
A New Workflow to Interact with and Visualize Big

Data for Web Applications

Rui Wu* Jose T. Painumkal+ Nimrat Randhawa+ Lisa Palathingal*

Sage R. Hiibel~ Sergiu M. Dascalu* Frederick C. Harris, Jr*
*+Department of Computer Science and Engineering

University of Nevada

Reno, USA

~Department of Chemical & Materials and Engineering

University of Nevada

Reno, USA
*{rui, lisa, dascalus, fred.harris}@cse.unr.edu +{josepainumkal, nrandhawa}@nevada.unr.edu ~shiibel@unr.edu

Abstract— Interaction and visualization are two significant

methods for both business people and scientists to find “gold

nuggets” buried in raw data. These two methods can simplify

complex theories and make it easier for people from different

research areas to cooperate. Many prevalent web-based data

interaction and visualization tools and libraries are not as effective

as before because of big data. Most of the traditional client/server

web application visualization tools and libraries process visualization

and interaction in the client side. This workflow requires the server

side to transfer data to the client side. If the data size is very big, the

data transferring time is unbearable. In this paper, we propose a fast

and new method for client/server web application to interact and

visualize big data. The method visualizes data in the server side with

multiple CPU cores and transfers result images to the client side. The

client side collects users’ interaction information and the server side

updates visualization results based on the interaction information.

We tested the workflow with large volume datasets and it is much

faster than traditional workflows.

Keywords: Big data interaction, big data visualization, web

application, client/server

I. INTRODUCTION

Big data is not far from us. It is the digital era now and people
generate data with amazing speed. Ninety per cent of all the data
in our world was generated in the last a few years Error!
Reference source not found.. There are 300 petabytes of data
stored in Facebook warehouses and the daily incoming rate is
around 600 terabytes Error! Reference source not found..
Around 300 hours of video materials are uploaded to YouTube
every minute Error! Reference source not found.. Interaction
and visualization are two efficient and effective methods to
discover the valuable rules, tendencies, and theories buried in
raw big data. These findings can be treasures for both business
people and scientists. Interaction and visualization can also
make complex theories and rules easier to be understood. We
can use these two methods to introduce ideas to our collaborators
from other research areas clearly with less of time.

If users have large datasets, it is inconvenient and sometimes
impossible to store all the data in one computer. The web-based
client/server architecture is a good choice to interact and
visualize large datasets. Also, users do not need to store the
dataset in their machines (client side). There are many mature
and prevalent traditional interaction & visualization tools and
libraries for web application. However, they are not as effective
as before because of the big data. As [4] points out, the most

prevalent visualization tools and libraries can only be ran on the
client side, such as Google Chart, Open Flash Chart (OFC),
Adobe Flex, and D3.js. Also, only parts of the popular tools and
libraries can process large datasets. Generally, the performance
will drop dramatically when there are more than 200,000 data
points. For Adobe Flex, the visualization results stop responding
occasionally when there are more than 50,000 records. To solve
this problem, we designed a new workflow to move as much
work as possible to the server side to improve the performance.

Our research aims to help business people and scientists to
interact and visualize their large volume data quickly and
effectively. We proposed our new workflow and a prototype
system in this paper. We did some experiments to compare the
performance between our workflow and the traditional
workflow systems. The results proved our workflow is better for
big data interaction and visualization.

The rest of this paper is organized as follows: Section II
introduces the background of big data and traditional web-based
client/server applications workflow, Section III presents our
proposed workflow, Section IV includes how we implemented
our prototype system, Section V compares the performance of
traditional workflow and our proposed workflow, Section VI
concludes our ideas and introduces our future work.

II. BACKGROUND

The web-based client/server architecture is widely used. We
prefer to use this architecture because it does not require users to
install anything for most cases. Users only need to open a
browser and visit our website. Also, this architecture can always
guarantee a good performance, if it is designed reasonably
(allocate most heavy tasks to servers). For example, some
websites offer images processing services. Users can upload a
bunch of images to the websites and choose the process methods.
After the websites finish the jobs, it will send a notice email to
the users and then the users can download the result images from
the websites. Users can also process the images with their own
computers. However, the procedure may be very slow if their
computer is not good enough.

CSV (comma-separated values) is a file format, which is
widely used in scientific researches. For example, some sensors
output the collected data into a csv file. CSV files separate data
with comma for most cases. Some csv files also contain

metadata part, which introduce some information about the data,
such as time format, copyright, and column header descriptions.

Figure 1. Image combination method

About big data, there are many definitions. For example, the
company SAS defines big data as a popular term used to describe
the exponential growth, availability and use of information, both
structured and unstructured Error! Reference source not
found.. Most of the definitions are based on the three well-
known big data features from [6]: large and growing volume
(volume), fast input and output speed (velocity), different
varieties of data (variety). Recently some companies, such as
LinkedIn Error! Reference source not found., added another
two big data characteristics: messiness or trustworthiness of the
data (veracity) and turn data into value or it is useless (value).
Because of these characteristics, most of the traditional tools and
libraries are not as effective as before. For example, some tools
push all the tasks to the client machines. The client machines
may work fine with small dataset. However, they can be very
slow if the chosen dataset is large and the task is complex, which
means bad user experiences.

Figure 2. Traditional workflow

Most traditional web-based client/server applications use the
workflow as Figure 2 presents [4]. When the client side sends a
visualization request to the server side, the server side will send
data to the client side. All interaction and visualization
operations are done in the client side. If we use this workflow to
interact and visualize big data, there will be two problems: 1)
data transfer time can be unacceptable. For example, if users
have 1TB data and 10MB/s downloading speed, it will take
around a half an hour to transfer data; 2) most traditional tools
and libraries load data into the client machines’ memory to

guarantee the performance. This does not work for big data. For
example, the chosen data is 1TB and this requires the client side
machine to have 1TB memory spaces. This is impractical for
most machines. We designed an improved workflow to move the
interaction and visualization tasks to the server side that reduce
the client side machines’ burden. We introduce more details
about this workflow in New Workflow section.

III. OUR PROPOSED NEW WORKFLOW

The basic idea about the new workflow is that it separates all
interaction & visualization tasks into subtasks and arranges as
many subtasks as possible in the server side. The most
remarkable difference between the new workflow and the
traditional workflow is that it transfers visualization result
images from the server side to the client side instead of data. The
server side updates the visualization result images based on the
interaction information collected from the client side.

Figure 3. New workflow

Figure 3 displays the workflow details. The server side is a
distributed system containing many nodes. Each node can be a
computer or a CPU-core. The large volume dataset is separated
into small pieces. Each node is in charge of a slice of data and
generates a result image of the assigned data. One of the nodes
combines all the result images as a final result image. The image
combination method is shown in Figure 1. This can be done in
parallel. In Step 0, we have n images in total. Each step we use
one thread to combine two images. After all the threads combine

images, the next step will be started. The image combination is
done in parallel too.

After the server side generates the final result image, it will
send the final result image to the client side. The client side
collects users’ interaction information (such as mouse
coordinates, mouse button click, and mouse button release) and
transfers the information back to the server side. The server side
will update the result images based on the users’ interaction
information.

The new workflow relies more on the server side machines
and that results in the system performing more steadily. It is hard
to predict machines situated on the client side. If we use
traditional workflow and push most of the data interaction and
visualization jobs to the client side, we may have different
problems deal to big data. For example, the client side machine
does not have advanced hardware and it performs more slowly
to interact and visualize large datasets. In contrast to the

traditional workflow, our proposed workflow uses distributed
systems and process data in parallel. Therefore, the new
workflow is always faster to deal with big data. Users do not
need to have an advanced computer because the client side
machine only needs to display result images and collect the user
interaction information.

IV. PROTOTYPE SYSTEM

We created a prototype server with eight CPU cores in one
computer and the server side can only visualize csv files with
line charts for the current version. In this section, we introduce
how to zoom in, zoom out, download the chosen part of data,
and add/remove a csv column from the visualization result
image.

Figure 4. Prototype system new CSV visualization workflow

Figure 5. CSV file visualization example

In the new workflow, there are four basic steps to interact
and visualize a file:

1. Users choose a file from the server database or upload
a file to the server by themselves.

2. The server prepares the visualization result image and
sends it to the client side.

3. Users interact with the result image and the client
computer collects the interaction information.

4. The server side updates the visualization result image
based on the interaction information.

Based on these four basic steps, we designed our prototype
system. Figure 4 displays more details about our system. The
system is event driven, which means the system flow is decided
by different events. For example, users press the download
button, the system will prepare the chosen data for users to
download.

Figure 5 is a screenshot of a csv file visualization. The line
chart part image is created by merging eight images shown in
Figure 6. Because each CPU core generates a result image, we
have eight images in total. The procedure is that one of the CPU-
cores separate the chosen csv file into eight parts with the help
of a Python library named Pandas Error! Reference source not
found.. Then each CPU-core visualizes a sub csv file with
Matplotlib Error! Reference source not found.. The result
images are named: img0, img1, img2, …, img7. In the image
merging stage, the system uses four CPU-cores as seen in Step
One. CPU-core 0 is in charge of combining img0 and img1;
CPU-core 1 is in charge of combining img2 and img3; …; CPU-
core 3 is in charge of combining img6 and img7. Similarly, the
final result image is generated after Step Four. This stage uses
the method introduced in Figure 1.

Figure 6. Visualization result images created by eight CPU cores

There are some checkboxes below the line chart part in
Figure 5. Each of the checkboxes represent a column in the csv
file. If the user checks one checkbox, the system will add the
corresponding csv column in the line chart, which includes
adding a line in the line chart and a matching legend in the right
top corner of the resulting image. If the user wants to remove the
corresponding csv column, they need to uncheck the checkbox,
which includes removing the line from the line chart and the
matching legend in the right top corner of the final result image.

Figure 7. Users choose an area on the line chart

Figure 8. LMP, RMP, Min, and Max

Figure 9. Zoomed in line chart

Users can zoom in the line chart by clicking the mouse left
button, dragging along the line chart, and releasing the mouse
left button. The system will draw a rectangle on the line chart as
Figure 7 shows. After the client side receives the updated
visualization result image from the server side, it will display the
updated line chart image, as Figure 9 displays. If users want to
zoom out on the line chart, they need to click the “Zoom out”
button. We implemented the “Zoom in” function by tracking the
coordinates of users’ cursors and “mouse click” and “mouse
release” events. Based on the information, the client side draws
rectangles on the visualization result images and transfers the
coordinates to the server side. We created an algorithm to
convert the coordinates into x-axis values of the chosen csv files.
The algorithm mainly has three steps:

1. Convert the cursor coordinates into percentages, which
is named as CP. For example, when users click the
middle part of the line chart, then CP should be 50%
(from the image left side).

2. Get the left and right image margin percentage of the
whole image. The left margin is named LMP and the
right margin is named RMP. For example, the left
margin is 10% width of the whole image and the right
margin is 15% width of the whole image. Then LMP is
10% and RMP is 15%.

3. Obtain the corresponding x-axis values. The minimum
value of the x-axis is named Min and the maximum
value of the x-axis is named Max. Figure 8 is an
example about LMP, RMP, Min, and Max. In this
example, LMP is 15%, RMP is 10%, Min is January 1,
2015, and Max is January 1, 2016. Figure 10 is the
algorithm that we used to convert CP into x-axis values.

Figure 10. Convert CP into x-axis values

Figure 11. Traditional workflow and new workflow data visualization time consumption comparisons

The user’s cursors may be placed in three sections: left
margin, right margin, and in the x-axis range. If the cursor is in
the left margin, then, as Figure 10 shows, the function will return
Min as the x-axis value. If the cursor is in the right margin, then,
as Figure 10 shows, the function will return Max as the x-axis
value. If the cursor is in the x-axis range, then the corresponding
x-axis value should be ((CP-LMP)*(Max-Min)/(1-LMP-
RMP))+Min. This value is from the following equation:

𝐶𝑃 − 𝐿𝑀𝑃

𝑥 − 𝑀𝑖𝑛
=

1 − 𝐿𝑀𝑃 − 𝑅𝑀𝑃

𝑀𝑎𝑥 − 𝑀𝑖𝑛
 (1)

In Equation (1), x is the user’s cursor x-axis value. (CP-
LMP) means the percentage between the user’s mouse cursor
and Min; (x-Min) means the x-axis value between the user’s
cursor and Min; (1-LMP-RMP) means the x-axis range
percentage; (Max-Min) means the x-axis range. The ratio
between percentage and x-axis values should be the same.

Here is how we zoom in the chosen part data. The client side
sends LMP, RMP, and CP information of “mouse click” and
“mouse release” events to the server side. The server side stores
Min and Max information and obtains the x-axis values of
“mouse click” and “mouse release” events using the algorithm
introduced in Figure 10. The server side extracts data based on
the x-axis values from the csv file; stores the data in a temp file;
separates the temp file into N (the node number in the server
side) parts; each node of the server side processes one part;
merges the process results; sends the final result image to the
client side.

 In the client side, we embedded visualization result images
into “canvas” (an html element) in the client side. By doing this,
we can avoid users from moving the images when they drag the
cursors on the images.

We created an easy data extraction method. Users zoom in
the wanted part on the line chart and click “Download the
Chosen Data” button. The server side will provide the chosen
part data as a csv file for users to download. We implemented
this function because some of our collaborators are
environmental scientists. Different servers received huge
datasets and stored the data into the database. They expected us
to create an effective and easy method to extract data from a
large data file.

We used MongoDB for the data management. The basic idea
is to store data files into a file system and the file paths in the
MongoDB. If the system receives a query request, it will search
the file path from the MongoDB based on the file name and then
grab the file from the file system based on the file path.

For the parallel programming part, we used a Python library
named Multi-progressing [9]. There are several reasons that we
used processes instead of threads for our new workflow system
[9]:

1. Processes and threads are both executed
independently. Processes run in separate memory
spaces and threads have a shared memory space.
The parallel parts of our system do not require each
core to communicate with each other and we do not
want to have any writing memory conflicts
problem.

2. Because of Python Global Interpreter Lock (GIL),
which is a mutex (preventing multiple native
threads from executing python codes at the same
time), the performance can be worse than
expectations.

3. Multi-processing python library will use all the
processors simultaneously for computation.

Even if the current version prototype system can only
visualize csv files with line charts, our proposed workflow works
with most data files and visualization methods by using the four
basic steps, which are mentioned in the second paragraph of this
section.

V. PERFORMANCE COMPARISON

We did some experiments to prove that our workflow is
faster than the traditional workflow. Here are our server and
client machines hardware and operating system descriptions:

 8 * Intel (R) Core (TM) i7-4770 CPU @ 3.4GHz

 12.0 GB DDR3 RAM

 Ubuntu 12.04

For our new workflow, we used Flask Error! Reference
source not found. to build the backend and Matplotlib Error!

Reference source not found. to visualize data. Flask is a
powerful Python based microframework and Matplotlib is an
effective Python based 2D data visualization tool. For the
traditional workflow, we used Flask [8] to build the backend and
dygraph.js Error! Reference source not found. to interact and
visualize data in the frontend. Digraph.js is a JavaScript library
that is easy to use and efficient. There are more details about how
we built the traditional workflow system in [13]. All the data
files used in this paper are generated by a scientific model named
Isnobal [14].

For all of the following experiments, the server and the client
are installed in the same machine. Therefore, the data transfer
time is very short for both the new and the traditional workflows.
In real life, data transfer time is one of the most important factor
that affects the user experience. For most of the big data cases,
the traditional workflow costs more time than our new
workflow. This is because the visualization result image is
usually smaller than the visualized data itself. For example, 100
MB data can be visualized with a 5 MB jpg file. The image size
is decided by resolutions and image formats. Therefore, the new
workflow is faster than the traditional workflow in data transfer.

Figure 11 compares the traditional workflow and our
workflow data visualization time consumptions. When there are
less than 100,000 records (floats), the traditional workflow uses
less time than the new one. This is because data size is small and
data transfer time is short for the traditional workflow. The new
workflow needs to separate files into small pieces, visualize each
of them, and then merge all the visualization result images.
These steps are not effective for small data files. However, when
data size grows, the traditional workflow turns slower than the
new workflow. Especially when we have more than 290,000
records (floats), the traditional workflow performance drops
dramatically. In fact, when we tried a large file with more than
10,000,000 records, the traditional workflow ran for more than
one hour and popped up an error.

Figure 12. New workflow time consumptions

Figure 12 presents the new workflow time consumptions. It
is almost linear which means the more data we have, the more
time it will take. To improve the performance, we want to use
Hadoop with more nodes.

Figure 13. Visualize 560640 records with different number processes, when
process number grows, performance goes up and then goes down

We also tested our system with different number of

processes. Figure 13 shows that the time consumption goes
down first and then goes up, which means when we used more
processes, the performance of the system turns better first and
then turns worse. The system performs best when we used 16
processes. This is because we used 8 * Intel (R) Core (TM) i7-
4770 CPU @ 3.4GHz. The Intel core uses hyper-threading
technique, which allows a computer’s operating system or
hypervisor to access two logical processors for each physical
core [15]. Therefore, the 8 Intel core equals 16 logical
processors.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new workflow to interact and
visualize big data for web-based client/server applications. The
basic idea is to visualize and update the visualization results in
the server side and only transfer visualization result images to
the client side. This is different from the traditional workflow in
that it transfers data and finishes interaction and visualization
tasks in the client side. We did some experiments that showed
that the traditional workflow is better than the new workflow if
users have small dataset (less than 100,000 floats). If users have
a large dataset, the new workflow performs much better than the
traditional workflow. When we used the traditional workflow to
process very large amount of data, the performance will drop
dramatically. The prototype can be found in [16].

In the future, we plan to use Hadoop with more nodes to
improve the new workflow performance. Also, we want to use
GPUs in each of the nodes to accelerate the server's performance
further. Most of our collaborators are environmental scientists.
They have to deal with csv and NetCDF files for most cases.
Therefore, we will improve our system that support more
scientific data file types, such as NetCDF.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under grant numbers IIA-1301726 and IIA-
1329469. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES

[1] "IBM - What is big data?", Www-01.ibm.com, 2016. [Online]. Available:
http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html.
[Accessed: 15- Sep- 2016].

[2] "Scaling the Facebook data warehouse to 300 PB", Facebook Code, 2016.
[Online]. Available:
https://code.facebook.com/posts/229861827208629/scaling-the-
facebook-data-warehouse-to-300-pb/. [Accessed: 15- Sep- 2016].

[3] "Statistics - YouTube", Youtube.com, 2016. [Online]. Available:
https://www.youtube.com/yt/press/statistics.html. [Accessed: 15- Sep-
2016].

[4] Lee, S., Jo, J. Y., and Kim, Y, “Performance testing of web-based data
visualization”, In Proceedings of 2014 IEEE International Conference on
Systems, Man and Cybernetics (SMC), pp. 1648-1653, 2014.

[5] "What is Big Data and why it matters", Sas.com, 2016. [Online].
Available: http://www.sas.com/big-data/. [Accessed: 15- Sep- 2016].

[6] Laney, D., “3D Data Management: Controlling Data Volume, Velocity,
and Variety”. META Group Research Note 6: 70, February, 2001.

[7] "Big Data: The 5 Vs Everyone Must Know", Linkedin, 2015. [Online].
Available: https://www.linkedin.com/pulse/20140306073407-64875646-
big-data-the-5-vs-everyone-must-know. [Accessed: 15- Sep- 2016].

[8] "Python Data Analysis Library — pandas: Python Data Analysis Library",
Pandas.pydata.org, 2016. [Online]. Available: http://pandas.pydata.org/.
[Accessed: 15- Sep- 2016].

[9] Hellmann, D. Multi-Processing Techniques in Python. Python
Magazine, vol. 1, October, 2007.

[10] "Welcome | Flask (A Python Microframework)", Flask.pocoo.org, 2016.
[Online]. Available: http://flask.pocoo.org/. [Accessed: 15- Sep- 2016].

[11] J. Hunter, "Matplotlib: A 2D Graphics Environment", Computing in
Science and Engg., vol. 9, no. 3, pp. 90-95, 2007.

[12] "Dygraphs", Dygraphs.com, 2016. [Online]. Available:
http://dygraphs.com/. [Accessed: 15- Sep- 2016].

[13] Wu, R., Dascalu, S., and Harris, F, “Environment for Datasets Processing
and Visualization Using SciDB”. In Proceedings of the 24th International
Conference on Software Engineering and Data Engineering (SEDE
2015), pp 223-229, October 12-14, San Diego, CA.

[14] Marks, D., J. Domingo, and J. Frew. Software tools for hydro-climatic
modeling and analysis: Image processing workbench, ARS-USGS
Version 2. ARS Technical Bulletin 99-1, Idaho, USA.

[15] Marr, D., “Hyper-Threading Technology in the Netburst®
Microarchitecture” In 14th Hot Chips, Stanford, CA, August, 2002.

[16] Prototype Github Repository", 2016. [Online]. Available:
"ruiwu1990/big_data_visualization_interaction", GitHub, 2016. [Online].
Available:
https://github.com/ruiwu1990/big_data_visualization_interaction.
[Accessed: 15- Sep- 2016].

