
Floating-Point Data Compression Using Improved GFC Algorithm

Rui Wu1 Sergiu M. Dascalu1 Lee Barford1,2 Frederick C. Harris, Jr1
1 Department of Computer Science and Engineering, University of Nevada Reno, USA

2 Keysight Laboratories, Keysight Technologies

{rui, dascalus, fred.harris}@cse.unr.edu lee barford@ieee.org

Abstract

Compression is widely used in both scientific research and

industry. The most common use is that people compress the backup

data and infrequently used data to save spaces. Compression is

significantly meaningful for big data because it will save a lot of

resources with the help of a good compression algorithm. There are

two criteria for a good compression algorithm—compression ratio

and time consumption. GFC is one of the fastest compression

algorithms with a mediocre compression ratio, which is designed for

real-time compression with the help of Graphics Processing Units

(GPU). This paper introduces three methods to increase the speed of

GFC algorithm by using the clzll function, removing if-else

statements, and using multi-GPUs. The first and third methods

improve the original algorithm performance. However, the if-else-

removal method cannot always guarantee better results. The final

compression speed is more than 1,000 gigabits/s, which is much

faster than 75 gigabits/s—the original GFC algorithm speed.

Keywords: GFC; Lossless Compression; High-speed; Floating-Point

Data

1 Introduction

Big data and its management is a hot topic for both
businessmen and scientists. The digital era brings us many
opportunities and also tons of problems. Almost every device
keeps generating data all the time. For example, the Large
Synoptic Survey Telescope (LSST) needs to manage over 100
PB of data [1]. The Facebook warehouse stores upwards of 300
PB with a daily incoming rate around 600 TB [2]. There are
300 hours of video material uploaded to YouTube every
minute [3]. However, it is hard to manage and analyze big data.
To uncover the “gold mines” buried in these datasets,
researchers hold many conferences to resolve these hard big
data problems, such as XLDB [4].

Compression is one of the keys to manage big data and it
helps businessmen and scientists save resources. One of the
most common rules is that the data management system will
compress data if the data is not frequently used. If a
compression algorithm compresses original data 20% smaller
than before, it means people can save 20% spaces, which
means a lot for petabyte-scale datasets. Therefore, a good
compression algorithm is significant to a big data project. Also,
compression is very significant for some big data web-based
application. Dr. Holub and his colleagues introduced a method
about how to transmit HD, 2K, and 4K videos with the low-
latency network in their paper [5]. The core idea of this project
is to compress and decompress JPEG efficiently with the help

of GPUs. Figure 1 displays a simplified network diagram of the
pilot deployment of their project [5].

Figure 1. How to Transmit HD Videos with Low-latency

Network

There are many mature and good CPU compression
algorithms. Some of them are designed for image
compressions, such as JPEG [6], some of them are designed for
audio and video compression, such as MPEG [7], and some of
them are for general use, such as LZ4 [8]. Also, some scientists
tried to take advantage of GPU to increase the speed of CPU
compression algorithms. For example, [9] tried to improve the
Huffman compression algorithm using GPU.

GPU is short for Graphics Processing Unit. It is originally
designed for computer graphics and image processing, and it is
very popular in high-performance computing today. Also, there
is a trend that scientists use multi-GPUs, instead of a single
GPU to improve performances of different algorithms.
However, GPU is not suitable for all kinds of the algorithm. If
an algorithm is not parallelizable or highly divergent, it is
better not to use GPU.

Here are some reasons that we chose GFC instead of other
algorithms. First, GFC is one of the fastest existing lossless
compression algorithms. The original algorithm is 75 gigabits/s
[10]. It is gigabit, instead of “gigabyte”, because the core ideas
of GFC algorithm are based on bitwise operations. The speed is
much faster than most other compression algorithms. For
example, LZ4 is around 14.56 gigabits/s [8], which is much
slower than wide-band network speed. If we do not choose a
fast algorithm for high-speed web-based applications, the
algorithm will slow down the throughput of these applications.
Second, GFC is designed for GPU directly. In contrast to GFC,
most of the GPU algorithms are converted from CPU
algorithms, which means some compromises have to be made
and it will have a negative impact on the algorithm
performance most of the time. Third, GFC aims to compress
large datasets, which is critical for both business and scientific
uses.

978-1-943436-05-7 / copyright ISCA, SEDE 2016

September 26-28, 2016, Denver, Colorado, USA
35

Some basic concepts about GPU, such as grid, block, warp,
and thread can be found in the paper [11] and Figure 2 displays
a common GPU structure, which presents the relations between
threads, blocks, and grids. Different GPU video card structures
may be different from each other, but they all share some
common features: if users want their GPU algorithms to
perform best, they have to use all the threads in a warp; if
different threads, in the same block, need to communicate with
each other, programmers can use shared memory; if different
threads, in different blocks, need to communicate with each
other, programmers can use global memory.

Figure 2. GPU Structure

The rest of this paper is organized as follows in the

remaining part: Section II introduces the original GFC
algorithm; Section III introduces our three methods to improve
GFC algorithm; Section IV introduces the results and our
opinions about these results; Section V concludes the main
ideas of this paper.

2 Original GFC Algorithm

GFC is a lossless double-precision floating-point data
compression algorithm. It is designed for GPU specifically. By
using [12], GFC algorithm replaces 64-bit floating-point values
with 64-bit integers. Therefore, GFC needs only integer
operations, although it compresses floating-point datasets.

Overview of warp, block and chunk assignment of GFC is
displayed in Figure 3. The uncompressed data is separated into
r chunks and each chunk contains 32 doubles. Each chunk is
processed by one warp in the GPU. After all warps finish
compressing the assigned chunk, GFC combines all the results
together, which is compressed data. The reason that each chunk
contains 32 doubles is that there are 32 threads in each warp
for most of GPU video cards and it is most effective when a
program uses all the threads in a warp.

Figure 3. Overview of Warp, Block, and Chunk Assignment

Figure 4 presents the details about GFC compression

algorithm. According to GFC, we need to subtract p, which is
in the previous chunk, from i, which is in current chunk, and

 [10]. Dim means “dimension” in
this equation. If the subtraction is negative, we need to use
operation—negate to make it positive. The magic part of GFC
is the rectangle named residual in the bottom part of Figure 4.
By counting the leading zeros of this part, removing these
zeros, and adding the leading zeros metadata, GFC compresses
the original datasets. The most significant theory behind GFC
algorithm is that most scientific datasets interleave values from
multiple dimensions [10]. For example, weather temperature
will follow a pattern each year for most of the time, which
means temperature scientific data can have many leading zeros
by using GFC compression algorithm. Users need to find the
interleave orders, gets the maximum leading zeros and removes
them to have the highest compression ratio.

Figure 4. GFC Compression Algorithm

36

It is possible that the compressed data is larger than the
original data using GFC compression algorithm if we choose a
bad interleave dimensionality. For example, all the eight bytes
of residuals are non-zeros and it results the output sub-chunk is
16 bytes larger than the original chunk, which is 6% larger than
the original part [10]. Before users use GFC compression with
their data, it is better to preprocess their data and find out the
suitable data interleave dimensionality to obtain the best
performance.

O'Neil and Burtscher created GFC and published this
algorithm in [10]. They avoided using long if-else statements
and assigned datasets reasonably according to the structure of
GPU to improve the performance of their algorithm. If-else
statements can slow down a program, especially GPU program.
This is because of the structure of video cards. Each warp has
32 threads (for most video cards) and all these threads (in the
same wrap) must execute the same instruction in one cycle
[11]. When these threads execute If-else statements, some
threads may fulfill the if statement and execute that part of the
code, and the remaining threads will stay idle, which means
threads are not fully used. Therefore, GFC avoids using long
if-else statements.

3 Improved GFC Algorithm

We tried to improve the performance of GFC algorithm
with three methods: 1) using clzll to count the leading zeros; 2)
removing if-else statements in the program; 3) using multi-
GPUs.

A. Clzll

In the summary and conclusions part of [10], the authors
mentioned that they wrote their own function to count the
leading zeros, because their video card was GTX-285 and it
does not support clzll, which is used to count the number of
consecutive leading zeros bits, starting at the most significant
bit (bit 63) of x [13]. They believe GFC could be improved by
using clzll to count the leading zeros to replace their code. We
agree with their idea because professional programmers in
Nvidia know secrets of their video cards. Therefore, it is not
strange that their GPU functions are more suitable to the
structure of video cards and more effective than our codes. The
results in Section IV also prove this idea is right.

Figure 5. If-else-removal Time Delta

B. If-else-removals

In our opinion, if-else statements can slow down programs,
especially for GPU programs. Because if-else statements will
make some of the threads in a warp idle, when these threads
cannot fulfill the if-else statement. Here is an example
presented in Figure 6:

Figure 6. If-else Statement Example

Each warp has 32 threads (for most current video cards).

Only the threads that fulfill the condition, a > 3, they will
execute a =7. Other threads will be idle till the whole warp
goes through this if-statement.

There are some materials, such as [14], proving long if-else
statements will also have a negative impact on the performance
of normal programs. Therefore, we tried to remove if-else
statements in GFC algorithm by using bitwise operations. Here
is an example, as Figure 7 displays:

Figure 7. If-else-removal Example

 “>>31” means a right shift for 31 bits. For most cases,

signed integers have 32 bits and left most bit is used for a sign
(positive or negative). (b – 2)>>31 is -1 when b – 2 is negative
and it is 0 when (b – 2)>>31 is positive. Therefore, the two
statements are the same in Figure 7.

However, we found when if-else statement is short (for
example, there is just one line of statement under “if”), the
replacement of if-else statements with bitwise operations will
slow down the program. We think it may be because
something undisclosed in the compiler to optimize the
program. The authors of [10] also tried to avoid long if-else
statements in their program, except one part in the decompress
kernel. Therefore, we replaced that part with bitwise operations
as Figure 8 shows.

37

Figure 8. If-else-removal in GFC Decompress

But, the method cannot guarantee better results all the time.

Figure 5 displays the delta time between the original algorithm
and the improved algorithm for a dataset named obs_info.
When the line is above zero, it means the improved algorithm
is faster. Even if the improved algorithm is better, the
improvement is not really obvious. Therefore, we don’t apply
this method in the final improved algorithm.

Figure 9. Clzll Throughput Delta

C. Multi-GPUs

After reading some GPU technique papers, we found that
some authors try to improve the performance of an algorithm
by parallelizing the algorithm and others try to enhance an
algorithm by parallelizing tasks. For example, in [15], the
author proposed to separate strings and assign a thread for each
segment to increase the speed of Boyer-Moore algorithm. We
also found there was a trend that scientists used multi-GPUs
instead of a single GPU to improve their algorithms.

We found the task—compression is parallelizable.
“Parallelizable” means that we can separate the task into
several parts and each part can be processed independently.
GFC is a GPU algorithm and it uses both blocks and threads.
Therefore, we need to assign a GPU for every segment to
enhance the performance. So we tried to use multi-GPUs
instead of single GPU and the basic idea is displayed in Figure
10. The uncompressed dataset is separated into N chunks, each
chunk is processed by a GPU, and each GPU processes the
assigned data with GFC algorithm. After all the GPUs finish
their jobs, a CPU will combine the results together, which is
the compressed data.

Figure 10. Multi-GPUs Method

4 Results

We did experiments with a Cubix machine, which has eight
GeForce GTX 780 video cards, Intel(R) Xeon(R) CPU E5-
2620 @ 2.00GHz, and PCI 3.0.

All the flowing experiment datasets are offered by Martin
Burtscher, who is one of the authors of [10]. The datasets can
be downloaded in [16]. From our experiences about GPU
programming, the best results of different problems need
different numbers of blocks and threads. After experiments
with four of these datasets, we found that we need to use all the
threads in the chosen number of blocks to get the best results
(throughputs). Therefore, we only did experiments to find the
best number of blocks for each dataset and used all the threads.
All the experiments were ran 11 times and we chose the
median value of these 11 results to be the final result. For
example, in multi-GPUs part, we tested different numbers of
blocks for a dataset named obs_info. We did the same
experiment 11 times and finally found we should use 51 blocks
and all the threads in these blocks to get the maximum
throughput 1073.376 gigabits/s.

Because [10] mentioned that PCIe bus is too slow for GFC
(compression speed is limited to 8GB/s [17]), O'Neil and
Burtscher did not record the time of transferring data from
CPU to GPU. Therefore, we did not do that for all the
following experiments. We also compared decompressed files
with original files to make sure that our methods do not change
files.

D. Clzll

The first improvement is to use __clzll(), which is used to
count the number of consecutive leading zeros bits, starting at
the most significant bit (bit 63) of x [13]. The results are
presented in Figure 9.

Figure 11. Speedup of Improved GFC Algorithm

38

In Figure 9, we subtracted original GFC’s throughput from
improved GFC’s throughput. And we found most of the time,
the deltas are above zero, which means the improved
algorithms’ throughput are better. This proves the idea that is
introduced in Section III A.

E. Multi-GPUs

We did the experiments with one, two, four, and eight
GPUs to study the relation between the number of GPUs and
the speedup. We recorded time consumptions of each GPU and
used the maximum time to be the final time consumption. For
example, we used 8 GPUs and GPU1 spent T1, GPU2 spent T2
… GPU8 spent T8. The final time consumption was Max(T1,
T2, … T8). We used the maximum time for the final time
because we set up a synchronizing point, which resulted in
GPUs waiting for others until all the GPUs finish their jobs.
Table I displays the throughputs (gigabits/s) of a dataset named
num_plasma. To save time, we did not do the experiment with
block number from 1 to 1024. The step of BlockNum in Table
I is int(sqrt(2)).

Table II presents the maximum throughputs of different
number of GPUs. From this table, we can tell that the speedup
is better with more GPUs. However, the relationship between
the speedup and the GPU number is not linear. For example, 8-
GPU speedup does not equal eight times 1-GPU speedup. In
our opinions, this is because of the more GPUs we have, the
more segment file will be generated (our program will separate
the original file into N parts and each GPU is in charge of a
segment). Our program needs to combine all the segment files
together to be the file compressed file in the last compression
step, which is done by a CPU sequentially. This step will use
more time if we have more segment files.

Figure 12. Multi-GPUs Throughput of Num_plasma

Figure 13. Segment Files Combination

Table I. NUM_PLASMA THROUGHPUTS

BlockNum 8-GPU 4-GPU 2-GPU 1-GPU

 1 159.26 81.40 41.18 21.25

 2 304.68 158.78 81.51 42.00

 3 436.46 233.39 120.21 62.06

 5 668.01 376.61 196.12 102.86

 8 987.06 572.33 304.24 159.44

 12 1,233.31 804.09 438.55 233.19

 17 1,214.70 768.86 420.02 219.24

 25 1,219.77 715.74 386.17 202.43

 36 1,212.85 803.42 438.75 233.02

 51 1,268.61 815.37 465.57 250.08

 73 1,365.97 955.67 541.73 261.71

 104 1,381.89 876.36 481.61 258.48

 148 1,312.64 871.23 523.82 264.98

 210 1,266.23 860.80 500.14 274.39

 297 1,214.87 838.03 496.44 274.89

 421 1,170.78 818.49 480.72 266.15

 596 1,140.80 743.96 457.01 264.19

 843 1,079.34 715.57 439.54 253.56

Table II. MAXIMUM THROUGHPUT

Name
Max Throughput

(gigabits/s)
BlockNum Speedup

8-GPU 1,381.89 104 5.03

4-GPU 955.67 73 3.48

2-GPU 541.73 73 1.97

1-GPU 274.89 297 1.00

Figure 12 visualizes the relation between the throughputs of
each number of GPUs with a line chart. For each line in Figure
12, we found they went up first and then went down, which
means that too many blocks will reduce the throughputs
(gigabit/s) after a certain threshold. When the blocks number is
small, N GPUs will increase the throughput almost N times.
However, when the blocks number is increased, the speedup is
less than N times. We think it may be because of the impact of
blocks, as we just discussed. This negative impact will reduce
the gap between each of the multi-GPUs results. Therefore, the
final results are less than N times, when the blocks number is
large.

F. Final Improved GFC Algorithm

Finally, we combined two methods—clzll and multi-GPUs
together to improve GFC. We did experiments to datasets from
[16] and obtained speedup results (the improved GFC
algorithm over the original GFC algorithm) as Figure 11
presents.

39

The maximum speedup of the improved GFC algorithm is
8.705 and the maximum throughput of the improved GFC
algorithm is 2454.603 gigabits/s, which is much faster than
original GFC throughputs in [10]. Of course, the good result is
partially because we used better hardware than the original
GFC paper.

5 Conclusion & Future Work

In this paper, we introduced three methods to increase the
speed of a lossless compression algorithm named GFC. These
three methods are: 1) using clzll to count the leading zeros; 2)
replacing if-else statements with bitwise operations in the
program; 3) using multi-GPUs instead of a single GPU.

After some experiments with datasets downloaded from
[15], we found 1) and 3) were effective and the maximum
speedup is 8.705 and the maximum throughput of the improved
GFC algorithm is 2,454.60 gigabits/s, by using 1) and 3)
together. However, 2) cannot guarantee good results all the
time.

In the future, we want to do more experiments to find out
the rules between the performance and number of blocks &
GPUs. For example, an equation can obtain the number of
blocks & GPUs for a specific problem to get the best results
(throughputs). The last step of our method is to combine all the
compressed file segments into the final compressed file. This is
done sequentially using a CPU core. We have designed a new
method to do it parallel using multiple CPU cores. Figure 13
presents the details of this method. The basic idea is to use one
CPU core to combine two compressed file segments.
Therefore, we can use N CPU cores to combine 2N file
segments in one step, which is faster than the sequential
combination method.

ACKNOWLEDGEMENT

The authors of this paper acknowledge the help from

O'Neil and Burtscher. They answered some hard questions

about GFC by email and also offered us test datasets.

This material is based in part upon work supported by: The

National Science Foundation under grant number(s) IIA-

1329469, and by Cubix Corporation through use of their PCIe

slot expansion hardware solutions and HostEngine. Any

opinions, finds, and conclusions or recommendations

expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science

Foundation or Cubix Corporation.

REFERENCES

[1] Cudré-Mauroux, P., Kimura, H., Lim, K. T., Rogers, J., Simakov, R.,
Soroush, E., ..., and Zdonik, S. (2009). A demonstration of SciDB: a
science-oriented DBMS. In Proceedings of the VLDB Endowment, 2(2),
1534-1537.

[2] Vagata, P. and Wilfong, K. (2014). Scaling the Facebook data
warehouse to 300 PB (accessed 5/4/2015),
https://code.facebook.com/posts/229861827208629/scaling-the-
facebook-data-warehouse-to-300-pb/

[3] Google Inc. (2015). Statistics—YouTube (accessed 5/4/2015),
https://www.youtube.com/yt/press/statistics.html

[4] Stonebraker, M., Becla, J., DeWitt, D. J., Lim, K. T., Maier, D.,
Ratzesberger, O., and Zdonik, S. B. (2009, January). Requirements for
Science Data Bases and SciDB. In Proceedings of the fourth biennial
conference on innovative data system , Vol. 7, pp. 173-184.

[5] Holub, P., Šrom, M., Pulec, M., Matela, J., & Jirman, M. (2013). GPU-
accelerated DXT and JPEG compression schemes for low-latency
network transmissions of HD, 2K, and 4K video. Future Generation
Computer Systems,29(8), 1991-2006.

[6] Wallace, G. K. (1991). The JPEG still picture compression standard.
Communications of the ACM, 34(4), 30-44.

[7] Le Gall, D. (1991). MPEG: A video compression standard for
multimedia applications. Communications of the ACM, 34(4), 46-58.

[8] Collet, Y. (2013). LZ4-Extremely Fast Compression Algorithm
(accessed 5/4/2015), https://code.google.com/p/lz4/

[9] Cloud, R. L., Curry, M. L., Ward, H. L., Skjellum, A., & Bangalore, P.
(2011). Accelerating lossless data compression with GPUs. arXiv
Volume 3, 2009, p. 26 – 29.

[10] O'Neil, M. A. and Burtscher, M. (2011). Floating-point data
compression at 75 Gb/s on a GPU. In Proceedings of the Fourth
Workshop on General Purpose Processing on Graphics Processing
Units, ACM, p. 7.

[11] Luitjens, J. and Rennich, S. (2011). CUDA warps and occupancy. GPU
Computing Webinar, 11.

[12] Kahan, W. (1996). Lecture notes on the status of IEEE standard 754 for
binary floating-point arithmetic. Manuscript, May. 30 pp.

[13] NuDoq. (2015). NuDoq – CUDAfy.NET (accessed 5/5/2015),
http://www.nudoq.org/#!/Packages/CUDAfy.NET/Cudafy.NET/IntegerI
ntrinsicsFunctions/M/clzll

[14] Loinel, S. (2008). Does a lot of “if … else” statements slow down the
code? (accessed 5/5/2015) https://software.intel.com/en-
us/forums/topic/283268

[15] Jaiswal, M. (2014). Accelerating Enhanced Boyer-Moore String
Matching Algorithm on Multicore GPU for Network
Security. International Journal of Computer Applications, 97(1), 30-35.

[16] Burscher, M. (2009). Martin Burscher / FPdouble (accessed 5/5/2015),
http://cs.txstate.edu/~burtscher/research/datasets/FPdouble/

[17] Eirola, A. (2011). Lossless data compression on GPGPU
architectures. arXiv preprint arXiv:1109.2348.

40

