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Abstract 
Highly variable wind velocities in many geographical areas 

make wind farm integration into the electrical grid difficult. 

Since a turbine’s electricity output is directly related to wind 

speed, predicting wind speed will help grid operators predict 

wind farm electricity output. The goal of experimentation 

was to discover a way to combine machine learning 

techniques into an algorithm which is faster than traditional 

approaches, as accurate or even more so, and easy to 

implement, which would makes it ideal for industry use. 

Local Least Squares Regression satisfies these constraints 

by using a predetermined time window over which a model 

can be trained, then at each time step trains a new model to 

predict wind speed values which could subsequently be 

transmitted to utilities and grid operators. This algorithm 

can be optimized by finding parameters within the search 

space which create a model with the lowest root mean 

squared error. 

keywords: machine learning, wind prediction, local least 

squares regression 

 

1 Introduction 
 

In light of recent and growing concerns regarding global 

climate change, an increasing focus has been directed to 

traditional fossil fuel combustion based electricity 

generation techniques and their negative environmental 

effects. On the other hand renewable energy sources, such 

as wind energy conversion devices, ultimately depend on 

energy converted from the sun, as wind is moving air caused 

by the uneven heating of the Earth’s surface [1]. While 

sustainable over our foreseeable future and lacking any 

greenhouse emissions when utilized for electricity 

generation, sun and wind sources are intermittent and have 

been, until recent decades, unpredictable.  

Of all of the electricity being used in this instant, two 

thirds of it is being produced at fossil fuel burning power 

plants, such as natural gas or coal [2]. Integrating power 

plants into the grid which are dependent on intermittent 

sources such as wind creates particular challenges for grid 

operators, whose job is to guarantee each utility customer is 

able to receive the amount of electricity required at the 

quality to which they have become accustomed. Although 

often required by state regulations, utilities are sometimes 

reluctant to incorporate renewable sources into their 

Renewable Portfolio Standards due to these constraints [3].  

The difficulty of predicting both the long and short term 

availability of wind resources presents an obstacle for initial 

capital investors, as the schedule for their return on 

investment is not guaranteed. Additionally, this 

intermittency significantly affects the negotiation of a wind 

farm’s power purchase agreement, a contract made between 

a power plant owner and the utility providing electricity to 

customers, when the projected revenues of the project would 

otherwise be uncertain and so some guarantee as to 

quantities purchased and price paid are required to make the 

project viable [4]. These practical and financial obstacles 

can prevent this beneficial technology from being more 

widely adopted.  

In order to create a solution to the availability 

intermittency problem, a simple supervised machine 

learning regression technique which has been applied to 

wind speed forecasting was implemented. This method was 

preferred as it avoids the computational resources needed to 

process all data at once, provides a simplicity in processing 

that can be utilized on device microprocessors, and allows 

the algorithm to automatically adjust to seasonal or even 

shorter term weather pattern changes without any hand 

tuning. Optimization techniques were applied to determine 

the best parameters for the model, then whittle down the 

time necessary to determine these best parameters.  

The following was undertaken as an endeavor to explore 

the unique challenges facing wind technology in particular 

and concepts related to the proposed solution. After the 

necessary background is expounded in Section 2, the 

solution’s design and implementation is presented in 

Section 3, with the experimental results offered with 

visualizations in Section 4. Finally, in Section 5, current 

applications and ideas for future expansion of the project are 

discussed. 

 

2 Background 
 

So much of our modern lives are dependent on 

controlling and manipulating the flow of electrons. With the 

risks and negative consequences of current electricity 

generation techniques the question is, “at what cost?” 

Current, traditional, fossil fuel burning electricity 

generation techniques lead the pack in contributing to 

greenhouse gasses such as carbon dioxide, methane, and 

nitrous oxide [5].  



Luckily, there are other resources such as sunlight and 

wind, which can be harnessed to help meet our electricity 

consumption. Much like water flows through the oceans, air 

flows through our planet’s atmosphere, gases moving from 

high to low atmospheric pressure instead of liquid water. 

Invisible to the eye, this mysterious force carries a 

burgeoning potential in energy which humans have been 

straining to capture for millennia.  

Modern utilization of wind energy for transformation 

into electric energy requires fine grain time dependencies. 

A combination of signal processing and machine learning 

techniques are valuable in predicting wind speed, and will 

subsequently prove to be vital in power generation from 

wind farms. 

 

2.1 Our Electric Grid  
 

Our electric grid is a highly complex, interconnected 

network of power generation stations, transmission lines, 

and customers. These customers can be industrial, 

commercial, and residential, and represent the load in the 

giant nationwide circuit. 

All the electricity we're using at this moment is being 

generated right now. At power plants across the country, in 

the control center, there is a smooth and continuous process 

of deciding when to ramp up electricity production to match 

demand. “Multiple sources and loads can be connected to 

the transmission system and they must be controlled to 

provide orderly transfer of power. In distributed power 

generation the generators are geographically distributed and 

the process to bring them online and offline must be 

carefully controlled.” [6]  

This intricate system requires control centers manned 

with competent operators making important decisions as to 

how grid operations are managed so that each customer 

receives their instantaneous supply of electricity. A grid 

operator’s chief responsibilities include forecasting this 

electricity load, scheduling the cheapest possible generation 

methods, ensuring that the transmission systems are not 

overloaded or damaged, and reacting to unexpected 

changes. [7] Luckily, due to the routine behavioral habits of 

people, load tends to follow daily and seasonal trends 

making load forecasting relatively straightforward. 

 

2.2 Current Methods  
 

Because the problems presented by the integrating wind 

power into our grid infrastructure have been apparent for so 

long, there have been many attempts and approaches to 

predicting wind speed, especially over the past three 

decades. An efficient introduction to different 

methodologies is a literature review of some of the different 

methods available. A more detailed and constructive 

analysis of two additional approaches will help establish 

some of the aspects of this area which could still benefit 

from attention and effort at improvement.  

One of the first services offered by A Literature Review 

of Wind Forecasting Methods is a pointed description of the 

different ranges of forecasting windows. Ultra-short-term 

forecasting, which spans from a few minutes to 1 hour, is 

helpful for real-time grid operations. Additionally, there is 

the short-term window range, 1 to several hours, which is 

best for economic load dispatch planning. There is also 

medium-term forecasting, which is several hours to 1 week 

and used for reserve requirement decisions. Finally, there is 

the long-term window spanning 1 week to 1 year, or more, 

for optimal operating cost determination or even a feasibility 

study for wind farm design. [8]  

[8] also specifies a number of different methodology 

types for forecasting. The Persistence method, or Auto-

Regressive Integrated Moving Average (ARIMA) is often 

the most accurate method when predicting values within the 

ultra-short term range. Therefore, it should be utilized to 

gauge any novel methods which may be developed. 

Physical methods include numerical weather prediction 

(NWP) models developed by meteorologists. Even though 

these methods require huge amounts of supercomputing 

resources, they’re still used most as the existing commercial 

wind power forecasting methods.  

Many different variations of ARIMA, including AR and 

ARMA, are encompassed under the statistical methods 

umbrella. Additional approaches such as regression and 

Bayesian models are also counted within this collection.  

Another pool of models, termed spatial correlation, 

utilize not one but multiple site measurements to predict the 

wind speed point at one of the sites. This technique is often 

combined with other techniques such as neural networks.  

Neural networks, both back propagation and recurrent, 

are also used on their own for wind speed forecasting, as a 

member of the artificial intelligence category of methods. 

This category also includes fuzzy logic methods, support 

vector machines, some of which are even “found to be more 

accurate that traditional statistical time series analysis.” [8]  

The most important point made by the author, as it 

pertains directly to this work, is one of the recommendation 

for the future of wind forecasting. It is suggested to “do 

further research on the adaptive parameter estimation. The 

models have ability to automatically adapt to the changes of 

the farms and the surroundings.” [8] 

 

3 Optimizing Local Least Squares 

Regression for Short Term Wind Speed 

Prediction 
 

When originally researching predicting changes in wind 

direction for use in controlling wind turbine yaw using 

neural networks, it was suspected that the model’s integrity 

would degrade over time, especially as seasonal weather 

patterns changed, which has been supported by ARIMA’s 

position as the benchmark in wind speed forecasting results. 

Rather than retrain the network periodically when the error 



escalates to a certain threshold a certain percentage of the 

time, it appears to be more practical to have a simpler model 

to be updated as new data comes in.  

The contributing attribute of this work is the ability to 

quickly determine the values for these parameter which 

produce the best results, utilizing typical regression metrics 

(RMSE, MAE, percentage error, and R2) as the evaluation 

criteria. The benefits of this method include increased 

accuracy over both choosing arbitrary parameters and 

utilizing the same model over longer periods of time. 

Necessary computing resources would be minimal and 

economic, and the data collection equipment necessary to 

make these wind speed predictions would consist solely of 

the system’s own onboard sensors. 

 

3.1 Features  
 

While Least Squares Estimation (LSE) utilizes linear 

algebra to determine the best coefficients for a polynomial 

to describe the trend of wind speeds, there are important 

algorithmic parameters which affect the performance of the 

model. These significant parameters include lambda, which 

can be described as the regularization parameter, 

dimensions, which is also defined as the number of terms 

contained in the polynomial, and training window size, 

which here becomes the number of previous time-steps of 

training data included in the Least Squares Estimation 

kernel training.  

The goal of this work was to create a simple and 

straightforward method for determining the best parameters 

to use in LSE of Wind Speed which would minimize the 

evaluation criteria for predictions made at certain time 

windows in an amount of time that would not be prohibitive 

in an industry setting. 

An additional conjecture included the assumption that 

training the model on large amounts of data, while 

improving accuracy, would become cumbersome to 

compute, and that computing resources would be strained 

without any significant improvement in accuracy. This was 

supported by the results list in Table 3.1. It is significant to 

consider that the point on which these models were test was 

temporally distant from the training data, which was 

demonstrated earlier to contribute to error. While there is an 

initial improvement in accuracy, a reflection point becomes 

evident around 9000 training points. Most importantly, at 

around 14,000 data points, the test machine runs out of 

memory resources entirely. 

 

3.2 Design  
 

Preliminary experimentation supported the assumption 

that the coefficients which determine the shape of 

polynomial increasingly lose their ability to fit the data. 

Even though the increase over the year is slight, errors 

would continue to accumulate and the model would lose 

accuracy over time. 

These findings led to a design decision which would 

focus on the ability to quickly prepare accurate models 

utilizing a smaller training set located temporally near the 

desired prediction. This approach would take advantage of 

a continuously updating process to eliminate the eventuality 

of the model becoming obsolete.  

The algorithm was designed to provide optimal 

parameters dependent on the specified prediction window. 

The optimization loop will determine which LSE 

parameters provide the smallest root mean square error. 

These LSE parameters are then utilized over the entire data 

set to predict wind speeds for the best prediction window.  
The parameter lambda, which can be described as the 

regularization parameter, is used to control the fitting 

parameters and guard against over fitting. In a graphical 

sense, it smooths the ripples which would otherwise occur 

in a polynomial of higher degrees. The dimension 

parameter is what designate how many terms will be 

included in the polynomial which describes the trend of the 

data. In the graph, it determines how many inflection points 

are utilized to follow the data’s curves. Finally, the training 

window parameter determines how far back in time the 

algorithm goes back to use training data.  
Performance measures include RMSE calculated as  

𝑅𝑀𝑆𝐸 = √(
∑ (𝑝𝑖 − 𝑜𝑖)

2𝑛
𝑖−1

𝑛
) 

 

where p is predicted wind speed, o is the observed wind 

speed, and n is the number of predictions in the set. The 

MAE value is simply  

𝑀𝐴𝐸 = (
∑ (𝑝𝑖 − 𝑜𝑖)
𝑛
𝑖−1

𝑛
) 

Together these two metrics help determine the variance in 

the magnitude of errors.  

 

3.3 Technologies  
 

Due to its popularity in industry and research, and the 

extensive libraries available, especially for scientific 

computing and machine learning, the main technological 

choice was to utilize the Python programming language [9]. 

Python is also well supported and respected in the 

engineering community with advanced tools for testing and 

debugging. 

The Python package matplotlib is a 2D plotting library 

which produces publication quality figures and was utilized 

for visualizing data, and plotting histograms and graphs. 

[10] This collection of modules greatly contributed to the 

ease with which we were able to generate high quality plots.  

NumPy is a prominent package in the machine learning 

community. [9] This library of functions is comprised of 

Matlab-like processing features such as array object creation 

and linear algebra tools. In addition to utilizing the NumPy 

array objects, simple linear algebra functions were 

employed including the dot function to find dot products, 

the identity function for creating the identity matrix, and 



most importantly the linalg.solve function for solving 

systems of equations providing the α term. 

The final Python module applied is scikit-learn, an 

esteemed machine learning package for data mining and 

data analysis. Although none of the machine learning 

specific functions were used, the provided 

mean_squared_error function was essential in computing 

the error used to compare the effectiveness of the derived 

parameter.  

 

3.4 Implementation  
 

The final design is broken down into three steps which 

include initial preprocessing of the input data to ensure it is 

properly screened to avoid misleading results. Next we 

conduct a parameter search for the necessary values. Finally, 

a test run of the algorithm is conducted over the entire data 

set.  

Input data was downloaded from the Nevada Climate 

Change Portal [11]. Four features were available from the 

original data: wind speed, humidity, barometer, and 

temperature. It’s evident by studying the measurements, that 

there’s a wide discrepancy in their ranges. To avoid the 

problem of incommensurability, the decision was made to 

convert each feature to dimensionless variables through 

normalization.  

A Python module was created to handle these data 

preprocessing steps. Data gets loaded from the csv file into 

Python lists, with any non-numerical values being replaced 

by zeros and any values less than one being rounded 

according to Python’s rint() function. Those lists are then 

converted to NumPy arrays, normalized by dividing them 

by the maximum value in the array, and then saved as a 

multi-dimensional data array.  

During the search for optimal algorithm parameters, a 

section of this data array, made up of all four features listed 

above, including wind speed, is used to train the model on 

the wind speed labels which correlate with a particular 

window of time into the future. Training occurs by using this 

section as the inputs for the kernel computation. Then alpha 

is computed by solving the system of linear equations 

involving the kernel, lambda, and the labels.  

Initial exploration of the algorithm parameters comes 

into play through a very straightforward exhaustive search. 

The program iterates over ranges of window sizes, 

dimensions, and lambdas while keeping track of the values 

which produce the minimum root mean squared error for use 

in the actual testing and running of the local least squared 

error algorithm. 

The simulated annealing optimization was implemented.  

The temperature scheduler decreases the temperature by 

some cooling constant. A new set of parameters is chosen 

randomly, then evaluated to determine their relative errors. 

If the current parameter error is greater than the new 

parameter error, the new state is automatically saved. 

Otherwise the “dice are rolled” to see if the new state will 

be saved anyway.  

Finally, we have optimal values for our algorithm 

parameters to pass to a function very similar to our training 

least squares estimator, but which will run over the entire 

data set, updating the model at each step and saving every 

root mean square error calculation to track the performance 

of the model, as presented in the Section 4.1. 

 

4 Results 
4.1 Polynomial Kernel  
 

The kernel utilized in experimentation was the 

polynomial kernel. During preliminary investigation to 

determine the possible parameter combinations and 

associated evaluation metrics, an exhaustive enumeration 

methodology was implemented. Through iterations of all 

possible combinations of parameters, the root mean square 

error varies broadly. Displaying this error values as the 

algorithm iterates through the parameter ranges, as in Figure 

4.1, illustrates the range of our search space and 

demonstrates the importance of heuristics in parameter 

selection. 

 
Figure 1: Graph of RMS Error for Different Parameters 

 

The data deliver a couple of important insights. First, it 

appears that predicting wind speeds becomes more difficult 

as the prediction window expands, as evidenced by the 

increasing RMS values and decreasing R2 scores. 

Moreover, besides the consistent lambda term, there does 

not appear to be a trend in the parameter values or their 

combinations, which highlights the important of heuristics 

in parameter selection. It is also of significance to note that 

the exhaustive enumeration training times generally exceed 

thirteen minutes, with the greatest training time surpassing 

seventeen minutes. Finally, utilizing some of these 

combinations of parameters for wind speed predictions 

produce the following graphical results. 

Predicting wind speeds at a five minute window 

produces a low root mean squared error; as expected, an 

examination of the graph in Figure 4.2 shows that the model 

does a good job of approximating the time series with the 

exception of a few sharp outliers. With the highest R2 value 

and lowest RMS error, this graph represents the best results 

for exhaustive enumeration parameter search.  



The 35 minute results, in Figure 4.3, are worth 

examining, as the percent error is slightly larger, even 

though the RMSE is low. These predictions tend to be 

smoother and closer to the actual values. Another important 

feature is that the model does a fair job of handling abrupt 

changes in velocities. 

 
Figure 2: Exhaustive Enumeration Wind Speed Predictions 

for 5 Minute Window 

 

 
Figure 3: Exhaustive Enumeration Wind Speed Predictions 

for 35 Minute Window 

 

The graph in Figure 4.4 captures the model generated for 

a 60 minute prediction window. With the lowest R2 score 

and highest RMSE, this model has the poorest performance. 

The model produced with these parameters appears to 

“shadow” the previous steps actual wind speed value, which 

would not be helpful to the intended user. 

 
Figure 4: Exhaustive Enumeration Wind Speed Predictions 

for 60 Minute Window 

 

One of the four principal assumptions which can justify 

the use of a linear regression model is a normal distribution 

of errors [12]. This assumption is clearly supported by the 

histogram presented in Figure 4.5, which gives confidence 

in our model and its parameters. 

 
Figure 5: Histogram of Errors 

 

4.2 Optimization with Simulated Annealing  
 

While the polynomial models generated under the 

exhaustive enumeration approach provide good results, the 

training times for certain models can take over seventeen 

minutes, which would be prohibitive for use in an industrial 

setting. In comparison, less than one and a half minutes of 

optimized training time would likely fall within application 

constraints. The additional feature of faster training time 

supports Simulated Annealing as an optimization method. 

Moreover, even though the Simulated Annealing training 

times are at least 90% shorter, their RMSE values are not 

significantly higher. 

 

Table 1 Comparison of Training Times and RMSE Values 

Prediction 

Window 

Enum 

(sec) 
SA 

(sec) 
Enum 

RMSE 

SA 

RMSE 

5 minute 1026.82 73.26 0.63 0.74 

35 minute 810.46 68.19 0.72 0.73 

60 minute 825.84 85.37 0.83 0.96 

 

It is important to note that because of the randomized 

aspect to parameter generation, it is not guaranteed that the 

optimizing simulated annealing algorithm will produce the 

same parameters. Another helpful feature of utilizing the 

optimization is that, because the search times are so much 

shorter, a wider range of variables could be searched to 

provide the more expressive models. 

Similarly to the model generated by the exhaustive 

enumeration parameters, the five minute ahead model 

illustrated in Figure 4.6 provides a good approximation for 

most points. Since the lambda value is significantly higher 

than the other model, the curve is much smoother and 

doesn’t provide the expressive predictions for the sudden 

change in velocities. Still, this model provides comparable 

results at a small fraction of the training time cost.  

The 35 minutes simulated annealing results, included in 

Figure 4.7, are virtually indistinguishable from those 

generated by exhaustive search methods, which is to be 

expected as the R2 score and RMS value are almost 

equivalent to each other. In both this model and the previous 

one, it is interesting that such disparate parameter 



combinations manage to produce such analogous results, 

providing justification for utilizing the simulated annealing 

heuristics. 

 
Figure 6: Simulated Annealing Wind Speed Predictions for 

5 Minute Window 

 

 
Figure 7: Simulated Annealing Wind Speed Predictions for 

35 Minute Window 

 

Finally, we have the 60 minute model in Figure 4.8 

generated by the simulated annealing parameter search. The 

model overshoots the actual values is significant places, 

missing some of the important peaks and valleys. Root mean 

squared error is slightly higher and the R2 score is definitely 

low, but the model is still capable of describing general 

trends in wind speed behavior, which is still of benefit. 

 
Figure 8: Simulated Annealing Wind Speed Predictions for 

60 Minute Window 

 

Based on the results collected and presented here, it’s 

evident that nonlinear regression utilizing a polynomial 

kernel is a viable method for predicting wind speed. 

Utilizing a sliding window for model training prevents 

model deprecation over time. To continuously train these 

models, certain parameters must be fixed. Instead of 

enumerating over all possible combinations of parameters, 

it is more efficient to utilize the simulated annealing 

optimization technique, without any significant increase in 

RMSE values, as long as model consistency is not a problem 

constraint or user requirement. 

 

5 Discussion 
 

As humankind searches for ways to cope with and 

counteract the negative consequences of our rampant 

burning of fossil fuels, new technologies and political 

policies emerge. Applying an optimization algorithm for 

localized least squares regression techniques to predicting 

wind speeds is my contribution to our stalwart stand in 

support of new enterprises in electricity generation. Being 

able to accurately predict wind speeds may allow wind 

turbine farms to better predict their own electricity output, 

which will help make them more profitable and therefore 

more attractive to initial investors, and hopefully break 

down barriers to their entry into the electricity generation 

market.  

 

5.1 Applications  
 

In addition to the economic benefits to potential 

investors of reducing financial risk and encouraging the 

expansion of the wind electricity generation business, the 

main application for this work was envisioned as providing 

assistance to electricity grid operation, adding reliable 

resource forecasting to their current process which has 

historically been limited to load forecasting [13]. Relying on 

renewable resources, such as wind energy, provides 

challenges as their availability tends to be intermittent. If 

near future wind farm generation output is better understood 

then their integration into the existing grid network will be 

more effective and less detrimental to overall operation, as 

there won’t be any sudden drop in supply which could a 

cascade of failures throughout the system.  

Furthermore, more accurate power output predictions 

would reduce the necessity of continuing the practice of 

exploiting spinning reserves at traditional fossil fuel burning 

generation sites, such as coal and natural gas. To be ready to 

compensate for any sudden decrease in supply which might 

be caused by drops in renewable energy resources such as 

solar or wind, a number of these fossil fuel burning 

generators must be kept running and online but without any 

load, to offset ramp up times so they can be ready in time to 

meet instantaneous demand and compensate for sudden 

losses, sometimes in as little as ten minutes [14]. These 

spinning reserves contribute excess CO2 and are a terrible 

waste of fuel and water resources.  

Finally, since the local least squares regression 

techniques have been demonstrated to be effective, 

industrial-sized wind turbine manufacturers and wind farm 

engineers could easily incorporate them into their 



supervisory control and data acquisition systems and 

proprietary software. The algorithm is simple enough and 

machine learning libraries are readily available to aid non-

data scientist, software engineers in incorporating this 

technique into their current software designs. Additionally, 

the necessary sensors are already incorporated onto the 

turbines which utilized in commercial wind generation 

farms.  
 

5.2 Future Work  
 

One of the first further experiments we would like to 

conduct would be to use more than one geographical 

location to see if that would help improve predictions for 

expanded prediction windows, as it does with statistical 

approaches [13]. Utilizing a cluster of sites’ data may 

provide more features to make the predictions more 

accurate.  

There are a number of ways to expand this technique to 

extend functionality. For instance, predicting wind speed is 

a preliminary step to predicting output power. There are 

power electronic components and aggregation factors which 

contribute to the actual electricity delivered to the electrical 

grid. [14] A more efficient model would map climate 

features of a geographical area directly to the total power 

output of an entire wind farm. This method of optimization 

can also be applied to research models which incorporate 

local regression into their prediction approach.  

As stated, the algorithm is simple and not 

computationally expensive. As such, it would be interesting 

to prototype a full system utilizing the Raspberry Pi 

platform. Necessary equipment would include an 

anemometer and other weather sensors, the Raspberry Pi 

computer or Netduino micro-processing board, and a small 

wind generator. This prototype platform could facilitate 

direct prediction of electricity output instead of prediction 

of wind speed and subsequent calculation of the electricity 

output. Additionally, an interface allowing a user to enter a 

prediction window would make the prototyped system 

complete. 
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