
Highly Parallel Implementation of Forest Fire
Propagation Models on the GPU

Jessica Smith∗, Lee Barford∗†, Sergiu M. Dascalu∗ and Frederick C. Harris, Jr.∗
∗Department of Computer Science and Engineering, University of Nevada, Reno, USA

†Keysight Laboratories, Keysight Technologies, USA
jsmith@nevada.unr.edu, lee barford@ieee.org, dascalus@cse.unr.edu, Fred.Harris@cse.unr.edu

Abstract—Forest fire simulation is a challenging, complex
problem which requires large amounts of data to be processed for
an accurate simulation. This paper implements Rothermel’s fire
spread equations on three different spread methodologies. Both a
sequential implementation of each spread methodology along with
a parallel implementation are presented in this paper. The parallel
version is implemented on the Graphics Processing Unit (GPU)
using NVIDIA’s CUDA programming language. The parallel
spread methods achieved runtimes in those ranges realistic for
fighting a real-time forest fire. The GPU implementation achieved
faster running times in each of the spread methodologies, ranging
from 64x to 229x faster than the sequential implementation.

I. INTRODUCTION

Every year, fighting forest fires costs taxpayers in the
United States millions of dollars. From 2002 to 2012, the
average amount spent per year on forest fire suppression by the
federal government was $962 million, which only amounted
to 32% of the entire federal wildfire protection funds [1]. This
cost only covers the federal funds that are spent on fighting and
preventing forest fires. It does not include the individual and
environmental cost of loss of property and habitat. The highest
cost that occurs during the efforts to fight a forest fire is the
loss of life incurred by fire fighters. The ability to better predict
the behavior of a wildfire greatly increases the effectiveness
of firefighting efforts, thereby reducing all the costs incurred
during a forest fire. Another application domain for forest fires
is the training of fire fighters. A sample forest fire could be
provided in training scenarios which would allow fire fighters
to have as close to hands-on forest fire training before they are
exposed to real wildfires.

In order to simulate wildfires, scientists have developed
several methods for modeling the propagation of fire [2][3].
These fire models are based on the properties of the envi-
ronment in which the forest fire takes place. Such properties
include but are not limited to, fuel load, fuel type, wind, live
moisture, dead moisture, and crown height. Incorporating these
and other variables into spread models can allow for accurate
prediction of where a fire will spread and how quickly it will
arrive. Research into developing fuel and moisture models is
active to this day. These models provide the basis for the
properties on which forest fire simulation is based.

The ability to realistically simulate forest fires is desirable
because it allows fire experts to more accurately predict the
impact of their fire-fighting decisions. Possible manipulations
to the wildfire environment include adjusting moisture content

to simulate a water drop, adjusting fuel loads where a simu-
lated bulldozed treeline could exist, or reverse spread testing
in which a fire started by firefighters would burn the fuel away
from the advancing wildfire. Unfortunately, the amount of data
required for realistic fire simulations requires a large amount of
computation time to produce an accurate simulation. The more
accurate and fine-grained the simulation, the longer it takes to
process the data. A forest fire is a dynamic entity, therefore
the ability of a simulator to run in real time is necessary for
it to be an effective tool. The more complex and accurate a
simulator is, the more useful it is to fire scientists. There are
multiple different aspects to accurately modeling the spread of
a forest fire. The main four fire properties which influence the
spread of a fire are base fires, crown fires, fire acceleration,
and spotting [4]. Base fire spread is addressed in this paper,
and is the basis for all fire spread simulations along the floor
of a forest. Crown fires occur when the forest fire spreads into
the tops of the trees in a forest. A crown fire may be passive
or active. An active crown fire is one which contributes to the
overall spread of the fire. A passive crown fire will burn in
the tops of the trees but is not hot enough to contribute to the
overall spread of the fire. Fire acceleration is the phenomena
that accounts for the dynamic speed of a fire. A forest fire will
not automatically spread at the maximum rate for which it has
the potential. Spotting is the phenomena of fire embers being
blown forward ahead of the fire to ignite new fires in zones
isolated from the main body of the fire. The implementation of
these four main aspects to forest fires builds a state of the art
forest fire simulator. This paper only focuses on implementing
the base fire spread case, and porting it to the GPU.

Using the GPU as a general purpose computing device has
become popular in recent years, especially on problems which
require a large amount of data processing. The GPU is ideally
suited to high volume data processing applications because it
can processes millions of inputs simultaneously, while a CPU
may process only one or a few at a time [5]. This paper
implements three fire spread methods based on Rothermel’s
fire spread equations on both the CPU and GPU, and compares
the resulting run times, throughput, and accuracy.

The remainder of the paper is structured as follows. Section
II describes related work. Section III describes the fire prop-
agation models implemented in this paper. Section IV covers
the sequential algorithms used as a baseline for comparison
in the paper. Section V describes the parallel implementation
on the GPU of the fire spread algorithms. The experimental
results of this paper follow in Section VI.

II. RELATED WORK

In order to build a forest fire simulator, forest specific data
must be integrated. Rothermel developed the first eleven fuel
models that are still used to this day [2]. The method by
which these eleven fuel models were created is the basis for
the development of all modern fuel models. The fuel model
contains information on properties of the forest in a particular
region, and at a certain granularity. The forest is broken up
into cells, each cell having properties which are modeled in
the fuel model. For example, one fuel model might describe a
coniferous forest in regions of 30x30 meter cells. These cells
are what make up the basis for a fire simulation.

The majority of the existing forest fire simulators, including
this work, calculate wildfire spread based on the Rothermel’s
fire spread equations [2]. More detail on the simulators which
use this fire spread model will be covered later in the section.
Equation 1 shows his rate of spread equation, which is based
on several parameters.

R =
(Ip)o(1 + φw + φs)

ρbεQig
(1)

Where R is the rate of spread, (Ip)o is the no-wind
propagating flux, φw and φs are the additional propagating flux
introduced by wind and slope respectively. The product of ρb
and ε is referred to as the effective bulk density. The effective
bulk density models the amount of fuel per unit volume of the
fuel bed raised to ignition ahead of the advancing fire. Qig is
the heat of preignition (the heat required to bring a unit weight
of fuel to ignition). These values are derived or contained in the
fuel model that describes the cell for which the computations
are being done.

The desired output from a forest fire simulator is a time of
arrival map. Each cell in this time of arrival map represents a
cell in the simulation forest, and the value it contains is the
time at which the cell ignited and started propagating the fire.
Once a cell is lit, it begins contributing to the spread of the fire
to the surrounding cells and continues burning until the fuel
in that cell is entirely used. The method of propagation may
vary between simulators, but the basic spread rate is usually
based on Rothermel’s equations. This paper addresses three
such spread methods.

Since Rothermel’s paper was published in 1972, several fire
spread simulators have been developed. Every major forest fire
simulator has used his spread equations as the basis for their
simulation. While there have been new models developed for
the spread of fire [4][6], the existing forest fire simulators use
Rothermel’s because it is an approximation of the spread of
fire accurate and simple enough to be computable in the time
allowed for simulations. The first major fire spread simulator
was developed in 1986 called BEHAVE[3]. BEHAVE had two
main functions to the application. The first function allowed
users to load in fuel models from Rothermel’s paper, but also
to develop and save new fuel models. The simulator then had
the ability to integrate the newly developed fuel models in its
simulations. The second function of the application would run
a simulation and burn prediction on the desired fuel model. The
output of this simulator appeared in a table which represented
the times of arrival for each cell in the simulation. There

was no visualization method available for this simulator. The
simulation was meant to be used as a training tool rather than
a real-time tool to be used to fight wildfires.

A decade later in 1996, BEHAVE was the basis for a new
forest fire library that was developed using C called fireLib
[7]. The code was based entirely on BEHAVE’s simulator, but
brought up to a then-modern platform. FireLib can run much
faster than BEHAVE, and the output is given in time of arrival
arrays rather than a table. Each (x,y) in the array corresponds
to a cell in the fire simulation, and the time of arrival is the
time at which the cell ignites, and can then begin to propagate
the fire. The fire library is more flexible than BEHAVE and
allows a user to design their own methods for propagating the
fire. There are a few different methods which may be used, and
will be addressed later in the paper. However, where BEHAVE
was an entire application which had an interface component,
fireLib is simply an open source forest fire library and both
the visualization and interface development are left up to the
user.

In 2004, FARSITE was developed, which works as a
full-scale forest fire simulator [8]. It has been continuously
developed since 2004 and is currently still operational. It in-
corporates more features than simple fire spread, such as crown
fires, surface fires, fire acceleration, and spotting. While it is
one of the most advanced and accurate forest fire simulators,
it is not very fast. It is one of the most widely used forest fire
simulators in existence today.

This paper used much of the fire spread implemenation
from a forest fire simulator called vFire [9]. vFire was based
on hFire, and are both cellular based spread models. They
run faster than FARSITE, but do not have the same level of
precision [10]. vFire uses a technique that has dynamic time
stepping to burn distances between cells to determine an accu-
rate time of arrival for the fire spread. The important feature
that vFire accomplished was porting the computation of the
fire spread to the GPU using OpenGL shaders [11]. Because
the computation was ported to the GPU, it accomplished a
very high speedup over its sequential implementation. vFire
provided the outline for the data processing portion of this
work as the code was available to this project.

Sousa, dos Reis, and Pereira also used the GPU to improve
their running times and ported fireLib to the GPU [12], but
were the first to use the parallel programming language CUDA
[13]. They implemented three kernels in which they explored
three different propagation types. This paper based two of the
spread methods (Minimal Time and Iterative Minimal Time)
on the work done by Sousa, dos Reis, and Pereira. Their work
will be covered in more detail further in the Fire Propagation
Models section of the paper. The third propagation method
implemented in this paper was based on work found in vFire
[9].

Investigations into using GPU computation for optimizing
fire simulation have been explored, including a paper by Arcaa,
Ghisub, and Trunfioc [14]. Their implementation used GPU
computation to optimize fuel treatments across a landscape.
Their focus was not on using the GPU to calculate base
propagation, rather the influence of fire breaks. The work by
Baranovskiy explores the usage of GPU computing to enhance
the performance of theoretical-based propagation models [15].

While the work is useful for exploring the usage of theoretical
models, this work implements a semi-empirical approach, and
therefore the direct results are not comparable.

III. FIRE PROPAGATION MODELS

There are several potential approaches to calculating the
propagation of fire in a wildfire environment. This paper im-
plemented three methods for iterating through a simulation to
calculate the time of arrival map for a simple one-source forest
fire under constant terrain and wind conditions. The first two
spread methods (Minimal Time and Iterative Minimal Time)
are based on stepping through time independent of specific
fuel conditions and are based on the paper by Sousa, dos
Reis, and Pereira [12]. The third spread method implemented
in this paper (Burn Distances) was based on code and methods
found in vFire [9]. vFire implemented an accurate spread rate
calculator based on Rothermel’s fire spread equations and the
fire spread and fuel model data to propagate based upon the
physical burning of fuel.

The model for propagation rate used in this paper was the
same for all three spread methods. The model is based on
Rothermel’s fire spread equations, and is found in Equation 2.
This equation was derived by the creators of vFire [9], and the
data processing done in the preprocessing phase of this project
was based on their work. The preprocessing step translates the
equation from Rothermel’s work seen in Equation 1 to what
is seen in the following Equation 2. The preprocessing data is
out of the scope of this paper and is not covered in detail.

r(Θ) = Rmax
1.0− ε

1.0− εcos(φ−Θ)
(2)

Rmax is the maximum rate at which a fire can spread. ε is
the eccentricity of the fire, which is based on wind and slope
data. φ is the orientation. Θ is the direction in which the fire
is spreading. Rmax, ε, and φ are all computed based on the
terrain data before the propagation simulation takes place. This
is done in the preprocessing stage because the rates at each cell
do not change until the forest model changes. An interactive
simulator could potentially allow for these variables to change
(i.e. modeling a water dump from a helicopter or a bulldozer
tearing down a line of trees) but that is outside the scope of this
research paper. To implement these features, changes would be
made to the fuel and moisture models used to determine the
possible rate of change in a cell. The direction Θ is computed
based on which neighbor is being examined at the time.

During the preprocessing phase, there are several data files
which need to be processed and interpolated to be of the same
size. The fuel data and slope data are stored in files containing
interpolation data such as size of cell, width, and height of the
data grid. The Geospatial Data Abstraction Library (GDAL)
was used to interpolate the data from the terrain and fuel
files into the desired size of simulation [16]. Wind data is
incorporated into the spread rate calculations as a 2D vector
for each cell in the grid. The wind data contains a direction and
magnitude. The fuel models provide the detailed parameters by
which the rate of spread is calculated. There are potential areas
in this processing phase (such as calculating the Rothermel
spread properties) that could be parallelized to improve overall
running times of this simulator. However, the focus of this

Fig. 1. Neighbor access methodology for each of the propagation methods.
From left to right: Minimal Time, Iterative Minimal Time, Burn Distances

paper was to explore the potential for calculating fire spread
on the GPU, so these possibilities were not addressed and are
left for future work.

IV. SEQUENTIAL IMPLEMENTATION

In order to accurately compare the performance of the GPU
implementation of the fire spread simulations, a sequential
version was implemented. The sequential implementation in
this paper did not use the multi-threading capabilities of
the CPU, and ran it in a purely sequential manner. The
preprocessing steps are exactly the same for the sequential and
parallel implementations, and are therefore not included in the
timing and throughput comparisons. For this paper, the terrain
was flat and the wind was set to zero to produce a general
simulation of how basic fire would spread. The preprocessing
calculations took less than 10% of the run time of the entire
algorithm in small cases, and less than 2% in the large cases.
The simulation stepping was the largest computationally and
run time expensive portion of the simulator, and is the focus
of this paper.

Once the preprocessing is complete, one of three simulation
methods was applied: Minimal Time, Iterative Minimal Time
or Burn Distances. The pseudo code for each kernel is found
in Section IV-A through Section IV-C. The results for the
sequential timings may be found in Figure 5(a). The worst
of the timings was found to be in the Iterative Minimal Time
method, taking nearly half an hour to run the large 2048x2048
simulation. Nearly all the sequential timings take an extensive
amount of time. Since the goal of a forest fire simulator is to
operate in real-time, it is unrealistic to expect to wait that long
to receive the simulation data. After thirty minutes, the fire
will have changed enough for the simulation’s predictions to
be irrelevant. Sequential running times for all algorithms may
be seen in Figure 5(a). The following algorithm outlines the
simulation steps from start to finish:

Algorithm 1 Simulation Progression
InitializeTerrainData();
CalculateSpreadRates();
RunPropagationSimulation();
GenerateOutputFile();

The InitializeTerrainData() and CalculateSpreadRates()
functions in Algorithm 1 are part of the preprocessing in this
project. These are not addressed in detail in this paper due to
space constraints. The RunPropagationSimulation() portion is
the focus of this paper and will be outlined in more detail in
the following sections.

A. Minimal Time

The Minimal Time (MT) propagation method uses a dy-
namic time stepping method to step through the simulation. At
each time step, a cell is examined to see if it is on fire. If the
cell is burning, then the neighbors of the cell are examined
as seen in Figure 1. If the neighbor is already on fire, it is
ignored. A neighbor cell which has been lit during the current
timestep, it is still examined for the event of a sooner time
of arrival. If the neighbor is unlit, then the time of arrival for
that cell is computed using the propagation equation found in
Equation 2. In the Minimal Time method, time is incremented
dynamically. Each time a new ignition happens, the ignition
time is compared to the current ’timeNext’ variable. If the
new ignition time is smaller (the fire arrives sooner) than the
current timeNext, then it replaces the timeNext value. This
methodology means that time is incremented based on which
cell will ignite the earliest. The pseudocode for the Minimal
Time propagation method may be derived from Algorithm 2.

Algorithm 2 Minimal Time Algorithm
for cell = 0 to numCells do

if timeNext > ignT ime[cell] AND
ignT ime[cell] > timeNow then
timeNext = ignT ime[cell]

else if ignT ime[cell] == timeNow then
// Propagate Fire
for n = 0 to 15 do
//If neighbor is unburned
if ignT ime[neighborCell] > timeNow then
ROS = Compute ROS according to Equation 2
ignT imeNew = timeNow + Ln/ROS
if ignT imeNew < ignT ime[neighborCell]
then
igntime[neighborCell] = ignT imeNew

end if
if ignT imeNew < timeNext then
timeNext = ignT imeNew

end if
end if

end for
end if

end for

B. Iterative Minimal Time

The Iterative Minimal Time (IMT) method is designed to
avoid data dependencies. Each cell operates independent of its
neighbors, calculating the ignition time based on the spread
rates, and only finishing when the values between step k and
k+1 converge. Each cell looks at the minimal time for each of
its neighboring cells to burn towards it as shown in Figure 1.
The value is known to converge after the difference between
two time steps is less than some small threshold. The most
appropriate value for this threshold can be determined through
experimentation. The pseudocode for the IMT spread method
may be derived from Algorithm 3.

Algorithm 3 Iterative Minimal Time Algorithm
for cell = 0 to numCells do
// Check for simulation completion:
if |ignT ime[cell]−ignT imeNext[cell]| < thresh then
//Mark as converged

end if
if ignT ime[cell] > 0 then
ignT imeMin = INF
//Propagate Fire
for n = 0 to 15 do
ROS = Compute ROS according to Equation 2
ignT imeNew = timeNow + Ln/ROS
ignT imeMin = MIN(ignT imeNew, ignT imeMin)

end for
end if

end for

C. Burn Distances

The Burn Distances (BD) method is based on the idea that
it takes a certain amount of time for fire to burn the distance
between two cells. This distance is set as equivalent between
all cells and these properties are computed and loaded in the
preprocessing stage of the program. Since they are handled in
preprocessing, they are based on the properties of the forest
model which is based on the size of the forest cell. The
simulation iterates at a constant time step, and the amount the
distance has burned is tracked throughout all the time steps.

An issue with this method arose from the static time step
and needed to be addressed. Figure 2 shows the problem that
can arise from the fixed time step. Figure 2 (a) shows the initial
propagation. In this scenario, imagine that the propagation rate
for b is much higher than a, but because the time step is large
enough, they both propagate approximately one cell per time
step. Figure 2 shows the second propagation step in time.
In this example, a’ propagates to a”. Because of the faster
propagation rate of b, b’ should propagate to b” and b” to b”’
before a’ propagates to a”. In the case where the time step is
too large, the time of arrival would show an erroneous value
for the cell holding a”. To fix this issue, the time step in the
simulation must be set to a small enough value to avoid this
error. The time step should be set to the smallest possible time
it takes fire to propagate from one cell to another.

A cell ignites when the distance from an ignited neighbor
has been completely burned. The simulation checks a cells
neighbors for ignition, and then uses their properties to burn
the amount of distance in that time step towards the current cell
as seen in Figure 1. The cell ignites when one of its neighbors
burns the distance completely. The equation to determine how
much distance is burned can be found in Equation 3.

d = d− r∆t (3)

Where d is the distance that needs to be consumed. It is
slowly decremented over time by the rate of spread (r) times
the time step size (∆ t). In order to account for the fact that an
’overburn’ could occur with fixed time steps. The exact time
of arrival that is calculated is dependent on the exact time of
arrival that the fire would have arrived at the cell. The equation
used to find the exact time of arrival is found in Equation 4.

Fig. 2. The possible error for a fixed time-step propagation method. (a) shows the initial step with two lit cells a and b propagating to cells a’ and b’. (b)
shows a’ propagating to a” in the next time step. (c) is the situation where b” would have propagated faster to the slot occupied in the previous step by a”, but
because of the fixed time step, it would not propagate to an already lit cell.

TOA = tnow +
dover
r

(4)

Where TOA is the time of arrival that is written out to
the time of arrival map, tnow is the time in the simulation
during which the propagation is occurring, dover is the distance
the fire burnt past the desired difference, and r is again the
rate of spread. The pseudocode for the algorithm for the BD
propagation method is found in Algorithm 4.

Algorithm 4 Burn Distances Algorithm
for cell = 0 to numCells do
// Check to see not on fire
if ignT ime[cell] == INF then
Skip

end if
// Check Neighbors for fire propagation
for n = 0 to 7 do

if ignT ime[neighborCell] < INF then
Skip

end if
ROS = Compute ROS according to Equation 2
burnDistance(totDist[neighborCell], ROS, timeStep)
if distance is burnt then
ignT ime[neighborCell] = timeNow

end if
end for

end for

V. PARALLEL IMPLEMENTATION

As with the sequential implementation, the parallel imple-
mentation used the preprocessed terrain data to feed into the
simulator. The kernels are written using the GPU program-
ming language CUDA [13]. CUDA is a parallel computing
programming language designed to run on NVIDIA produced
GPUs. CUDA allows GPUs to be used for general-purpose
computing, and is therefore the ideal language with which to
program a highly parallelized version of the fire propagation
model. Three kernels were implemented for this paper, based
on the three propagation methods presented in Section IV.
Each kernel was implemented to directly reflect the exact
results of its sequential counterpart, meaning the two time of
arrival maps matched exactly between sequential and parallel

implementations. An overall algorithm for the kernel calls is
outlined in Algorithm 5. The details on implementation of the
kernels are found in the subsequent subsections.

Algorithm 5 Simulation Composition
while Simulation !Complete do

computeKernel<<< Blocks, Threads >>>(inputs)
terminateKernel<<< Blocks, Threads >>>(inputs)

end while

The blocks and threads referenced in Algorithm 5 are
referencing the blocks and threads that are allocated by the
GPU upon initiation of the kernel. Each GPU has a specific
number of blocks that it can allocate, and each block has a
number of threads it can allocate. The threads process the
kernel code independently of each other. Two kernels are
necessary in this work because there is no way to force block-
wise synchronization without a kernel finishing its work. The
CPU calls the two kernels in a loop in this manner to ensure
that one time step’s propagation is calculated before the next
can begin.

A. Minimal Time

The parallel implementation of the MT kernel is very
similar to the sequential version, so due to this fact and
space constraints, the pseudocode is not included in this
paper. However, there are a few challenges which present
themselves when implementing the algorithm. The first is data

Fig. 3. This is an example of the problem syncing thread read access and
write access. There is no way to stop one thread writing to another cell before
the value is read by another cell.

synchronization. Each cell in the fire is processed by one
thread at a time, but every thread need access to the time
of arrival map for both reading and writing. A problem arises
when one thread writes to a cell before another has the chance
to read from it, which causes race conditions and simulation
artifacts. In order to minimize these race conditions, atomic
operations were used to ensure that data integrity is maintained.
CUDA’s AtomicMin() operation was used to ensure that a
cell that was writing to a data location was not overwriting a
smaller time of arrival, which is the correct value that needed
to be stored [13]. Atomic operations in CUDA are designed
to lock resources when a single thread is accessing them.
The AtomicMin() operation ensures that the minimum of two
integers is the one which is stored at the memory location [5].
This solves the problem of one thread reading a value for its
comparison then another writing a value to that same location,
which would mean the value against which the calculations are
compared would be inaccurate. A visual example of this read-
write problem can be seen in Figure 3. A secondary kernel was
introduced to manage the time update between time steps in
the simulation. In Algorithm 5, this secondary kernel accounts
for the termination kernel. The secondary kernel was found
to be the most efficient solution to this problem. CUDA does
not allocate threads in any specific order, which means thread
1 could be the last to finish calculations while thread 1,000
could be the first [5]. In order to step through time in the
MT propagation method, the timeNext variable needs to be
set after all calculations finish. Since there is no way to ensure
which thread would be the last to finish operating on the data,
another method for iterating the variable was needed after all
threads had finished their computation. The secondary kernel is
called after the first terminates, which ensures that all threads
have finished their computation before the timeNext variable
is updated. Copying the two-element time vector back to the
host device and managing the update there was also tested, but
it was found to be faster to write a new kernel to update the
data without copying anything back to the host device.

B. Iterative Minimal Time

The parallel implementation of the IMT kernel is also very
similar to the sequential implementation, and for the same
reasons as the MT kernel pseudocode is not included, neither
is IMT’s. The same data synchronization issues are also found
in this kernel, where reading from and writing to the same
cells would cause race conditions. A simple example of this
problem may be seen in Figure 3. There is no way to stop a
thread from writing to an output position before another thread
reads in the data it needs to do its own spread calculations.
Figure 3 (a) shows the writing of the value from a to a’. The
value that existed before a’ was the appropriate value for c
to read in to do its calculations. Instead as seen in Figure
3 (b), it is the result value from a that it reads into do its
calculations. This error causes race conditions to occur and
artifacts to appear in the simulation. Instead of using atomic
operations to solve this problem, two time of arrival vectors
are passed to the kernel at startup. The two kernels act as an
input and output kernel, reading from the former and writing
to the latter. This introduces a new problem with maintaining
accurate spread data across the input and output vectors. The
secondary kernel in the IMT method is both used to copy data
from the output back into the input as well as checking for the

Fig. 4. The ignition maps produced by each propagation method. (From left
to right: Minimal Time, Iterative Minimal Time, Burn Distances)

terminating condition for the simulation.

C. Burn Distances

The parallel implementation of the BD kernel is also not
included for the same reasons as MT and IMT’s are not. The
burn distances kernel faced the same data synchronization issue
as IMT, and it is solved in the same manner with an input and
output vector. The terminating kernel is also a copy kernel to
eliminate the chance for read/write errors to and from the time
of arrival map.

D. Properties of the Parallel Implementation

CUDA allows programmers to call kernels with a specific
number of blocks and threads. The number of blocks and
threads allocated will partially determine the running time of
the program. For this project, the optimal number of blocks and
threads were determined experimentally. For the MT method,
it was found that a maximum block size of 1024 blocks was
optimal, unless the input width was less than 1024, in which
case a block size equal to the width of the simulation was
optimal. In the MT implementation, 128 threads performed
consistently better than any other configuration. For the IMT
kernel, the optimal block size followed the same pattern as the
MT method, but the optimal thread number was 256 instead.
It was discovered that the optimal number of blocks for the
BD method was the same as the width of the simulation, while
the optimal thread number was 256. In all cases, the number
of threads was set to the simulation width once it became
smaller than the optimal thread amount. Until the size of inputs
exceeds the maximum block and thread count, each cell in the
simulation is processed by one and only one thread. In the
case where one thread has to process multiple inputs, striding
is used to accomplish the simulation.

VI. RESULTS

The results were determined by running the sequential
and parallel versions of the code on the same machine. The
result timings involved do not include the preprocessing times
for the data, because those times are consistent across all
implementations and do not significantly impact the total run
time. The resulting time of arrival maps produced by the
largest test input size (2048x2048) may be seen in Figure 4.
The figure shows the different outputs received by the same
preprocessed data for each of the propagation methods. Recall
that the terrain is level and there are no winds impacting these
simulations. Because the results in this paper were timed on
different data and terrain values, with newer GPU iterations,

(a) Timings in seconds and log2 scale for all the implementations. (b) Speedup graph found by dividing GPU/CPU running times.

(c) Log2 based graph of the speedup. (d) The throughput found in GB/Seconds for the GPU kernels.

Fig. 5. All the result graphs for the MT, IMT, and BD kernels.

the results presented in Sousa, dos Reis, and Pereira’s work are
not comparible to these results directly [12]. Their code was
not available to the public, and could not be tested under the
same environmental constraints as this work and so their results
are not compared. This section presents results comparing the
sequential and parallel implementations accomplished by this
work.

A. Hardware

Both the sequential and parallel implementations of this
paper were run on a CUBIX box [17]. The sequential results
were timed using an Intel(R) Xeon(R) CPU @ 2.00GHz, which
has 6 cores and a cache size of 15MB. The parallel results were
timed using a single NVIDIA GeForce GTX 780, which has
2304 cores and 3072 MB DDR3/GDDR5 of standard memory.
Each of the tests were run five times, and the median value of
the set is graphed.

B. Timings

In order to test the implementations of this project, several
simulations were run. The simulations were sized from 64x64
cells to 2048x2048 in increasing powers of two. Figure 5(a)
shows the sequential and GPU timings in a log2 scale over
all input sizes. A table of all running times may be found in
Table I. Every kernel ran the largest simulation size in under 8
seconds, the BD performing the fastest at just over 1 second.

TABLE I. EXECUTION TIMES ON ALL RUNS

Sequential (seconds) Parallel (seconds)

Cells MT IMT BD MT IMT BD

64 0.010 0.053 0.004 0.210 0.187 0.189
128 0.085 0.409 0.032 0.259 0.193 0.193
256 0.701 3.226 0.245 0.368 0.215 0.204
512 5.669 25.604 1.912 0.660 0.349 0.231
1024 45.559 204.471 15.029 1.658 1.153 0.370
2048 368.105 1633.320 120.484 5.749 7.118 1.102

These running times approach what may be realistically ex-
pected from a real-time simulator. The sequential timings take
significantly longer on the large scale simulations. Comparison
between sequential and GPU timings may be better seen in the
speedup graphs. The GPU timings include memory transfer
from host memory to device memory as it is an important
component in the running time of the parallel implementation.

Figure 5(b) shows the speedup achieved by the GPU
implementation in a regular scale, to provide perspective on
the vast differences in the method types. Since the finer details
are difficult to view, Figure 5(c) shows the speedup in a log2
scale in order to better see comparisons between the speedup
achieved in each method. Each of the GPU implementations
in this paper ran faster than the CPU implementation on sizes
larger than 128x128, with the IMT kernel running faster on all
sizes greater than 64x64. Each kernel had the highest speedup
value at the 2048x2048 cell size simulation. Unfortunately, due

to running time constraints on the sequential implementation
larger scale comparisons would be challenging to provide.
The highest speedup achieved was using the Iterative Minimal
Time kernel at 229x faster than the CPU implementation. The
IMT sequential algorithm is less efficient sequentially than
the Minimal Time Algorithm, which explains the disparity
in speedup times. The MT kernel had a maximum speedup
of 64x, and was the lowest speedup achieved. The atomic
operations are the bottleneck in the MT kernel, and further
investigation into removing them could improve this kernel.
The Burn Distances kernel was significantly faster, 109x, than
its sequential counterpart. Overall the results of these tests
imply that a GPU-based fire simulator could improve run
times significantly and make great strides towards a real-time
simulator.

C. Throughput

The graph for throughput may be found in Figure 5(d).
The BD kernel performed the best in throughput, showing a
steady increase with the increase in input size. The MT kernel
performed the worst again, until it passed the performance of
the IMT kernel in the 2048x2048 runs. All the kernels dipped
in throughput from the 64x64 to the 128x128 tests. Table I
shows that the median running times between the two sizes are
not vastly different, but the increase in input size decreased the
throughput for this size. The dip in performance shows that for
these first few kernel runs, the memory transfer to and from
the GPU takes most of the processing time.

VII. CONCLUSION AND FUTURE WORK

This paper describes the implementation of three fire spread
methods which may be used in forest fire simulation. The
parallel implementations of the sequential algorithms produced
significant speedups in every spread method, ranging from 64x
to 229x speedup on the large-scale simulation grid. The results
in this paper show the potential for a forest fire simulator to
be implemented using the GPU as the processing workhorse.
Using the GPU, a real-time simulator can become possible,
which would be a vast improvement on the current state-
of-the-art. The work presented in this paper is a first step
towards a comprehensive forest fire library which could be
used to create custom forest fire simulations. A future version
for this project incorporates fire acceleration, crowning, and a
prototype of spotting were all implemented. This work builds
the foundation on which a new simulator may be built. While
this work was a prototype system that proved GPU computing
was not only possible, but successful at improving runtimes
of the fire simulation as compared to a sequential counterpart,
the code for this iteration is not available. However, the library
code for the future iterations of this project is available through
an open-source library [18]. One of the strengths of GPU
computing is the ability to have asynchronous data transfer.
The ability to transfer partially complete data back to a visu-
alization system would increase the usefulness of a simulator,
processing computation while portions of the simulation is
being viewed. The kernels will need to be adjusted to account
for the asynchronous data transfer.

ACKNOWLEDGMENT

This material is based in part upon work supported by:
The National Science Foundation under grant number(s) IIA-

1329469, IIA-1301726, and by Cubix Corporation through
use of their PCIe slot expansion hardware solutions and
HostEngine. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science
Foundation or Cubix Corporation.

REFERENCES

[1] R. W. Gorte and K. Bracmort, “Forest fire/wildfire protection.” Con-
gressional Research Service, Library of Congress, 2006.

[2] R. C. Rothermel and I. Forest, “A mathematical model for predicting
fire spread in wildland fuels,” AUSFS, 1972.

[3] P. L. Andrews, “Behave: fire behavior prediction and fuel modeling
system-burn subsystem, part 1,” 1986.

[4] E. Pastor, L. Zarate, E. Planas, and J. Arnaldos, “Mathematical models
and calculation systems for the study of wildland fire behaviour,”
Progress in Energy and Combustion Science, vol. 29, no. 2, pp. 139–
153, 2003.

[5] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to
General-Purpose GPU Programming, Portable Documents. Addison-
Wesley Professional, 2010.

[6] O. Séro-Guillaume, S. Ramezani, J. Margerit, and D. Calogine, “On
large scale forest fires propagation models,” International Journal of
Thermal Sciences, vol. 47, no. 6, pp. 680–694, 2008.

[7] C. D. Bevins, “Firelib user manual and technical reference,” Systems
for Environmental Management, 1996.

[8] M. A. Finney, “Farsite: Fire area simulator: model development and
evaluation,” Intermountain Forest and Range Experiment Station, Gen-
eral Technical Report, 2004.

[9] R. V. Hoang, M. R. Sgambati, T. J. Brown, D. S. Coming, and F. C. H.
Jr., “Vfire: Immersive wildfire simulation and visualization,” Computers
& Graphics, vol. 34, no. 6, pp. 655 – 664, 2010.

[10] S. H. Peterson, M. E. Morais, J. M. Carlson, P. E. Dennison, D. A.
Roberts, M. A. Moritz, D. R. Weise et al., “Using hfire for spatial
modeling of fire in shrublands,” 2009.

[11] D. Shreiner, OpenGL Reference Manual: The Official Reference Docu-
ment to OpenGL, Version 1.2, 3rd ed. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1999.

[12] F. Sousa, R. dos Reis, and J. Pereira, “Simulation of surface
fire fronts using firelib and {GPUs},” Environmental Modelling &
Software, vol. 38, no. 0, pp. 167 – 177, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1364815212001867

[13] C. Nvidia, “Programming guide,” 2008.
[14] B. Arca, T. Ghisu, and G. A. Trunfio, “Gpu-accelerated multi-objective

optimization of fuel treatments for mitigating wildfire hazard,” Journal
of Computational Science, vol. 11, pp. 258–268, 2015.

[15] N. Baranovskiy, “Algorithms for parallelizing a mathematical model
of forest fires on supercomputers and theoretical estimates for the
efficiency of parallel programs,” Cybernetics and Systems Analysis,
vol. 51, no. 3, pp. 471–480, 2015.

[16] GDAL Development Team, GDAL - Geospatial Data Abstraction
Library, Version x.x.x, Open Source Geospatial Foundation, 201x.
[Online]. Available: http://www.gdal.org

[17] “Cubix corporation, xpander rackmount 8 gen3 16-channel (128gbps)
pcie slot expansion system and hostengine.” [Online]. Available:
http://www.cubix.com/

[18] J. Smith, “vfirelib: A forest fire simulation library implemented on the
gpu,” Master’s thesis, University of Nevada, Reno, 2016.

