants of scoring methods: territory scoring, which
count the surrounded territory plus the number of captured stones, and area scor-
ing, which count the surrounded territory plus the alive stones on the board. For
this research the latter is used. Contrary to standard Go rules but for simplicity,
alive stones are just those that have not been captured. Surrounded territory is
defined as blocks of empty intersections adjacent to stones of a single player.

End Game The game is over when both players pass consecutively because
they can no longer make any moves. Since it is difficult to detect when humans
would surrender, in this research the game ends after a number of moves equal
to the number of stones has been made.

2.2 Game Tree

Like most two-player games, Go program implementations typically use a game
tree to store all possible moves that can be made from the remaining set of moves
to choose from. The aim of game tree traversal algorithms is to allow the player
to make the best move. This is achieved by traversing the tree to observe how
each combination of moves would end a game, allowing the player to choose the
move that will yield the best score. In the tree, the root represents the current
game state, and all other node represents possible game states. Consecutive game
states are reached by making a move in the game [8]. The children of each node
represent all remaining moves that can be made after the move represented by
the node, and some evaluation function is used at each leaf to determine the
score for the player by ending the game with this combination of moves [7]. No
algorithm exists that can traverse the entire game tree for Go in a reasonable
amount of time [14, 7].

The following are descriptions for the most common methods for game tree
traversal, which all use Depth-First Search [8]. Each consecutive method is an
enhancement on the previous, leading up to the method used in this research.

Minimax: Minimax tree search or variations of it are commonly used in two-
player games because they attempt to maximize the score of the player while
also trying to minimize the score of the opponent. All the even levels in the tree
represent moves for the current player, and thus contain the moves at which
the player wants to maximize its score. All the odd levels in the tree represent
moves for the opponent, or moves where the player wants to minimize the score
[8]. Starting at the leaf nodes and choosing best and worst nodes on the even
and odd levels, respectively, yields the best possible move [14]. The NegaMax
implementation has a single maximize function that it uses the negation of when
minimizing [7].

Alpha-Beta Pruning: Alpha-Beta Pruning is an enhancement to Minimax
that yields the same move, but finds it more efficiently by pruning away entire
branches of the tree not worth exploring, thus reducing the search space [7]. A
variable α represents the worst possible score the maximize player, and a variable



IV

β represents the worst possible score for the minimize player. The variables are
updated if better values for each are found. Any node with a value below the
current α will not be chosen by the maximizer, so they are pruned. Similarly,
any nodes with values greater than β will not be chosen by the minimizer, so
they are pruned [14].

Principal Variation Search: Principal Variation Search (PVS), also known
as NegaScout, is an enhancement to Alpha-Beta pruning that finds the same
move more efficiently by reducing the size of the search window, thus pruning
more of the tree branches. The algorithm assumes the tree is ordered in such
a way that the best move out of the children of a node will be the left-most
child. The path that leads to the best move is the principal variation [9]. At
each node, if the first child of that node does not fall into the minimal search
window, then the current node is pruned. In order for this algorithm to be most
efficient, the best move should be explored first, followed by the next best move,
etc. Iterative-deepening and transposition tables are enhancements that address
move-reordering [7]. If the tree is poorly ordered, each sub-tree that is better
than its elder siblings must be searched again, making it potentially less efficient
than the Alpha-Beta pruning [9].

Iterative-Deepening: Iterative-deepening is an enhancement to Depth-
First Search, which sets the max depth for traversal to some shallow level ini-
tially, and re-traverses the tree after increasing the depth each time [14]. This is
beneficial for a number of reasons; one of them being that information from pre-
vious iterations can be stored so those levels do not actually need to be traversed
again in each iteration [13]. A second reason is this allows us to essentially con-
vert a Depth-First Search into a Breadth-First Search without the high memory
requirements of BFS.

3 Related Work

For over 50 years, Go has been an intriguing research topic. Research has been
performed involving the use of neural-networks for supervised learning [14] as
well as Monte-Carlo methods, which choose the best move out of a set of ran-
domly selected paths in the game tree to obtain decent results [5]. This research
focuses on related work done to optimize game tree search for an exact best
move using variations of Alpha-Beta Search.

Van der Werf et al. [13] solved Go for any possible opening move on a 5x5
board in 2002. The authors incorporated the five goals for their heuristic function
discussed previously in Section . Assumptions were made that may only hold for
smaller sized boards. The best move was found 23 levels deep in the game tree in
approximately 4 hours. Future work included solving Go on 6x6 and 7x7 boards.

Strnad et al. [12] implemented PV-Split on the GPU for the game Reverse,
also known as Othello in 2011. The authors designed an iterative algorithm, since
GPU recursion was not supported on NVIDIA cards at that time. Future work
included implementing transposition tables and iterative deepening to improve
the algorithm.



V

Elnaggar et al. [7] did comparisons of the variations of game tree traversal,
such as Minimax, Alpha-Beta Search, and Principal Variation Search. Results
for a subset of the methods were presented; implemented sequentially and in
parallel using MPI in 2014. Future work included using the OpenCL or CUDA
libraries for GPU implementations.

Li et al. [8] designed a parallel algorithm for game tree traversal for Connect6
and Chess that was ran on the GPU in 2014. As opposed to using a variation
of Alpha-Beta Search, the authors use a node-based parallel algorithm; meaning
sets of nodes rather than sub-trees are assigned to each GPU processor to avoid
the complexities involved with tree splitting. Future work included running the
presented method on multiple GPUs, and on larger search spaces such as the
Go game tree to observe the effectiveness and efficiency of the method.

Elnaggar et al. [6] designed a robot that can autonomously play Checkers
with a human in 2014. The Checkers game tree was traversed using an iterative-
deepening Alpha-Beta Search that was ran on the GPU. The novel feature of the
presented method is the GPU kernel recursion, which was recently made available
by NVIDIA in CUDA 5.0 on devices of Compute Capability 3.5 or higher [2].
Future work included using the presented method to solve more complex games
like Go and Stratego.

4 GPU Method

The deployed GPU implementation is a parallel version of the Alpha-Beta al-
gorithm called PV-Split, which was first presented by [9]. This algorithm was
chosen because it allows for high parallelism opportunities, and the data de-
pendencies are minimal and manageable on the GPU. The following is a more
detailed description of the algorithm.

4.1 PV-Split

If the game tree is naively divided into sub-trees that are processed in parallel,
it is likely that redundant nodes or nodes that would pruned in the sequential
algorithm will be explored due to the search window not being set properly [9].
PV-Split was designed based upon how the sequential Alpha-Beta algorithm
searches the tree with optimal move-ordering. As stated previously, optimal
move-ordering is defined as having the moves in the tree ordered from best
to worst, implying the principal variation is the left-most path. PV-Split starts
by traversing the left-most path sequentially to initialize the Alpha-Beta search
window. Once the cut-off level for this iteration has been reached, the remaining
siblings in each level are processed in parallel as the algorithm recursively goes
back up the tree [9]. Figure 1 shows how PV-Split would divide the game tree
among multiple processing elements.

The minimal search space is achieved when the best α value for each level is
possessed by each processing element [9]. Alpha-beta windows are stored globally
for each level of the tree, so if one processing element finds the best move in a



VI

Fig. 1: PV-Split Search using Two Processing Elements.

level, it atomically updates the window for that level and the rest of the moves
can be pruned from the search space [12]. Similar to PVS, PV-Split is most
efficient with optimal move-ordering, thus iterative-deepening is used to reorder
the moves at each iteration.

The GPU implementation uses two recursive device functions to perform the
traversal of the left-most path and the tree splitting. The pseudocode for the
device functions is shown in Algorithms 1 and 2.

PV-Split suffers from one main disadvantage: the sub-trees are not guaran-
teed to be of equal size due to the pruning, and PV-Split does not enforce any
type of load-balancing. If one processing element takes longer to complete its
sub-tree, the remaining processing elements are forced to wait until it completes,
lessening the efficiency of the system.

4.2 Memory Optimization

Processing sub-trees in parallel allows for the play out of multiple games simulta-
neously, thus requiring multiple game boards. A common method for maintaining
independent games is to create a copy of the current board state for each pro-
cessing element [6]. This method works well for small game trees, but becomes
infeasible with large trees such as the one required for Go. The infeasabililty
stems from the fact that the maximum width of the Go game tree is 361!, re-
quiring the maximum amount of blocks and threads with striding to process the
nodes in parallel. A thread’s board copy can be reused as it strides, so the max-
imum amount of board copies is bounded by the total number of threads, which
is 67,107,840 threads for the architecture of the device on which the experiments
were performed [2]. Storing this many copies of the board exceeds the available
device global memory.

In order to reduce the amount of memory required, there were no additional
copies of the game board created. A single copy of the board was used, and
each thread was allocated a key that was used to determine if a move had been
processed by the thread. Each key is represented by a bit. The keys are stored in
an array of integers, each integer holding 32 keys. A second integer array of the



VII

Algorithm 1 PV-Split

1: function pvSplit(side, remainingLevels, alpha, beta)
2: if remainingLevels = 0 then
3: return evaluateLiberties(side)
4: end if
5:
6: find the left-most child
7: make the move
8: score← -PVSPLIT(-side, remainingLevels - 1,
9: -beta, -alpha)

10: if score > alpha then
11: alpha← score
12: updateAlphaBeta(side, depth, score)
13: end if
14: undo move
15: if alpha ≥ beta then
16: return alpha
17: end if
18:
19: divide all threads among the remaining siblings
20: while move < totalMoves do
21: make move
22: score← -TREESPLIT(-side,
23: remainingLevels - 1,
24: -beta, -alpha)
25: if score > alpha then
26: alpha← score
27: updateAlphaBeta(side, depth, score)
28: end if
29: undo move
30: if alpha ≥ beta then
31: return alpha
32: end if
33:
34: move← next available move
35:
36: end while
37:
38: return alpha
39: end function

same size was used to determine if an occupied intersection was occupied by a
white or black stone. Therefore, the total memory used is that required to store
the game board and two bits for each thread, which reduces the memory from
the previous method by a factor of over 1,400 when using the maximum amount
of threads.



VIII

5 Results and Analysis

Results were collected for the situation where the black player has placed the first
stone, and the game tree is searched for the best move for the white player. PVS
was implemented in C++ and PV-Split was implemented in CUDA C. Sequential
and parallel timings were collected for a 5x5 board and the standard 19x19 board.
The system used for the experiments has the following specifications: Intel i7
4790k running at 4.0 GHz, 16 GB DDR3 memory, NVIDIA GeForce GTX 970.

Figures 2 - 4 show the execution times and speedups for the two board sizes

Fig. 2: Execution times for a 5x5 board.

Fig. 3: Execution times for a 19x19 board.

The graph in Figure 2 shows that it is only beneficial to move the search
computation to the GPU once the number of levels exceeds four for the 5x5



IX

Algorithm 2 Tree-Split

1: function treeSplit(side, remainingLevels, alpha, beta)
2: if remainingLevels = 0 then
3: return evaluateLiberties(side)
4: end if
5:
6: divide available threads among remaining moves
7: while move < totalMoves do
8: make move
9: score← -TREESPLIT(-side,

10: remainingLevels - 1,
11: -beta, -alpha)
12: if score > alpha then
13: alpha← score
14: updateAlphaBeta(side, depth, score)
15: end if
16: undo move
17: if alpha ≥ beta then
18: return alpha
19: end if
20:
21: move← next available move
22:
23: end while
24:
25: return alpha
26: end function

Fig. 4: Speedups for the 5x5 and 19x19 boards.



X

board. Figure 3 shows it is beneficial to move the computation to the GPU once
the amount of levels exceeds two for the 19x19 board. It is expected that the
level threshold at which it is beneficial to move the computation to the GPU is
lower for the 19x19 board since the breadth of the 19x19 game tree is larger.

For the GPU implementation, various combinations of block and thread
amounts were executed to determine the optimal combination for both board
sizes. The combinations were tested for deeper levels of the trees, but the same
combination was used for all levels for the results for that board size. For the
5x5 board, 4096 blocks and 32 threads per block were used, and for the 19x19
board, 512 blocks and 32 threads per block were used. As the number of threads
passed these values, the execution time would start increasing.

Increased execution time, when a result of an increase in the number of
threads, can typically be attributed to either thread scheduling or memory
throughput. To further understand the reasoning for the increased execution
time, the CUDA profiler [2] was used to analyze the differences in various mem-
ory usages as the number of threads increased.

As expected, the results for 1 and 32 threads are the same since a warp
will always schedule 32 threads. However, as the number of threads increases
from 32 to 128, the number of blocks that can be simultaneously executed on
a Streaming Multiprocessor reduces from 20 to 5. In this situation, the number
of blocks that can be executed is limited by the number of registers since the
recursive kernel has high register usage. Each GPU model has a set limit on the
number of registers that can be used by each block, so if this amount is exceeded
then some of the blocks must wait to be scheduled. Increasing the number of
threads increases the number of times the kernel is executed, thus increasing the
register usage. As a result, the decreased warp occupancy theoretically reduces
the number of elements processing simultaneously and also reduces the efficiency
at which the GPU can perform latency hiding, both attributing to an increase
in execution time [2].

6 Conclusion and Future Work

In this paper, we have presented a CUDA implementation of the recursive PV-
Split algorithm for searching the Go game tree. Running the game tree search in
parallel allows for a reduction in computation time so more accurate best moves
can be found by reaching deeper levels of the tree in a less amounts of time. The
results for the standard board size show speedup for all levels greater than 2,
with a high speedup of ≈72x at ply 6. In addition to reducing the computation
time, a memory optimization method was introduced that addressed the issue
of having to store independent copies of the game board for each processing
element on the GPU.

In the future, we would like to make optimizations to the current GPU im-
plementation, such as reducing the amount of register usage so a higher number
of threads can be used efficiently, and taking advantage of shared memory to



XI

promote faster memory accesses. We would also like to run the game tree search
on multiple GPUs.

Acknowledgment

This material is based in part upon work supported by: The National Sci-
ence Foundation under grant number(s) IIA-1329469, and by Cubix Corporation
through use of their PCIe slot expansion hardware solutions and HostEngine.
Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation or Cubix Corporation.

References

1. Comparision between chess and go, http://users.eniinternet.com/bradleym /Com-
pare.html

2. Cuda toolkit documentation, https://docs.nvidia.com/cuda/index.html
3. The mystery of go, the ancient game that computers still can’t win,

http://www.wired.com/2014/05/the-world-of-computer-go/
4. Campbell, M., Hoane, A.J., Hsu, F.h.: Deep blue. Artificial intelligence 134(1),

57–83 (2002)
5. Chou, C.W., Chou, P.C., Doghmen, H., Lee, C.S., Su, T.C., Teytaud, F., Teytaud,

O., Wang, H.M., Wang, M.H., Wu, L.W., et al.: Towards a solution of 7x7 go with
meta-mcts. In: Advances in Computer Games, pp. 84–95. Springer (2012)

6. Elnaggar, A., Gadallah, M., Aziem, M.A., Aldeeb, H., et al.: Autonomous checkers
robot using enhanced massive parallel game tree search. In: Informatics and Sys-
tems (INFOS), 2014 9th International Conference on. pp. PDC–35. IEEE (2014)

7. Elnaggar, A.A., Aziem, M.A., Gadallah, M., El-Deeb, H.: A comparative study of
game tree searching methods. International Journal of Advanced Computer Science
and Applications (IJACSA) 5(5) (2014)

8. Li, L., Liu, H., Wang, H., Liu, T., Li, W.: A parallel algorithm for game tree search
using gpgpu (2014)

9. Marsland, T.A., Campbell, M.: Parallel search of strongly ordered game trees.
ACM Computing Surveys (CSUR) 14(4), 533–551 (1982)

10. Sanders, J., Kandrot, E.: CUDA by example: an introduction to general-purpose
GPU programming. Addison-Wesley Professional (2010)

11. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning (2012)
12. Strnad, D., Guid, N.: Parallel alpha-beta algorithm on the gpu. In: Information

Technology Interfaces (ITI), Proceedings of the ITI 2011 33rd International Con-
ference on. pp. 571–576. IEEE (2011)

13. van der Werf, E.C., Van Den Herik, H.J., Uiterwijk, J.W.: Solving go on small
boards. ICGA Journal 26(2), 92–107 (2003)

14. van der Werf, E.C.D.: AI techniques for the game of Go. UPM, Universitaire Pers
Maastricht (2005)


