
Accelerating BFS Shortest Paths Calculations Using
CUDA for Internet Topology Measurements

Eric Klukovich∗, Mehmet Hadi Gunes∗, Lee Barford†, and Frederick C. Harris, Jr.∗
∗Department of Computer Science and Engineering, University of Nevada, Reno, USA

†Keysight Laboratories, Keysight Technologies, USA
eklukovich@nevada.unr.edu, mgunes@cse.unr.edu, lee_barford@ieee.org, fredh@cse.unr.edu

Abstract—Within the last decade, the number of devices con-
nected to the Internet has seen immense growth and it has grown
to be a large and complex network. To analyze this network,
Internet topology analysis has become a popular research area
and the analysis can be computationally expensive for such
a large scale network. In this paper, we have implemented
algorithms to find the shortest paths on large scale Internet
topology graphs based on real topology data using breadth-
first search. The algorithms have been implemented on graphical
processing units (GPUs) using the CUDA platform. We performed
our performance measurements on graph sizes ranging from
1,100 to 6.8 million nodes and achieved a maximum speed up of
47x on a single GPU and 124x speed up using 8 GPUs for 100
different starting points.

I. INTRODUCTION

The Internet has revolutionized the way users utilize com-
puting devices to find information and interact with each other
regardless of the geographic location. The Internet is deemed
as the largest man-made information system in existence and
the number of users and information being sent and received
is constantly growing. Currently, around 40% of the world
population (3 billion people) has an internet connection [1]
and over 75 thousand PB of data is transferred through the
Internet every month [2]. Sending and receiving data across
the world can be done in a matter of seconds, but it requires
a large infrastructure to find the packet’s destination and to
transport it through the network.

The Internet is an interconnection of Autonomous Systems
(AS) that is managed by Internet Service Providers (ISPs) and
other large organizations. Each AS is assigned a group of IP
addresses and manages one or multiple networks comprised
of many different routers. The Autonomous Systems are
organized into a two-level hierarchy. The first tier defines the
protocol for routing within the AS. The second tier defines
how routing to systems outside of the AS should be carried
out. ASes are connected to other ASes in order to be able to
connect to the entire Internet, and they use Border Gateway
Protocol (BGP) to route data between them.

All of the connected autonomous systems create a large
complex topology and understanding the structure and interac-
tion has been a popular area of research. Creating an accurate
topology of the Internet has many beneficial applications that
can lead to new research. Vulnerability and threat analysis
can be performed along with developing new protocols and
simulations to see their performance. ISPs could monitor

how the network has evolved over time and can analyze the
economic benefits of connecting to other ASes. The data for
each AS is collected and put through a topology generator in
order to create the topology for the entire Internet.

The graphical processing unit (GPU) has become a popular
device for creating a high performance parallel computing
platform for a relatively low cost. Each GPU contains a large
number of processing cores and each core can create many
threads that can all be executed in parallel. As a result, many
different types applications utilize GPUs to solve computation-
ally expensive problems and have been successful in increasing
the performance. NVIDIA provides their Compute Unified
Device Architecture (CUDA) programming model in order for
new and existing applications to be executed on the GPU.
CUDA extends the standard C/C++ language to give direct
access to the instructions and memory management for parallel
computation on NVIDIA GPUs.

In this study, we focused on analyzing the shortest paths
from the ingress points (BGP Routers) to all the routers within
the individual AS using Breadth-First Search (BFS). We have
implemented sequential and parallel algorithms using C++ and
CUDA to perform the shortest path analysis on GPUs. Our
target analyses specialized in real Internet topology data. More
specifically, our analysis was for large scale networks (>1M
nodes). The sequential algorithm requires a long computation
time to process the large scale Internet topology graphs. We
were successful in implementing single and multiple GPU
algorithms using up to 8 GPUs and achieved a maximum speed
up of 47x and 124x, respectively on a 6.8 million node AS
with 100 ingress nodes.

This paper is organized in the following manner: Section II
discusses the related work, Section III presents the methods
and tools to generate the Internet topology, Section IV dis-
cusses the implementations and algorithms, Section V presents
the results and discusses the findings, Section VI adds some
additional discussion and future work, and we finally conclude
in Section VII.

II. RELATED WORK

Parallelizing BFS is a well studied area due to the amount
of applications that utilize it and several studies have im-
plemented BFS on the GPU for large graphs. Harish and
Narayanan [3] provided one of the first studies to implement
BFS, and other shortest path algorithms using CUDA, by

S D

DestinationVantage

Point

A

TTL = 1

B

TTL = 2

C

TTL = 3 TTL = 4

Fig. 1: Traceroute being sent from a vantage point to a destination with differnt time to live values

processing the vertices. Their study focused on large scale
random graphs (>1M nodes) and showed 20x to 60x speed up
using an NVIDIA 8800 GTX GPU. The also provided minimal
results using real world data, but did not achieve any speed up
due to the nature of the data. Luo et al. [4] improved the work
in [3] by adding a hierarchical queue management technique
and a three-layer kernel arrangement strategy for BFS. They
were able to have 2x to 6x speed up on the real world data
used in [3]. Work by Singla et al. [5] took a different approach
and parallelized BFS by processing the edges rather than the
vertices for graphs with large amounts of edges. The authors
used limited hardware and obtained a 5x to 11x speed up
and found that the BFS is more efficient for graphs with a
large number of edges. Merrill, Garland, and Grimshaw [6]
implement a BFS algorithm that achieves an asymptotically
optimal O(|V|+|E|) work complexity. The authors use very
large real-world graphs to test their algorithm and achieved
traversal rates of 3.3 billion to 8.3 billion traversed edges per
second.

Fu et al. [7] implement BFS on a distributed GPU clusters
with a total of 64 GPUs. The graph’s adjacency matrix was
partitioned in two dimensions based on the number of GPUs
available. They used the Graph 500 generator to create large
scale graphs, where the largest graph had 134 million vertices
and 4.3 billion directed edges. They were able to achieve full
edge-to-edge traversal in 0.148 seconds.

There have been a few other studies that focus on imple-
menting a parallelized shortest path algorithms for Internet
topology graphs. Swenson et al. [8] used BRITE as their
topology generator and implemented all-pairs shortest path
(APSP) algorithm on CUDA to analyze the routing paths
within an network. This study is closely related to ours, except
they implemented APSP instead of BFS. The authors were
able to achieve a significant performance increase, except they
performed their measurements on graphs with less than 10,000
nodes. Ahmad and Guha [9] also implement APSP on the GPU
and use CAIDA as their topology generator for the graphs.
They had a 2x to 35x speed up over their sequential algorithm,
but again performed measurements on graphs less than 12,000
nodes.

In this study, we focused on implementing BFS on the GPU
in order to process large real world data graphs. We tested
our implementation with higher performance hardware and
implemented both single and multiple GPU algorithms. To

Monitor 1

Destination 1

Destination 2

Destination 3

Ingress

Node 1

Ingress

Node 2

Monitor 2

Fig. 2: Mapping an Autonomonus System subnetwork with
multiple monitors

our knowledge, this is the first study to perform this Internet
topology analysis on multiple GPUs at such a large scale.

III. INTERNET TOPOLOGY GENERATION

In order to generate an accurate topology of the Internet,
the data about the ASes and subnetwork must be collected.
The data is collected using computing systems, called vantage
points, and each machine uses traceroute to send an ICMP
packet towards the destination. The packet has a time to live
(TTL) value that starts with an initial value and is decremented
as it goes from router to router [10]. An example of how the
vantage points send traceroute packets to collect the actual
network path is shown in Figure 1. The vantage point S creates
a new ICMP packet with a TTL value of 1 and sends it to the
destination D. The packet will reach router A and decrements
the TTL value to 0. Once the TTL value reaches 0, the router
will send the packet back to the original source with the entire
path the packet traveled. If the vantage point receives a packet
from any router that is not the destination, then the TTL value
is increased and sent to the destination again. In this example,
S will then increase the TTL value to 2 and reach router B.
Then, will increase the value to 3 and reach router C. Finally,
the value will increase to 4 and reach the destination D. The
vantage point has one path to the destination and will move
to the next target.

21 10 2 0 12 2 ... 1 7 24 3174

Vertex Array - |V|+1

0 2 5 6 12 ... 34 36 38

Edge Array - |E|

Fig. 3: GPU graph representation

The traceroute method just described only provides one
path from the vantage point to the destination, and might
skip alternative paths within the network. In order to get a
more accurate map of the topology, multiple vantage points at
different locations are used. An example of how multiple paths
are mapped with multiple vantage points is shown in Figure 2.
Monitor 1 and 2 both are mapping a path to destination 3,
indicated by the dashed and solid paths, respectively. Since
the monitors are in different locations, they are able to map
different parts of the AS subnetwork, but do not reveal all
of the possible paths in the network. This can be partially
resolved by sending more packets during different times, or
using additional vantage points to possibly get more of the
network.

Another alternative is to use a topology generator that
generates realistic Internet topologies. One such topology
generator is BRITE, or the Boston university Representative
Internet Topology gEnerator [11], and this is the generator we
used in this study. BRITE allows for different properties such
as the power law, path length, and clustering coefficient to be
studied. BRITE is a parameterized generator and can use the
data from the processed traceroute results. When a topology
is being generated, a plane is created and filled with different
nodes that act as the routers within the AS. The edges between
the routers are then connected and the specific algorithm for
placing connections between the nodes can be chosen such as
random, preferential attachment, or heavy-tailed distribution.
Bandwidths and other properties are assigned based on the
data and are exported to a file to be analyzed.

IV. ALGORITHMS AND IMPLEMENATIONS

Breadth first searching is a commonly used algorithm in
graph theory and can be applied to many different applications
to process data. BFS processes tree-like structures and starts
off at the root of the tree (the source) and explores the
neighboring nodes first. After all the neighbors are processed,
then the next levels of nodes are processed until all of the
levels have been visited. This algorithm is ideal because it
finds the shortest paths from a source node to all the nodes in
an unweighted graph G(V,E). This section briefly discusses the
sequential algorithm that was implemented and then provides

a description of how the graph is stored on the GPU. The
single and multiple GPU algorithms that are implemented are
discussed in detail as well.

A. Sequential Implementation

The sequential implementation of BFS is straight forward.
In order to process the graph, a method of keeping track of
which nodes need to be processed is required. This is done by
using a queue (FIFO) data structure, where the ingress node
is used as the source and is initially enqueued. The algorithm
keeps processing nodes until the queue is empty. When a node
needs to be processed, all of the node’s edges are checked if
they have been visited. If they have not been visited, then the
cost is incremented and the node is put in the queue. If the
node has been visited, then it is ignored. The algorithm has a
time complexity of O(|V|+|E|), causing large graphs to take a
long time to process.

B. GPU Graph Representation

The graph data structure is commonly stored in either an
adjacency matrix for dense data, or an adjacency list for
sparse data. Adjacency matrices require O(|V|2) memory to
store all the edge information. This is not a feasible method
for storing the graph on the GPU because of the limited
amount of memory available on each device. The adjacency
list overcomes the memory limitation by storing the edges for
each vertex as a linked list. This method also has drawbacks
because the access time can be O(N) in the worst case, where
N is the number of edges in the list, and would decrease the
performance on the GPU.

Our graph representation is a compact form of the adjacency
list based on a slightly modified implementation by Harish
and Narayanan [3], also known as Compressed Spare Row
format. The graph represention is shown in Figure 3. The
vertices and edges in the graph is coverted into two arrays,
the vertex array Va with |V|+1 elements and the edge array
Ea with |E| elements. Each element in Va holds the index of the
first connected edge in Ea. The edge array holds all the edges
in the graph and each element contains the vertex number
that edge is connected with. The number of connected edges
for a vertex i can be easily calculated by getting the index
from the next vertex i+1. The grey box in the figure denotes
the modification we made from the implementation in [3]. By
adding the additional element, it makes the calculations for the
number of edges of the last vertex much simpler, and therefore
avoids additional overhead in the calculations.

C. CUDA Implementation

BFS on the GPU is highly parallelizable due to the ability
to perform level synchronization. This means that each level
can be processed in parallel because there are no data de-
pendencies. As each level gets processed, the previous levels
will not be processed again. BFS uses the idea of a frontier
which separates out which vertices have been visited and
which ones have not. The frontier holds the recently visited
nodes, as well as finds the nodes that need to be processed

Algorithm 1 SINGLE_GPU(Graph (V,E), Sa, numIngress)

1: Create vertex array Va from all the vertices and edge array
Ea from all edges in Graph(V,E)

2: for i = 0 to numIngress do
3: Call PROCESS_GRAPH(Va, Ea, Sa[i])
4: end for

Algorithm 2 PROCESS_GRAPH(Va, Ea, Source S)

1: Create cost array Ca, frontier array Fa, frontier update
array FUa, visited array Xa of size V

2: Initialize Fa, FUa, Xa to false and Ca to -1
3: Initialize Fa[S]← true, Xa[S]← true, Ca[S]← 0
4: search← true
5: while search do
6: search← false
7: Send search to GPU
8: Call BFS_KERNEL(Va, Ea, Fa, FUa, Xa, Ca)
9: Call BFS_UPDATE_KERNEL(Fa, FUa, Xa, search)

10: Get search value from GPU
11: end while

in the next level. The CUDA implementations do not use a
queue in their algorithms, unlike the sequential algorithm.
This is because implementing a queue on the GPU is not
efficient due to having to constantly maintain index values
and synchronization issues.

Single GPU: The implementation for the single GPU was
initially based on the pseudocode in [3], but was modified to
overcome some data race conditions. The GPU is given one
ingress node to process and each device thread is given one
vertex to process. The algorithm for processing all the ingress
nodes is shown in Algorithm 1. The vertex and edge arrays
are created from the network graph generated by BRITE. All
of the ingress nodes are processed one at a time by calling
PROCESS_GRAPH. This function is shown in Alogrithm
2 and is where BFS actually occurs. Three boolean arrays,
frontier array Fa, frontier update array FUa, and visited array
Xa of size |V | are created. The frontier and frontier update
arrays are used to keep track of the nodes that need to process
on the current level and next level, respectively. The visited
array stores the already processed nodes. An integer cost array
Ca is also created. This stores the minimum cost of the path
from the source to a specific node. The arrays are initialized
and a loop starts to perform BFS. At each iteration, a boolean
value is sent to the GPU to determine if any nodes need to
be processed and both of the BFS kernels are launched. The
boolean value is fetched from the GPU and is checked by the
loop to determine if it needs to continue.

Algorithm 3 shows the first BFS kernel, BFS_KERNEL, and
it is where the actual processing of the nodes occur. Since each
thread is responsible for a vertex, the threadID is fetched and
it determines which vertex to process. The thread checks if the
vertex is to be processed and if so, then updates the frontier
array to be processed and loops across all of its edges. At each

Algorithm 3 BFS_KERNEL(Va, Ea, Fa, FUa, Xa, Ca)

1: tid← getThreadID
2: if tid < numV ertices AND Fa[tid] then
3: Fa[tid]← false
4: for each edge destID in Va do
5: if NOT Xa[destID] then
6: Ca[destID]← Ca[tid] + 1
7: FUa[destID]← true
8: end if
9: end for

10: end if

Algorithm 4 BFS_UPDATE_KERNEL(Fa, FUa, Xa, search)

1: tid← getThreadID
2: if tid < numV ertices AND FUa[tid] then
3: Fa[tid]← true
4: Xa[tid]← true
5: search← true
6: FUa[tid]← false
7: end if

iteration, the destination vertex is checked to see if it has been
visited. If it has, then it is skipped over and not processed
again. If it needs to be processed, then the cost for that
vertex is updated and the frontier update array is updated to
process the destination vertex on the next level. After the first
kernel is finished, then the BFS_UPDATE_KERNEL shown
in Algorithm 4, is invoked. This kernel is called to update
the frontier array, update array, and visited arrays in order to
remove any race conditions during the BFS kernel call. Each
thread needs to check if a vertex has been visited and if it
needs to be processed. Since CUDA does not provide block
synchronization then there could be data inconsistencies when
the threads read/write to these arrays. This additional kernel
alleviates this issue and also provides a toggle value to quickly
determine if there are more levels that need to be processed.

Multiple GPU: Each topology graph has multiple ingress
nodes that need to be processed. These nodes are independent
from each other and can be easily processed in parallel
with multiple GPUs. Algorithm 5 shows the pseudocode
for processing the ingress nodes with multiple GPUs. The
process is similar to the single GPU algorithm, except the
host creates a pool of threads with one thread for each GPU.
The vertex and edge arrays are created only one time, and a
copy is given to each thread. The thread is launched with the
PROCESS_GRAPH function and is given a different ingress
node to process. This is repeated until all the GPUs have an
ingress node to process. The host will then wait for all the
threads to finish their execution. The entire process repeats
until all the nodes are processed and then host will again wait
until all the threads are finished.

V. PERFOMANCE RESULTS

The performance measurements for the sequential and GPU
algorithms were carried out on a PC with an Intel Xeon E5-

 1/16
 1/8
 1/4
 1/2
1
2
4
8

16
32
64

128
256
512

1024
2048

1K 10K 100K 1M 10M

Ti
m

e
 (

Se
c)

Number of Nodes

 1/32
 1/16
 1/8
 1/4
 1/2
1
2
4
8

16
32
64

128
256
512

1024

1K 10K 100K 1M 10M

Ti
m

e
 (

Se
c)

Number of Nodes

50 Ingress Nodes 100 Ingress Nodes

Fig. 4: Sequential execution timings for 50 ingress nodes and 100 ingress nodes

1 GPU 2 GPU 4 GPU 8 GPU

 1/8

 1/4

 1/2

1

2

4

8

16

32

1K 10K 100K 1M 10M

Ti
m

e
 (

Se
c)

Number of Nodes

 1/8

 1/4

 1/2

1

2

4

8

16

32

1K 10K 100K 1M 10M

Ti
m

e
 (

Se
c)

Number of Nodes

50 Ingress Nodes 100 Ingress Nodes

Fig. 5: GPU Execution timings for 50 ingress nodes and 100 ingress nodes

1 GPU 2 GPU 4 GPU 8 GPU

 1/4

 1/2

1

2

4

8

16

32

64

128

1K 10K 100K 1M 10M

Sp
e

e
d

 U
p

Number of Nodes

 1/4

 1/2

1

2

4

8

16

32

64

128

1K 10K 100K 1M 10M

Sp
e

e
d

 U
p

Number of Nodes

50 Ingress Nodes 100 Ingress Nodes

Fig. 6: Speed up performance for 50 ingress nodes and 100 ingress nodes

2620 CPU at 2.0 GHz, 64 GB RAM, and eight NVIDIA
GeForce GTX 780 GPUs running on Ubuntu 14.04. Each
of the graphic cards have 3 GB of dedicated RAM and

2304 CUDA cores available on each card. The algorithms
were written using C++11, CUDA 7.0, and the C++ standard
template library.

TABLE I: Execution time and speed up results for the largest three graphs

Execution Time (sec)

Num Ingress Nodes Graph Size 1 GPU 2 GPUs 3 GPUs 4 GPUs 5 GPUs 6 GPUs 7 GPUs 8 GPUs

4.6 M 9.62 6.51 5.72 5.26 4.90 6.39 4.71 4.51
50 4.8 M 10.35 7.12 6.09 5.56 5.20 5.02 4.97 4.84

6.7 M 14.28 9.58 8.20 7.67 7.06 6.86 8.20 7.65

4.6 M 15.98 11.19 7.92 6.93 6.36 5.96 5.95 5.55
100 4.8 M 16.57 10.25 8.36 7.00 6.67 6.27 6.10 5.86

6.7 M 24.36 14.69 12.99 10.38 9.82 9.06 8.78 8.56

Speed Up

Num Ingress Nodes Graph Size 1 GPU 2 GPUs 3 GPUs 4 GPUs 5 GPUs 6 GPUs 7 GPUs 8 GPUs

4.6 M 32.77 48.45 55.14 59.97 64.35 49.36 66.89 69.92
50 4.8 M 31.90 46.37 54.24 59.43 63.51 65.73 66.44 68.27

6.7 M 38.33 57.15 66.76 71.34 77.50 79.78 66.73 71.52

4.6 M 38.91 55.56 78.47 89.65 97.72 104.38 104.47 111.96
100 4.8 M 40.14 64.90 79.54 95.06 99.78 106.07 109.12 113.53

6.7 M 44.18 73.28 82.82 103.70 109.60 118.77 122.59 125.69

Algorithm 5 MULTIPLE_GPU(Graph(V,E), Sa, numIngress)

1: Create vertex array Va from all the vertices and edge array
Ea from all edges in Graph(V,E)

2: Create thread array T, one thread for each device
3: i← 0
4: while i < numIngress do
5: if threadCount < numDevices then
6: Launch PROCESS_GRAPH(Va, Ea, Sa[i]) in a

new thread
7: threadCount← threadCount+ 1
8: i← i+ 1
9: else

10: for j = 0 to numDevices do
11: Wait for thread to finish
12: end for
13: threadCount← 0
14: end if
15: end while
16:
17: for j = 0 to numDevices do
18: Wait for the last threads to finish
19: end for

The data that was used in this study was collected by a Ph.
D. student in the Computer Networking Lab at the Department
of Computer Science and Engineering at the University of
Nevada, Reno [12]. The data was collected using the PlanetLab
research platform [13] and the traceroute method described in
section III. The dataset consisted of 47,000 out of the 51,171
ASes available today [14] and the size of the subnetwork
ranged from 1,100 to 6.8 million routers with about two
times the number of edges. We choose to measure the BFS
performance of 230 ASes, this number was chosen based on
the uniqueness of the AS size and to provide a fair sampling of
the data range. The number of ingress nodes for each AS varies
from 1 to over 1,000. In order to be able to directly compare

the performance, the number of ingresses nodes had to be
normalized. The number of ingress nodes for the 230 ASes
was averaged and was found to be around 100 ingress nodes.
For all the performance measurements, we used 100 and 50
ingress nodes to compare the performance of the sequential,
single GPU, and multiple GPU algorithms. The 50 ingress
nodes were chosen to see how much of a part the number of
ingress nodes affect the performance of the three algorithms,
compared to the 100 ingress nodes. The number of blocks
used on the GPUs were calculated based on the size of the
graph. Each vertex in the graph was given a thread, and the
max number of thread per block was set to 512 threads. All of
the data was stored in global memory and the were organized
so the accesses are coalescing.

The execution times for the sequential algorithm is shown
in Figure 4, and the execution time for the single GPU and
multiple GPU algorithms are shown in Figure 5. Table I shows
more detail about the execution times and speed up results of
the three largest graphs. The measurements utilized all 8 of the
GPUs, but only the 1, 2, 4, 8 GPU results are shown for clarity.
As expected, the sequential time grew in a linear trend due to
the time complexity for the algorithm being O(|V|+|E|). The
single GPU algorithm was the second slowest and the eight
GPUs was the fastest out of all the algorithms for the both
the 50 and 100 ingress nodes. As more GPUs were added, the
performance significantly increases.

The 50 ingress node graphs took a little over half the time
to process all the nodes compared to the 100 ingress node
graphs. An interesting finding was that the points where the
sequential and GPU timings cross is similar for both ingress
node count. The single GPU crosses approximately around
the 3,500 node mark, and the multiple GPUs cross around the
4,000 node mark. These results are likely caused due to the
lower number of vertices and the low degree per vertex (about
2-4). The lower degree forces the GPU algorithms to process
the graph in a more sequential matter and therefore decreases
the performance. These two intersecting points represent the

TABLE II: Speed up increase by adding additional GPUs for the largest graph of 6.8 million nodes

Num Ingress Nodes 1 to 2 GPUs 2 to 3 GPUs 3 to 4 GPUs 4 to 5 GPUs 5 to 6 GPUs 6 to 7 GPUs 7 to 8 GPUs

50 1.491 1.168 1.069 1.086 1.029 0.836 1.072
100 1.659 1.130 1.252 1.057 1.084 1.032 1.025

TABLE III: Optimazation execution time and speed up results for the largest three graphs

Execution Time (sec)

Num Ingress Nodes Graph Size 1 GPU 2 GPUs 3 GPUs 4 GPUs 5 GPUs 6 GPUs 7 GPUs 8 GPUs

4.6 M 7.30 6.04 4.84 4.57 4.44 4.27 4.27 4.20
50 4.8 M 7.74 6.46 5.30 4.96 4.69 5.17 4.57 4.54

6.7 M 11.75 8.64 7.48 7.15 6.76 6.70 6.56 6.53

4.6 M 13.62 8.74 7.54 7.16 6.04 6.21 5.85 5.10
100 4.8 M 14.62 8.21 6.53 6.13 5.73 5.95 5.64 5.50

6.7 M 20.57 13.82 10.47 9.38 8.99 8.74 8.60 8.56

Speed Up

Num Ingress Nodes Graph Size 1 GPU 2 GPUs 3 GPUs 4 GPUs 5 GPUs 6 GPUs 7 GPUs 8 GPUs

4.6 M 43.82 52.95 66.07 69.90 72.03 74.87 74.86 76.19
50 4.8 M 50.43 60.36 73.55 78.69 83.17 75.50 85.37 86.01

6.7 M 48.64 66.16 76.43 80.01 84.63 85.27 87.19 87.50

4.6 M 51.25 79.85 92.50 97.43 115.59 112.37 119.37 136.90
100 4.8 M 53.08 94.49 118.91 126.72 135.43 130.54 137.65 141.18

6.7 M 55.25 82.21 108.57 121.14 126.41 130.05 132.06 132.69

TABLE IV: Speed up increased from optimizing how the ingress nodes are processed for the 6.8 million node graph

Num Ingress Nodes 1 GPU 2 GPUs 3 GPUs 4 GPUs 5 GPUs 6 GPUs 7 GPUs 8 GPUs

50 1.212 1.064 1.293 1.141 1.132 1.082 1.052 1.046
100 1.269 1.158 1.145 1.122 1.092 1.069 1.307 1.223

threshold on which the graph should be processed on the CPU
instead of the GPU. Overall, the performance showed that
the GPU implementations were significantly faster compared
to the sequential, and the 8 GPUs had the best performance
overall.

The speed up performance for single and multiple GPU
algorithm compared to the sequential algorithm is shown in
Figure 6. The single GPU for the 50 ingress nodes had a
maximum speed up of 38x and the 8 GPUs had the best
performance with a 71x speed up with a graph of 6.8 million
nodes. The single GPU for the 100 ingress nodes had a
maximum speed up of 47x and the 8 GPUs had a 124x speed
up for the same graph. The performance for both algorithms
have a minimal amount of intersects with each other, showing
that by adding additional GPUs, the performance significantly
increases. The ingress nodes are independent of each other and
do not have any data dependencies, therefore the graph can be
copied to each GPU, where each GPU can process a unique
ingress node. Overall, the 8 GPUs had the best performance,
and the results also showed that by adding additional GPUs
the performance increased significantly for graphs with over
100,000 nodes.

VI. DISCUSSIONS AND FUTURE WORK

The analysis of the topology graphs does not have data de-
pendencies and should continue to have better performance as

more GPUs are added. Table II shows how much performance
is gained by adding additional GPUs to the largest topology
graph. The performance difference between a single GPU to
two GPUs had the largest performance increase, where the 50
ingress nodes was 1.49x, and 1.66x for 100 ingress nodes.
The performance slowly decreases as more GPUs are added,
but still has some additional speed up. The ideal performance
for adding an additional GPU would be a 2x speed up, but
waiting for the different threads to finish adds some additional
overhead. As a results of this overhead, there should be a point
where adding additional GPUs no longer benefits. We would
like to find this threshold in future studies.

Although we achieved a significant performance increase by
using both the single and multiple GPU algorithms, it would
be of interest to see how well these algorithms scale on a
distributed system. Each machine in the distributed system
can contain between two to eight additional GPUs, providing
additional speed up. Each machine can process a set of ingress
nodes and could lead to better performance depending on how
the work load is balanced in the system. A message passing
interface would need to be utilized to distribute the graph data
to the different machines and collect the final results of the
shortest paths. We would like to implement and modify the
current algorithms to be able to run on a distributed system in
a future study.

The current algorithms can be optimized to obtain even bet-

ter performance. For the multiple GPU algorithm, the current
implementation is forced to wait for all of the GPUs to finish
processing their node before a new batch of nodes is given.
The structure of the graph can cause certain nodes to take
longer to process, therefore it can decrease the performance by
making the other GPUs wait. To resolve this issue, a striding
scheme can be used, where each GPU is given a set of nodes
ahead of time to process. Table III shows the execution time
and speed up results using the optimized method on the three
largest graphs. Table IV shows the performance change from
using the striding method compared to the original method for
the 6.8 million node graph. Overall, the optimization showed
better performance for all the GPUs with 50 and 100 ingress
nodes.

The parallel performance of BFS on large scale graphs is
dependent on the number of nodes and number of edges. If
the number of edges per vertex is small (two to three edges)
then the graph is more linear and BFS cannot take as much
of an advantage of the parallel performance on the GPU.
The Internet topology graphs in this study had a degree of
three to four edges per vertex, and significant speed up was
found. This vertex degree was chosen from observations when
the dataset was compiled together. It would be of interest to
determine how much more performance can be gained if the
vertex degree is increased to six to ten edges. The number
of vertices can also be increased to simulate larger topologies.
One challenge with the GPU is the limited amount of memory.
Adding more vertices and edges could cause the GPU to run
out of memory. The space complexity of the algorithm on one
GPU is O(|V|+|E|). By changing the number of vertices will
have the greatest impact on the memory, while changing the
number edges will have less of an impact on the entire space,
since only the edge array will be affected.

VII. CONCLUSION

The Internet is the largest growing man-made network and
billions of users are currently connected to it. As a result, it has
become a popular research area to study the structure and how
it has evolved over time. We have successfully implemented
single and multiple GPU BFS algorithms to perform analysis
on different topology graphs. The graphs were generated with
BRITE and use real AS data collected with traceroute. We
measured the algorithm performance with 50 and 100 ingress
nodes and had significant speed up overall. We were able
to achieve a maximum speed up of 47x and 124x for a 6.8
million node graph with 100 ingress nodes using up to 8 GPUs.
Overall, the multiple GPU algorithm with 8 GPUs performed
the best, and the performance could easily be increased with
additional GPUs.

ACKNOWLEDGMENT

We would like to thank Abdullah Canbaz for providing the
initial Internet topology analysis application and collecting all
of the data used in this study.

This material is based in part upon work supported by:
The National Science Foundation under grant number IIA-

1301726, and by Cubix Corporation through use of their PCIe
slot expansion hardware solutions and HostEngine. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation or Cubix
Corporation.

REFERENCES

[1] Internet Live Stats - Internet Users, International Telecommunication
Union (ITU), United Nations Population Division, Internet and Mobile
Association of India (IAMAI), July 2014.

[2] Cisco Visual Networking Index:Forecast and Methodology, 2013-2018,
Cisco, June 2014.

[3] P. Harish and P. Narayanan, “Accelerating large graph algorithms on the
gpu using cuda,” in High performance computing–HiPC 2007. Springer,
2007, pp. 197–208.

[4] L. Luo, M. Wong, and W.-m. Hwu, “An effective gpu implementation
of breadth-first search,” in Proceedings of the 47th Design Automation
Conference, ser. DAC ’10. New York, NY, USA: ACM, 2010, pp.
52–55.

[5] G. Singla, A. Tiwari, and D. P. Singh, “Article: New approach for
graph algorithms on gpu using cuda,” International Journal of Computer
Applications, vol. 72, no. 18, pp. 38–42, June 2013, full text available.

[6] D. Merrill, M. Garland, and A. Grimshaw, “Scalable gpu graph
traversal,” in Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP ’12.
New York, NY, USA: ACM, 2012, pp. 117–128. [Online]. Available:
http://doi.acm.org/10.1145/2145816.2145832

[7] Z. Fu, H. K. Dasari, B. Bebee, M. Berzins, and B. Thompson, “Parallel
breadth first search on gpu clusters,” in Big Data (Big Data), 2014 IEEE
International Conference on, Oct 2014, pp. 110–118.

[8] B. P. Swenson and G. F. Riley, “Simulating large topologies in ns-3
using brite and cuda driven global routing,” in Proceedings of the 6th
International ICST Conference on Simulation Tools and Techniques, ser.
SimuTools ’13. ICST, Brussels, Belgium, Belgium: ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2013, pp. 159–166.

[9] M. Z. Ahmad and R. Guha, “Analysis of large scale traceroute datasets
in internet routing overlays by parallel computation,” The Journal
of Supercomputing, vol. 62, no. 3, pp. 1425–1450, 2012. [Online].
Available: http://dx.doi.org/10.1007/s11227-012-0811-9

[10] H. Kardes, M. Gunes, and T. Oz, “Cheleby: A subnet-level internet
topology mapping system,” in COMSNETS, 2012, Jan 2012, pp. 1–10.

[11] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: An approach to
universal topology generation,” in MASCOTS. Washington, DC, USA:
IEEE Computer Society, 2001, pp. 346–.

[12] “Computer networking lab, computer science and engineering, university
of nevada, reno,” http://cnl.cse.unr.edu/.

[13] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman, “Planetlab: An overlay testbed for broad-coverage
services,” SIGCOMM Comput. Commun. Rev., vol. 33, no. 3, pp. 3–12,
Jul. 2003.

[14] “Caida - as rank: As ranking,” http://as-rank.caida.org/.

