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Abstract— Interaction and visualization are two significant 

methods for both business people and scientists to find “gold 

nuggets” buried in raw data. These two methods can simplify 

complex theories and make it easier for people from different 

research areas to cooperate. Many prevalent web-based data 

interaction and visualization tools and libraries are not as effective 

as before because of big data. Most of the traditional client/server 

web application visualization tools and libraries process visualization 

and interaction in the client side. This workflow requires the server 

side to transfer data to the client side. If the data size is very big, the 

data transferring time is unbearable. In this paper, we propose a fast 

and new method for client/server web application to interact and 

visualize big data. The method visualizes data in the server side with 

multiple CPU cores and transfers result images to the client side. The 

client side collects users’ interaction information and the server side 

updates visualization results based on the interaction information. 

We tested the workflow with large volume datasets and it is much 

faster than traditional workflows. 

Keywords: Big data interaction, big data visualization, web 

application, client/server 

I.  INTRODUCTION 

Big data is not far from us. It is the digital era now and people 
generate data with amazing speed. Ninety per cent of all the data 
in our world was generated in the last a few years Error! 
Reference source not found.. There are 300 petabytes of data 
stored in Facebook warehouses and the daily incoming rate is 
around 600 terabytes Error! Reference source not found.. 
Around 300 hours of video materials are uploaded to YouTube 
every minute Error! Reference source not found.. Interaction 
and visualization are two efficient and effective methods to 
discover the valuable rules, tendencies, and theories buried in 
raw big data. These findings can be treasures for both business 
people and scientists. Interaction and visualization can also 
make complex theories and rules easier to be understood. We 
can use these two methods to introduce ideas to our collaborators 
from other research areas clearly with less of time. 

If users have large datasets, it is inconvenient and sometimes 
impossible to store all the data in one computer. The web-based 
client/server architecture is a good choice to interact and 
visualize large datasets. Also, users do not need to store the 
dataset in their machines (client side). There are many mature 
and prevalent traditional interaction & visualization tools and 
libraries for web application. However, they are not as effective 
as before because of the big data. As [4] points out, the most 

prevalent visualization tools and libraries can only be ran on the 
client side, such as Google Chart, Open Flash Chart (OFC), 
Adobe Flex, and D3.js. Also, only parts of the popular tools and 
libraries can process large datasets. Generally, the performance 
will drop dramatically when there are more than 200,000 data 
points. For Adobe Flex, the visualization results stop responding 
occasionally when there are more than 50,000 records. To solve 
this problem, we designed a new workflow to move as much 
work as possible to the server side to improve the performance. 

Our research aims to help business people and scientists to 
interact and visualize their large volume data quickly and 
effectively. We proposed our new workflow and a prototype 
system in this paper. We did some experiments to compare the 
performance between our workflow and the traditional 
workflow systems. The results proved our workflow is better for 
big data interaction and visualization. 

The rest of this paper is organized as follows: Section II 
introduces the background of big data and traditional web-based 
client/server applications workflow, Section III presents our 
proposed workflow, Section IV includes how we implemented 
our prototype system, Section V compares the performance of 
traditional workflow and our proposed workflow, Section VI 
concludes our ideas and introduces our future work. 

II. BACKGROUND 

The web-based client/server architecture is widely used. We 
prefer to use this architecture because it does not require users to 
install anything for most cases. Users only need to open a 
browser and visit our website. Also, this architecture can always 
guarantee a good performance, if it is designed reasonably 
(allocate most heavy tasks to servers). For example, some 
websites offer images processing services. Users can upload a 
bunch of images to the websites and choose the process methods. 
After the websites finish the jobs, it will send a notice email to 
the users and then the users can download the result images from 
the websites. Users can also process the images with their own 
computers. However, the procedure may be very slow if their 
computer is not good enough. 

CSV (comma-separated values) is a file format, which is 
widely used in scientific researches. For example, some sensors 
output the collected data into a csv file. CSV files separate data 
with comma for most cases. Some csv files also contain 



metadata part, which introduce some information about the data, 
such as time format, copyright, and column header descriptions. 

 

 

 

Figure 1. Image combination method 

About big data, there are many definitions. For example, the 
company SAS defines big data as a popular term used to describe 
the exponential growth, availability and use of information, both 
structured and unstructured Error! Reference source not 
found.. Most of the definitions are based on the three well-
known big data features from [6]: large and growing volume 
(volume), fast input and output speed (velocity), different 
varieties of data (variety). Recently some companies, such as 
LinkedIn Error! Reference source not found., added another 
two big data characteristics: messiness or trustworthiness of the 
data (veracity) and turn data into value or it is useless (value). 
Because of these characteristics, most of the traditional tools and 
libraries are not as effective as before. For example, some tools 
push all the tasks to the client machines. The client machines 
may work fine with small dataset. However, they can be very 
slow if the chosen dataset is large and the task is complex, which 
means bad user experiences. 

 

 

Figure 2. Traditional workflow 

Most traditional web-based client/server applications use the 
workflow as Figure 2 presents [4]. When the client side sends a 
visualization request to the server side, the server side will send 
data to the client side. All interaction and visualization 
operations are done in the client side. If we use this workflow to 
interact and visualize big data, there will be two problems: 1) 
data transfer time can be unacceptable. For example, if users 
have 1TB data and 10MB/s downloading speed, it will take 
around a half an hour to transfer data; 2) most traditional tools 
and libraries load data into the client machines’ memory to 

guarantee the performance. This does not work for big data. For 
example, the chosen data is 1TB and this requires the client side 
machine to have 1TB memory spaces. This is impractical for 
most machines. We designed an improved workflow to move the 
interaction and visualization tasks to the server side that reduce 
the client side machines’ burden. We introduce more details 
about this workflow in New Workflow section. 

III. OUR PROPOSED NEW WORKFLOW 

The basic idea about the new workflow is that it separates all 
interaction & visualization tasks into subtasks and arranges as 
many subtasks as possible in the server side. The most 
remarkable difference between the new workflow and the 
traditional workflow is that it transfers visualization result 
images from the server side to the client side instead of data. The 
server side updates the visualization result images based on the 
interaction information collected from the client side. 

 

 

Figure 3. New workflow 

Figure 3 displays the workflow details. The server side is a 
distributed system containing many nodes. Each node can be a 
computer or a CPU-core. The large volume dataset is separated 
into small pieces. Each node is in charge of a slice of data and 
generates a result image of the assigned data. One of the nodes 
combines all the result images as a final result image. The image 
combination method is shown in Figure 1. This can be done in 
parallel. In Step 0, we have n images in total. Each step we use 
one thread to combine two images. After all the threads combine 



images, the next step will be started. The image combination is 
done in parallel too. 

After the server side generates the final result image, it will 
send the final result image to the client side. The client side 
collects users’ interaction information (such as mouse 
coordinates, mouse button click, and mouse button release) and 
transfers the information back to the server side. The server side 
will update the result images based on the users’ interaction 
information. 

The new workflow relies more on the server side machines 
and that results in the system performing more steadily. It is hard 
to predict machines situated on the client side. If we use 
traditional workflow and push most of the data interaction and 
visualization jobs to the client side, we may have different 
problems deal to big data. For example, the client side machine 
does not have advanced hardware and it performs more slowly 
to interact and visualize large datasets. In contrast to the 

traditional workflow, our proposed workflow uses distributed 
systems and process data in parallel. Therefore, the new 
workflow is always faster to deal with big data. Users do not 
need to have an advanced computer because the client side 
machine only needs to display result images and collect the user 
interaction information. 

 

IV. PROTOTYPE SYSTEM 

We created a prototype server with eight CPU cores in one 
computer and the server side can only visualize csv files with 
line charts for the current version. In this section, we introduce 
how to zoom in, zoom out, download the chosen part of data, 
and add/remove a csv column from the visualization result 
image. 

 

 

 

 



Figure 4. Prototype system new CSV visualization workflow 

 

Figure 5. CSV file visualization example 

In the new workflow, there are four basic steps to interact 
and visualize a file: 

1. Users choose a file from the server database or upload 
a file to the server by themselves. 

2. The server prepares the visualization result image and 
sends it to the client side. 

3. Users interact with the result image and the client 
computer collects the interaction information. 

4. The server side updates the visualization result image 
based on the interaction information. 

Based on these four basic steps, we designed our prototype 
system. Figure 4 displays more details about our system. The 
system is   event driven, which means the system flow is decided 
by different events. For example, users press the download 
button, the system will prepare the chosen data for users to 
download. 

Figure 5 is a screenshot of a csv file visualization. The line 
chart part image is created by merging eight images shown in 
Figure 6. Because each CPU core generates a result image, we 
have eight images in total. The procedure is that one of the CPU-
cores separate the chosen csv file into eight parts with the help 
of a Python library named Pandas Error! Reference source not 
found.. Then each CPU-core visualizes a sub csv file with 
Matplotlib Error! Reference source not found.. The result 
images are named: img0, img1, img2, …, img7. In the image 
merging stage, the system uses four CPU-cores as seen in Step 
One. CPU-core 0 is in charge of combining img0 and img1; 
CPU-core 1 is in charge of combining img2 and img3; …; CPU-
core 3 is in charge of combining img6 and img7. Similarly, the 
final result image is generated after Step Four. This stage uses 
the method introduced in Figure 1. 

 

 

Figure 6. Visualization result images created by eight CPU cores 

There are some checkboxes below the line chart part in 
Figure 5. Each of the checkboxes represent a column in the csv 
file. If the user checks one checkbox, the system will add the 
corresponding csv column in the line chart, which includes 
adding a line in the line chart and a matching legend in the right 
top corner of the resulting image. If the user wants to remove the 
corresponding csv column, they need to uncheck the checkbox, 
which includes removing the line from the line chart and the 
matching legend in the right top corner of the final result image. 

 

 

 

Figure 7. Users choose an area on the line chart 

 



 

Figure 8. LMP, RMP, Min, and Max 
 

 

 

Figure 9. Zoomed in line chart 

Users can zoom in the line chart by clicking the mouse left 
button, dragging along the line chart, and releasing the mouse 
left button. The system will draw a rectangle on the line chart as 
Figure 7 shows. After the client side receives the updated 
visualization result image from the server side, it will display the 
updated line chart image, as Figure 9 displays. If users want to 
zoom out on the line chart, they need to click the “Zoom out” 
button. We implemented the “Zoom in” function by tracking the 
coordinates of users’ cursors and “mouse click” and “mouse 
release” events. Based on the information, the client side draws 
rectangles on the visualization result images and transfers the 
coordinates to the server side. We created an algorithm to 
convert the coordinates into x-axis values of the chosen csv files. 
The algorithm mainly has three steps: 

1. Convert the cursor coordinates into percentages, which 
is named as CP. For example, when users click the 
middle part of the line chart, then CP should be 50% 
(from the image left side). 

2. Get the left and right image margin percentage of the 
whole image. The left margin is named LMP and the 
right margin is named RMP. For example, the left 
margin is 10% width of the whole image and the right 
margin is 15% width of the whole image. Then LMP is 
10% and RMP is 15%. 

3. Obtain the corresponding x-axis values. The minimum 
value of the x-axis is named Min and the maximum 
value of the x-axis is named Max. Figure 8 is an 
example about LMP, RMP, Min, and Max. In this 
example, LMP is 15%, RMP is 10%, Min is January 1, 
2015, and Max is January 1, 2016. Figure 10 is the 
algorithm that we used to convert CP into x-axis values. 

 

 

Figure 10. Convert CP into x-axis values 

 
 

 

 



 

Figure 11. Traditional workflow and new workflow data visualization time consumption comparisons 

 

The user’s cursors may be placed in three sections: left 
margin, right margin, and in the x-axis range. If the cursor is in 
the left margin, then, as Figure 10 shows, the function will return 
Min as the x-axis value. If the cursor is in the right margin, then, 
as Figure 10 shows, the function will return Max as the x-axis 
value. If the cursor is in the x-axis range, then the corresponding 
x-axis value should be ((CP-LMP)*(Max-Min)/(1-LMP-
RMP))+Min. This value is from the following equation: 

𝐶𝑃 − 𝐿𝑀𝑃

𝑥 − 𝑀𝑖𝑛
=  

1 − 𝐿𝑀𝑃 − 𝑅𝑀𝑃

𝑀𝑎𝑥 − 𝑀𝑖𝑛
 (1) 

In Equation (1), x is the user’s cursor x-axis value. (CP-
LMP) means the percentage between the user’s mouse cursor 
and Min; (x-Min) means the x-axis value between the user’s 
cursor and Min; (1-LMP-RMP) means the x-axis range 
percentage; (Max-Min) means the x-axis range. The ratio 
between percentage and x-axis values should be the same. 

Here is how we zoom in the chosen part data. The client side 
sends LMP, RMP, and CP information of “mouse click” and 
“mouse release” events to the server side. The server side stores 
Min and Max information and obtains the x-axis values of 
“mouse click” and “mouse release” events using the algorithm 
introduced in Figure 10. The server side extracts data based on 
the x-axis values from the csv file; stores the data in a temp file; 
separates the temp file into N (the node number in the server 
side) parts; each node of the server side processes one part; 
merges the process results; sends the final result image to the 
client side. 

 In the client side, we embedded visualization result images 
into “canvas” (an html element) in the client side. By doing this, 
we can avoid users from moving the images when they drag the 
cursors on the images. 

We created an easy data extraction method. Users zoom in 
the wanted part on the line chart and click “Download the 
Chosen Data” button. The server side will provide the chosen 
part data as a csv file for users to download. We implemented 
this function because some of our collaborators are 
environmental scientists. Different servers received huge 
datasets and stored the data into the database. They expected us 
to create an effective and easy method to extract data from a 
large data file. 

We used MongoDB for the data management. The basic idea 
is to store data files into a file system and the file paths in the 
MongoDB. If the system receives a query request, it will search 
the file path from the MongoDB based on the file name and then 
grab the file from the file system based on the file path. 

For the parallel programming part, we used a Python library 
named Multi-progressing [9]. There are several reasons that we 
used processes instead of threads for our new workflow system 
[9]: 

1. Processes and threads are both executed 
independently. Processes run in separate memory 
spaces and threads have a shared memory space. 
The parallel parts of our system do not require each 
core to communicate with each other and we do not 
want to have any writing memory conflicts 
problem. 

2. Because of Python Global Interpreter Lock (GIL), 
which is a mutex (preventing multiple native 
threads from executing python codes at the same 
time), the performance can be worse than 
expectations. 

3. Multi-processing python library will use all the 
processors simultaneously for computation.  

Even if the current version prototype system can only 
visualize csv files with line charts, our proposed workflow works 
with most data files and visualization methods by using the four 
basic steps, which are mentioned in the second paragraph of this 
section. 

V. PERFORMANCE COMPARISON 

We did some experiments to prove that our workflow is 
faster than the traditional workflow. Here are our server and 
client machines hardware and operating system descriptions: 

 8 * Intel (R) Core (TM) i7-4770 CPU @ 3.4GHz 

 12.0 GB DDR3 RAM 

 Ubuntu 12.04 

For our new workflow, we used Flask Error! Reference 
source not found. to build the backend and Matplotlib Error! 



Reference source not found. to visualize data. Flask is a 
powerful Python based microframework and Matplotlib is an 
effective Python based 2D data visualization tool. For the 
traditional workflow, we used Flask [8] to build the backend and 
dygraph.js Error! Reference source not found. to interact and 
visualize data in the frontend. Digraph.js is a JavaScript library 
that is easy to use and efficient. There are more details about how 
we built the traditional workflow system in [13].  All the data 
files used in this paper are generated by a scientific model named 
Isnobal [14]. 

For all of the following experiments, the server and the client 
are installed in the same machine. Therefore, the data transfer 
time is very short for both the new and the traditional workflows. 
In real life, data transfer time is one of the most important factor 
that affects the user experience. For most of the big data cases, 
the traditional workflow costs more time than our new 
workflow. This is because the visualization result image is 
usually smaller than the visualized data itself. For example, 100 
MB data can be visualized with a 5 MB jpg file. The image size 
is decided by resolutions and image formats. Therefore, the new 
workflow is faster than the traditional workflow in data transfer. 

Figure 11 compares the traditional workflow and our 
workflow data visualization time consumptions. When there are 
less than 100,000 records (floats), the traditional workflow uses 
less time than the new one. This is because data size is small and 
data transfer time is short for the traditional workflow. The new 
workflow needs to separate files into small pieces, visualize each 
of them, and then merge all the visualization result images. 
These steps are not effective for small data files. However, when 
data size grows, the traditional workflow turns slower than the 
new workflow. Especially when we have more than 290,000 
records (floats), the traditional workflow performance drops 
dramatically. In fact, when we tried a large file with more than 
10,000,000 records, the traditional workflow ran for more than 
one hour and popped up an error. 

 

 

Figure 12. New workflow time consumptions 

 

Figure 12 presents the new workflow time consumptions. It 
is almost linear which means the more data we have, the more 
time it will take. To improve the performance, we want to use 
Hadoop with more nodes. 

 

 

Figure 13. Visualize 560640 records with different number processes, when 
process number grows, performance goes up and then goes down 

 
We also tested our system with different number of 

processes. Figure 13 shows that the time consumption goes 
down first and then goes up, which means when we used more 
processes, the performance of the system turns better first and 
then turns worse. The system performs best when we used 16 
processes. This is because we used 8 * Intel (R) Core (TM) i7-
4770 CPU @ 3.4GHz. The Intel core uses hyper-threading 
technique, which allows a computer’s operating system or 
hypervisor to access two logical processors for each physical 
core [15]. Therefore, the 8 Intel core equals 16 logical 
processors. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we proposed a new workflow to interact and 
visualize big data for web-based client/server applications. The 
basic idea is to visualize and update the visualization results in 
the server side and only transfer visualization result images to 
the client side. This is different from the traditional workflow in 
that it transfers data and finishes interaction and visualization 
tasks in the client side. We did some experiments that showed 
that the traditional workflow is better than the new workflow if 
users have small dataset (less than 100,000 floats). If users have 
a large dataset, the new workflow performs much better than the 
traditional workflow. When we used the traditional workflow to 
process very large amount of data, the performance will drop 
dramatically. The prototype can be found in [16]. 

In the future, we plan to use Hadoop with more nodes to 
improve the new workflow performance. Also, we want to use 
GPUs in each of the nodes to accelerate the server's performance 
further. Most of our collaborators are environmental scientists. 
They have to deal with csv and NetCDF files for most cases. 
Therefore, we will improve our system that support more 
scientific data file types, such as NetCDF. 
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