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Abstract

Compression is widely used in both scientific research and 

industry. The most common use is that people compress the backup 

data and infrequently used data to save spaces. Compression is 

significantly meaningful for big data because it will save a lot of 

resources with the help of a good compression algorithm. There are 

two criteria for a good compression algorithm—compression ratio 

and time consumption. GFC is one of the fastest compression 

algorithms with a mediocre compression ratio, which is designed for 

real-time compression with the help of Graphics Processing Units

(GPU). This paper introduces three methods to increase the speed of 

GFC algorithm by using the clzll function, removing if-else 

statements, and using multi-GPUs. The first and third methods 

improve the original algorithm performance. However, the if-else-

removal method cannot always guarantee better results. The final 

compression speed is more than 1,000 gigabits/s, which is much 

faster than 75 gigabits/s—the original GFC algorithm speed.

Keywords: GFC; Lossless Compression; High-speed; Floating-Point 

Data

1 Introduction

Big data and its management is a hot topic for both 
businessmen and scientists. The digital era brings us many 
opportunities and also tons of problems. Almost every device 
keeps generating data all the time. For example, the Large 
Synoptic Survey Telescope (LSST) needs to manage over 100 
PB of data [1]. The Facebook warehouse stores upwards of 300 
PB with a daily incoming rate around 600 TB [2]. There are 
300 hours of video material uploaded to YouTube every 
minute [3]. However, it is hard to manage and analyze big data. 
To uncover the “gold mines” buried in these datasets, 
researchers hold many conferences to resolve these hard big 
data problems, such as XLDB [4].

Compression is one of the keys to manage big data and it 
helps businessmen and scientists save resources. One of the 
most common rules is that the data management system will
compress data if the data is not frequently used. If a 
compression algorithm compresses original data 20% smaller 
than before, it means people can save 20% spaces, which 
means a lot for petabyte-scale datasets. Therefore, a good 
compression algorithm is significant to a big data project. Also, 
compression is very significant for some big data web-based 
application. Dr. Holub and his colleagues introduced a method 
about how to transmit HD, 2K, and 4K videos with the low-
latency network in their paper [5]. The core idea of this project 
is to compress and decompress JPEG efficiently with the help 

of GPUs. Figure 1 displays a simplified network diagram of the 
pilot deployment of their project [5].

Figure 1. How to Transmit HD Videos with Low-latency 

Network

There are many mature and good CPU compression 
algorithms. Some of them are designed for image 
compressions, such as JPEG [6], some of them are designed for 
audio and video compression, such as MPEG [7], and some of 
them are for general use, such as LZ4 [8]. Also, some scientists 
tried to take advantage of GPU to increase the speed of CPU 
compression algorithms. For example, [9] tried to improve the
Huffman compression algorithm using GPU.

GPU is short for Graphics Processing Unit. It is originally 
designed for computer graphics and image processing, and it is 
very popular in high-performance computing today. Also, there 
is a trend that scientists use multi-GPUs, instead of a single 
GPU to improve performances of different algorithms. 
However, GPU is not suitable for all kinds of the algorithm. If 
an algorithm is not parallelizable or highly divergent, it is 
better not to use GPU.

Here are some reasons that we chose GFC instead of other 
algorithms. First, GFC is one of the fastest existing lossless 
compression algorithms. The original algorithm is 75 gigabits/s 
[10]. It is gigabit, instead of “gigabyte”, because the core ideas 
of GFC algorithm are based on bitwise operations. The speed is 
much faster than most other compression algorithms. For 
example, LZ4 is around 14.56 gigabits/s [8], which is much 
slower than wide-band network speed. If we do not choose a 
fast algorithm for high-speed web-based applications, the 
algorithm will slow down the throughput of these applications. 
Second, GFC is designed for GPU directly. In contrast to GFC, 
most of the GPU algorithms are converted from CPU 
algorithms, which means some compromises have to be made 
and it will have a negative impact on the algorithm 
performance most of the time. Third, GFC aims to compress 
large datasets, which is critical for both business and scientific 
uses.
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Some basic concepts about GPU, such as grid, block, warp, 
and thread can be found in the paper [11] and Figure 2 displays 
a common GPU structure, which presents the relations between 
threads, blocks, and grids. Different GPU video card structures 
may be different from each other, but they all share some 
common features: if users want their GPU algorithms to 
perform best, they have to use all the threads in a warp; if 
different threads, in the same block, need to communicate with 
each other, programmers can use shared memory; if different 
threads, in different blocks, need to communicate with each 
other, programmers can use global memory. 

 
 

Figure 2. GPU Structure 

 
The rest of this paper is organized as follows in the 

remaining part: Section II introduces the original GFC 
algorithm; Section III introduces our three methods to improve 
GFC algorithm; Section IV introduces the results and our 
opinions about these results; Section V concludes the main 
ideas of this paper. 

 

2 Original GFC Algorithm 

GFC is a lossless double-precision floating-point data 
compression algorithm. It is designed for GPU specifically. By 
using [12], GFC algorithm replaces 64-bit floating-point values 
with 64-bit integers. Therefore, GFC needs only integer 
operations, although it compresses floating-point datasets. 

Overview of warp, block and chunk assignment of GFC is 
displayed in Figure 3. The uncompressed data is separated into 
r chunks and each chunk contains 32 doubles. Each chunk is 
processed by one warp in the GPU. After all warps finish 
compressing the assigned chunk, GFC combines all the results 
together, which is compressed data. The reason that each chunk 
contains 32 doubles is that there are 32 threads in each warp 
for most of GPU video cards and it is most effective when a 
program uses all the threads in a warp. 

 

Figure 3. Overview of Warp, Block, and Chunk Assignment 

 
Figure 4 presents the details about GFC compression 

algorithm. According to GFC, we need to subtract p, which is 
in the previous chunk, from i, which is in current chunk, and 

 [10]. Dim means “dimension” in 
this equation. If the subtraction is negative, we need to use 
operation—negate to make it positive. The magic part of GFC 
is the rectangle named residual in the bottom part of Figure 4. 
By counting the leading zeros of this part, removing these 
zeros, and adding the leading zeros metadata, GFC compresses 
the original datasets.  The most significant theory behind GFC 
algorithm is that most scientific datasets interleave values from 
multiple dimensions [10]. For example, weather temperature 
will follow a pattern each year for most of the time, which 
means temperature scientific data can have many leading zeros 
by using GFC compression algorithm. Users need to find the 
interleave orders, gets the maximum leading zeros and removes 
them to have the highest compression ratio. 

 

Figure 4. GFC Compression Algorithm 
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It is possible that the compressed data is larger than the 
original data using GFC compression algorithm if we choose a 
bad interleave dimensionality. For example, all the eight bytes 
of residuals are non-zeros and it results the output sub-chunk is 
16 bytes larger than the original chunk, which is 6% larger than 
the original part [10]. Before users use GFC compression with 
their data, it is better to preprocess their data and find out the 
suitable data interleave dimensionality to obtain the best 
performance. 

O'Neil and Burtscher created GFC and published this 
algorithm in [10]. They avoided using long if-else statements 
and assigned datasets reasonably according to the structure of 
GPU to improve the performance of their algorithm. If-else 
statements can slow down a program, especially GPU program. 
This is because of the structure of video cards. Each warp has 
32 threads (for most video cards) and all these threads (in the 
same wrap) must execute the same instruction in one cycle 
[11]. When these threads execute If-else statements, some 
threads may fulfill the if statement and execute that part of the 
code, and the remaining threads will stay idle, which means 
threads are not fully used. Therefore, GFC avoids using long 
if-else statements. 

 

3 Improved GFC Algorithm 

We tried to improve the performance of GFC algorithm 
with three methods: 1) using clzll to count the leading zeros; 2) 
removing if-else statements in the program; 3) using multi-
GPUs.  

A. Clzll  

In the summary and conclusions part of [10], the authors 
mentioned that they wrote their own function to count the 
leading zeros, because their video card was GTX-285 and it 
does not support clzll, which is used to count the number of 
consecutive leading zeros bits, starting at the most significant 
bit (bit 63) of x [13]. They believe GFC could be improved by 
using clzll to count the leading zeros to replace their code. We 
agree with their idea because professional programmers in 
Nvidia know secrets of their video cards. Therefore, it is not 
strange that their GPU functions are more suitable to the 
structure of video cards and more effective than our codes. The 
results in Section IV also prove this idea is right. 

 

Figure 5. If-else-removal Time Delta 

B. If-else-removals 

In our opinion, if-else statements can slow down programs, 
especially for GPU programs. Because if-else statements will 
make some of the threads in a warp idle, when these threads 
cannot fulfill the if-else statement. Here is an example 
presented in Figure 6: 

 

Figure 6. If-else Statement Example 

 
Each warp has 32 threads (for most current video cards). 

Only the threads that fulfill the condition, a > 3, they will 
execute a =7. Other threads will be idle till the whole warp 
goes through this if-statement. 

There are some materials, such as [14], proving long if-else 
statements will also have a negative impact on the performance 
of normal programs. Therefore, we tried to remove if-else 
statements in GFC algorithm by using bitwise operations. Here 
is an example, as Figure 7 displays: 

 

Figure 7. If-else-removal Example 

 
 “>>31” means a right shift for 31 bits. For most cases, 

signed integers have 32 bits and left most bit is used for a sign 
(positive or negative). (b – 2)>>31 is -1 when b – 2 is negative 
and it is 0 when (b – 2)>>31 is positive. Therefore, the two 
statements are the same in Figure 7. 

However, we found when if-else statement is short (for 
example, there is just one line of statement under “if”), the 
replacement of if-else statements with bitwise operations will 
slow down the program. We think it may be because 
something undisclosed in the compiler to optimize the 
program. The authors of [10] also tried to avoid long if-else 
statements in their program, except one part in the decompress 
kernel. Therefore, we replaced that part with bitwise operations 
as Figure 8 shows. 
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Figure 8. If-else-removal in GFC Decompress 

 
But, the method cannot guarantee better results all the time. 

Figure 5 displays the delta time between the original algorithm 
and the improved algorithm for a dataset named obs_info. 
When the line is above zero, it means the improved algorithm 
is faster. Even if the improved algorithm is better, the 
improvement is not really obvious. Therefore, we don’t apply 
this method in the final improved algorithm. 

 

Figure 9. Clzll Throughput Delta 

C. Multi-GPUs 

After reading some GPU technique papers, we found that 
some authors try to improve the performance of an algorithm 
by parallelizing the algorithm and others try to enhance an 
algorithm by parallelizing tasks. For example, in [15], the 
author proposed to separate strings and assign a thread for each 
segment to increase the speed of Boyer-Moore algorithm. We 
also found there was a trend that scientists used multi-GPUs 
instead of a single GPU to improve their algorithms. 

We found the task—compression is parallelizable. 
“Parallelizable” means that we can separate the task into 
several parts and each part can be processed independently. 
GFC is a GPU algorithm and it uses both blocks and threads. 
Therefore, we need to assign a GPU for every segment to 
enhance the performance. So we tried to use multi-GPUs 
instead of single GPU and the basic idea is displayed in Figure 
10. The uncompressed dataset is separated into N chunks, each 
chunk is processed by a GPU, and each GPU processes the 
assigned data with GFC algorithm. After all the GPUs finish 
their jobs, a CPU will combine the results together, which is 
the compressed data. 

 

Figure 10. Multi-GPUs Method 

 

4 Results 

We did experiments with a Cubix machine, which has eight 
GeForce GTX 780 video cards, Intel(R) Xeon(R) CPU E5-
2620 @ 2.00GHz, and PCI 3.0. 

All the flowing experiment datasets are offered by Martin 
Burtscher, who is one of the authors of [10]. The datasets can 
be downloaded in [16]. From our experiences about GPU 
programming, the best results of different problems need 
different numbers of blocks and threads. After experiments 
with four of these datasets, we found that we need to use all the 
threads in the chosen number of blocks to get the best results 
(throughputs). Therefore, we only did experiments to find the 
best number of blocks for each dataset and used all the threads. 
All the experiments were ran 11 times and we chose the 
median value of these 11 results to be the final result.  For 
example, in multi-GPUs part, we tested different numbers of 
blocks for a dataset named obs_info. We did the same 
experiment 11 times and finally found we should use 51 blocks 
and all the threads in these blocks to get the maximum 
throughput 1073.376 gigabits/s.  

Because [10] mentioned that PCIe bus is too slow for GFC 
(compression speed is limited to 8GB/s [17]), O'Neil and 
Burtscher did not record the time of transferring data from 
CPU to GPU. Therefore, we did not do that for all the 
following experiments. We also compared decompressed files 
with original files to make sure that our methods do not change 
files. 

D. Clzll 

The first improvement is to use __clzll(), which is used to 
count the number of consecutive leading zeros bits, starting at 
the most significant bit (bit 63) of x [13]. The results are 
presented in Figure 9. 

 

Figure 11. Speedup of Improved GFC Algorithm 
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In Figure 9, we subtracted original GFC’s throughput from 
improved GFC’s throughput. And we found most of the time, 
the deltas are above zero, which means the improved 
algorithms’ throughput are better. This proves the idea that is 
introduced in Section III A. 

E. Multi-GPUs 

We did the experiments with one, two, four, and eight 
GPUs to study the relation between the number of GPUs and 
the speedup. We recorded time consumptions of each GPU and 
used the maximum time to be the final time consumption. For 
example, we used 8 GPUs and GPU1 spent T1, GPU2 spent T2 
… GPU8 spent T8. The final time consumption was Max(T1, 
T2, … T8). We used the maximum time for the final time 
because we set up a synchronizing point, which resulted in 
GPUs waiting for others until all the GPUs finish their jobs. 
Table I displays the throughputs (gigabits/s) of a dataset named 
num_plasma. To save time, we did not do the experiment with 
block number from 1 to 1024. The step of BlockNum in Table 
I is int(sqrt(2)). 

Table II presents the maximum throughputs of different 
number of GPUs. From this table, we can tell that the speedup 
is better with more GPUs. However, the relationship between 
the speedup and the GPU number is not linear. For example, 8-
GPU speedup does not equal eight times 1-GPU speedup. In 
our opinions, this is because of the more GPUs we have, the 
more segment file will be generated (our program will separate 
the original file into N parts and each GPU is in charge of a 
segment). Our program needs to combine all the segment files 
together to be the file compressed file in the last compression 
step, which is done by a CPU sequentially. This step will use 
more time if we have more segment files. 

 

Figure 12. Multi-GPUs Throughput of Num_plasma 

 

 

 

Figure 13. Segment Files Combination 

 

Table I. NUM_PLASMA THROUGHPUTS 

BlockNum   8-GPU   4-GPU   2-GPU   1-GPU  

                1        159.26          81.40          41.18          21.25  

                2        304.68        158.78          81.51          42.00  

                3        436.46        233.39        120.21          62.06  

                5        668.01        376.61        196.12        102.86  

                8        987.06        572.33        304.24        159.44  

              12     1,233.31        804.09        438.55        233.19  

              17     1,214.70        768.86        420.02        219.24  

              25     1,219.77        715.74        386.17        202.43  

              36     1,212.85        803.42        438.75        233.02  

              51     1,268.61        815.37        465.57        250.08  

              73     1,365.97        955.67        541.73        261.71  

            104     1,381.89        876.36        481.61        258.48  

            148     1,312.64        871.23        523.82        264.98  

            210     1,266.23        860.80        500.14        274.39  

            297     1,214.87        838.03        496.44        274.89  

            421     1,170.78        818.49        480.72        266.15  

            596     1,140.80        743.96        457.01        264.19  

            843     1,079.34        715.57        439.54        253.56  

 

Table II. MAXIMUM THROUGHPUT 

Name 
Max Throughput 

(gigabits/s) 
BlockNum Speedup 

8-GPU 1,381.89 104 5.03 

4-GPU 955.67 73 3.48 

2-GPU 541.73 73 1.97 

1-GPU 274.89 297 1.00 

 

Figure 12 visualizes the relation between the throughputs of 
each number of GPUs with a line chart. For each line in Figure 
12, we found they went up first and then went down, which 
means that too many blocks will reduce the throughputs 
(gigabit/s) after a certain threshold. When the blocks number is 
small, N GPUs will increase the throughput almost N times. 
However, when the blocks number is increased, the speedup is 
less than N times. We think it may be because of the impact of 
blocks, as we just discussed. This negative impact will reduce 
the gap between each of the multi-GPUs results. Therefore, the 
final results are less than N times, when the blocks number is 
large.  

F. Final Improved GFC Algorithm 

Finally, we combined two methods—clzll and multi-GPUs 
together to improve GFC. We did experiments to datasets from 
[16] and obtained speedup results (the improved GFC 
algorithm over the original GFC algorithm) as Figure 11 
presents. 
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The maximum speedup of the improved GFC algorithm is 
8.705 and the maximum throughput of the improved GFC 
algorithm is 2454.603 gigabits/s, which is much faster than 
original GFC throughputs in [10]. Of course, the good result is 
partially because we used better hardware than the original 
GFC paper. 

5 Conclusion & Future Work 

In this paper, we introduced three methods to increase the 
speed of a lossless compression algorithm named GFC. These 
three methods are: 1) using clzll to count the leading zeros; 2) 
replacing if-else statements with bitwise operations in the 
program; 3) using multi-GPUs instead of a single GPU. 

After some experiments with datasets downloaded from 
[15], we found 1) and 3) were effective and the maximum 
speedup is 8.705 and the maximum throughput of the improved 
GFC algorithm is 2,454.60 gigabits/s, by using 1) and 3) 
together. However, 2) cannot guarantee good results all the 
time. 

In the future, we want to do more experiments to find out 
the rules between the performance and number of blocks & 
GPUs. For example, an equation can obtain the number of 
blocks & GPUs for a specific problem to get the best results 
(throughputs). The last step of our method is to combine all the 
compressed file segments into the final compressed file. This is 
done sequentially using a CPU core. We have designed a new 
method to do it parallel using multiple CPU cores. Figure 13 
presents the details of this method. The basic idea is to use one 
CPU core to combine two compressed file segments. 
Therefore, we can use N CPU cores to combine 2N file 
segments in one step, which is faster than the sequential 
combination method. 
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