
Data Retrieval and Parsing of Form 4 from the
Edgar System using Multiple CPUs

Raja H. Singh∗, Nolan Burfield∗†, Frederick Harris, Jr.∗
∗Department of Computer Science and Engineering, University of Nevada, Reno

email: †nburf@nevada.unr.edu

Abstract—In this paper we present a parallel system that
retrieves and parses Form 4 documents from the Securities and
Exchange Commission’s Electronic Data Gathering, Analysis
and Retrieval database (EDGAR). This information is very
important for investors looking at insider trading information
to make investment decisions. However, the information’s
usefulness is inversely related to the time it takes to retrieve
and analyze the information. A sequential system is slow due to
the latency associated with the retrieval and parsing of the
Form 4s, which on average exceeds 1000 per day. By making
the retrieval and parsing of Form 4s parallel we were able to
attain the max speed up of 20x, resulting in parsing of a daily
index with 1000 forms in under 30 minutes instead of 9 hours
it takes utilizing a single processor.

Index Terms—Commodity Cluster; Sun Grid Engine; Investment;
Open MPI; Java; MySQL; XML Parsing; Document Object
Model;

I. INTRODUCTION

The Securities and Exchange Commission (SEC) is the
regulatory branch of the government that is responsible for
“protecting investors, maintaining fair, orderly, and efficient
markets, and facilitate capital formation [1].” According to an
article on Gallup [2] over 54 percent of Americans own stocks.
SEC states that individuals investing in the stock market do
so to fund goals such as paying for their homes, sending
their children to school, and to secure their futures. Unlike
banking, stock investments are not guaranteed by the Federal
government and have a high potential of losses. Due to the
nature of the investments, the SEC recommends conducting
sufficient research about the company prior to investing in
their stocks.

The SEC’s primary objective is to provide investors with
the opportunity to research the company/companies prior to
investment. To carry out the said objective, the SEC requires
public companies to disclose “meaningful financial and other
information to the public [1].” One such form (Form 4) is part
of the required disclosure.

A. Form 4: Insider Trading

Forms 4, 4A, 3, 3A, 5 and 5A are categorized as Insider
Trading forms. Contrary to the belief that insider trading is
illegal, SEC specifies that it is used for both illegal and legal
conduct [3]. In the context of this paper we will refer to insider
trading as purchasing or selling of stocks in a company by
individuals where they are corporate officers. Any corporate
insider (company’s officers, directors, or beneficial owners

who have more than 10 percent of a company’s equity) are
required to file a “statement of ownership regarding those
securities [3]” using Form 3. Form 4 is used to report the
changes in ownership i.e. purchasing and selling shares. Form
5 is used to report any transactions that the insider didn’t report
on form 4; Form 5 is used to report any transactions that should
have been reported on Form 4 [3].

According to [4], Form 4 is the most filed form between the
years 1994 - 2011, with more than 4 million filings according
to the authors. This also holds true today, for example in the
year 2015 there were 397910 Form 4 filings, with 82126 of
those Form 4 filings in the fourth quarter of 2015 alone. In
order to parse the large number of these forms, a system has to
be created to do so automatically at a reasonable speed so that
the useful nature of insider trading information is preserved.

B. Form 4: Potential Uses

We will focus on the retrieval of Form 4. The reason behind
this is that several investors look to Form 4 to determine the
change of ownership within the company. This is vital infor-
mation because it indicates the confidence in the company’s
growth potential. For example, an investor is able to look
at Form 4 filed by a high ranking officer and determine if
the insider is accumulating or disposing of their holdings in
the company. An investor may utilize this information when
considering the purchase or sale of shares. For example, if
the insider is purchasing shares, it could possibly indicate
that they have internal information indicating potential growth
of the company. However if an insider disposes shares in
the company then it indicates their knowledge of potential
downturn in the company’s performance in the future. In this
paper we will provide an overview of the system, and its
optimization through the use of multiple CPUs.

II. PRIOR WORKS

The financial data vending industry is largely corporate,
therefore there have not been many published works on agents
downloading and parsing information from the SEC. Up to the
point of writing this paper, we were only able to locate two
papers that discussed the retrieval of data from the EDGAR
system. [4] by Garcia and Norli offer a method to crawl
EDGAR for Form 8k, the second most common filed form
after Form 4, is used to announce major events to shareholders.
However, Garcia and Norli utilize it to analyze CEO turnovers.



The writers wrote a Perl program to download all 8k files
locally and then parse through and analyze the forms.

The second paper [5], written by D. A. Lyon, discusses
parsing the Central Index Keys (CIKs) and correlating them
to stock tickers. Currently EDGAR only uses company name
or CIK to present the data on the requested company. Lyon
created a graphical user interface that allows the user to enter
the company ticker to gather the data from EDGAR; Lyon
used Java to write HTML scrapers to gather data from the
EDGAR System. We were not able to locate any papers
addressing gathering and parsing Form 4, however we did
discover companies that charge a monthly subscription fee to
disseminate Form 4 information to their subscribers.

III. DATA SOURCE & FORMAT

SEC maintains all filings on their Electronic Data Gathering,
Analysis and Retrieval database (EDGAR) system. The data
can be accessed either through their EDGAR search page
or through SEC’s File Transfer Protocol (FTP) server. The
formats offered by the SEC are HTML, “eXtensible Business
Reporting Language” (XBRL) and Extensible Markup Lan-
guage (XML). Our system pulled the Form 4 pages in XML
format. Please refer to Figure 1 for the format of the document.

A. File Transfer Protocol (FTP) server

The FTP server allows users to log into the system anony-
mously by utilizing your email address. We utilized this FTP
method, making anonymous FTP calls to the server. Refer to
[6] for specific instructions on logging into the system. The
SEC does request bulk FTP requests be performed between
9:00 p.m. and 6:00 a.m. ET.

1) Indexes: The EDGAR system provides indexes for FTP
retrievals. These indexes list Company Name, Form Type,
CIK, Date Filed and the File Name; this index also includes
the folder path to the document [6]. Please refer to Figure 2
for the image of the EDGAR indexes set-up. The system offers
four types of indexes:

• company -Index file sorted by the company name.
• form - Index file sorted by form type.
• master-Index file sorted by the CIK.
• XBRL - “List of submissions containing XBRL financial

files, sorted by CIK number; these include Voluntary Filer
Program submissions [6].”

The indexes are filed daily on the EDGAR system contain-
ing all submissions made to the organization. The system also
maintains a quarterly index list containing all filings for the
quarter for a given year. These date back to 1994 as shown in
Figure 2. Inside each index, as stated above, is the listing of
all files based on the type of index file chosen (i.e. company
vs form vs master). Please refer to Figure 3 of the image of
a daily index file (type master).

IV. SYSTEM OVERVIEW

The system is built to pull all data from the SEC and store
it into a MySQL database. It relies on multiple classes that
can be categorized into specific functionality of the system.

Figure 1. This shows the XML format of the downloaded Form 4 to be
parsed by the system.

Due to the space limitations we will not discuss every class
within the system but will instead discuss classes that assist
us in giving a general overview the system in the following
sections.

A. FTP

The system relies heavily on the FTP class. The primary
function of this class is to open an FTP connection, and
connect to a specified destination. The connection stays open
until either it is closed or the system exits. This class must
be instantiated when used in order to keep a persistent con-
nection and handle connection failures. Running the parallel
application several nodes may fail when attempting to pull
FTP data, therefore the FTP class must handle this and still
grab the necessary data. The approach the system takes is to
continue to attempt a connection until the data is pulled. To
avoid corruption in the data FTP is set to transfer as binary,
which is not the default for the Java Apache Commons-net
FTPClient [7].



Figure 2. This figure shows the EDGAR file-path with all the daily indexes
dating back to 1994.

B. System updating

The system initializes by checking the last date the MySQL
database was updated and computes the number of days that
it needs to retrieve and store from the EDGAR system. To
achieve this we created a set of nested classes that compute
the date difference between the current time and the last known
update date for the database. Since the SEC filings are only
accepted and updated Monday through Friday, the system does
not include the weekends when trying to retrieve data from the
system.

C. Index Retrieval

The EDGAR system has an efficient method to disperse
information on filings for specific dates as explained in prior
sections that rely on the “index schema.” Our system uses the
FTP connections to pull the index for a specified time frame
(either daily index for a specific date or a quarterly index for
a specific quarter of a year). The classes responsible for this
retrieve the index and then parse the index storing each filing
into a HashMap, where the key is the type of the filing (ie.
Form 4) and the value is an ArrayList of a type DailyData.
Please refer to [8] for details about HashMap and ArrayList
data structures. The Daily Data is a container that stores every
component of the index information listed below:

• Company Name
• Form Type
• CIK
• Date Filed
• File Name
• Folder path to the document

Once the data from the daily index file is parsed, and stored
into the appropriate data structure, the information is passed
to each form parsing class. Meaning the index retrieval class
iterates through the HashMap and invokes the appropriate class
to handle each type of the form. As of now our system only has
parses for the insider trading forms. The system is designed
for easily adding in new SEC form parsers without the need
to modify other classes.

D. Data Retrieval

The system currently has a class to retrieve the list of forms
passed to it by the index retrieval class. For example when the
Form 4 class is invoked it is passed a list of DailyData objects
that contain the location of the forms in the EDGAR system.
The class iterates through the list and makes FTP requests to
pull the specified form one at at time and parses the retrieved
data.

E. Data Parsing Class

To parse the XML data retrieved from Edgar, we created
the Form 4 parsing class. The class builds a Document Object
Model (DOM) tree object and recursively iterates through
all of the nodes within the tree storing the values into a
string builder object. In order for us to parse the retrieved
documents, we had to know the structure (values) of the XML
document prior to computing. We utilized the insider trading
form specifications provided by the SEC in [9] to create the
parsing class. If the element/node was not found, a default
value of null is stored for the field.

For the purpose of testing the efficiency of parallelization
of the bottleneck of the system, we modified the code so that
the values were dumped into a CSV file instead of storing
it in a database. We decided to not store the values into a
database for this paper because the parallel execution of the
system. In order to store the data into a MySQL database the
system requires a pool of Java Database Connectivity(JDBC)
connections, unfortunately it was nonsensical on the Sun Grid
Engine (SGE) using MPI. If we had chosen to proceed with
the storage of the data into MySQL database, it would have
resulted in large network overhead.

Refer to Algorithm 1 for the pseudo algorithm of the
system.

Algorithm 1 System Overview
Compute the date difference between current date and last database
update date initialize retrieval of data for each day
for each date retrieve the daily index do

for each retrieved Daily index file: initialize index parsing do
for each parsed index file do

Store each form information into a Daily Data object
Store each Daily Data object into a

Hash Map <Key:Form Type, Value: List<Daily Data>>

Invoke the appropriate parsing class to parse and
store data into database.

end for
end for

end for



Figure 3. This figure shows contents of a daily index file. It is an index of all the filings for the specified date, including the name of the filing entity, the
type of form filed, the CIK for the filer and the location (file-path) of the form.

V. HARDWARE AND LANGUAGE

The code was written in Java programming language due
to the cross platform nature of Java and the vast number
of libraries available for software development. Apache Ant
was used to build/compile the system and was executed on
the Oracle Grid Engine (previously known as the Sun Grid
Engine). Message Passing Interface (MPI) was used to handle
the communication between the CPUs in the cluster.

The grid has 27 Dell Servers with 16 cores each for a total
of 432 cores. Each server has the following specification [10]:

• Dual 8 core Intel E2650v2 2.6 GHz processors
• 256 GB RAM
• 10 GBPS Ethernet
• 1.2 TB of local storage

VI. PROFILING: PARALLEL JUSTIFICATION

Prior to profiling the code we already knew that the system’s
latency came from the FTP requests, however it was required
to prove this in order to justify the parallelization of the
system. We did not use the HPROF profiler because of the
complications associated with submitting jobs to the Oracle
Grid Engine.

In order to profile the sequential execution, we created a
profiling class using the System.nanoTime(). Refer to
[11] for detailed specifications on the Java system timer. Using
the profiling class, we were able to time every function call
made by the system. Table I shows the three of the most time
intensive functions in the execution of the program. Please
note that the main function calls the RunForms function which
entails calls the FTPRequests function. Therefore the times
for the calling functions exceed the times of the function(s)
being called. Based on the timings shown in Table I we were
able to determine the FTPRequest function was the appropriate
function to parallelize because it contributes (on average)
94.5% to the total computational time.

Table I
THE TABLE ABOVE SHOWS THE MOST TIME INTENSIVE FUNCTION CALLS.

50 75 100 250 500 750 1000

main 27.66 41.06 54.52 135.80 269.36 405.79 541.09
RunForms 27.01 40.50 53.98 135.26 268.81 405.24 540.54
FTPRequest 26.12 38.93 51.68 128.43 256.06 384.51 512.10

VII. SEQUENTIAL EXECUTION

The sequential code is described in Section IV System
Overview and Algorithm 1. The sequential code was also
executed on the Oracle Grid Engine to ensure consistency. For
the parsing we utilized a single daily index with 1025 Form
4 documents in the index list. We did a total of 7 iterations,
increasing the number of Form 4 documents parsed during
each iteration; we parsed the following number of forms for
each iteration 50, 75, 100, 250, 500, 750 and finally 1000. This
allowed us to compare the sequential and parallel executions.

VIII. PARALLEL EXECUTION

For the parallel execution every computer node (CPU) opens
the daily master index shown in Figure 3, parses the index list
as mentioned in Algorithm 1, and stores it into a HashMap.
Next each node strides the Form 4 list extracting DailyData
objects for each Form 4 that node is responsible for. The nodes
stride the ArrayList of DailyData types based on their rank
and the total number of nodes initialized on the grid. Refer to
Algorithm 2 for an overview of the logic for each node in the
parallel execution.

Once each node creates a sub list of its Form 4 documents,
the rest of the code each node executes is the same as
sequential. Due to Java’s garbage collection feature, utilizing
shared memory was not feasible. Therefore each node ran the
same code in parallel without communication with any other



Algorithm 2 Parallel System Overview
Retrieve the daily index
for each retrieved Daily index file: initialize index parsing do

for each parsed index file do
Store each form information into a Daily Data object
Store each Daily Data object into a
Hash Map <Key:Form Type, Value: List<Daily Data>>

for each Form Type do
Stride the List<Daily Data>
Build new list based off of rank
Invoke the appropriate parsing class to parse
Output parsed data to CSV

end for
end for

end for

nodes. The sequential algorithm we parallelized in this manner
is the ideal “embarrassingly parallel problem.”

A. Set-up

As with the sequential execution, there were a total of 7
iterations with each iteration increasing the number of forms
as follows: 50, 75, 100, 250, 500, 750, and 1000. However,
for each one of the iterations where the number of forms was
increased, the parallel execution ran each iteration five times
starting with 4 nodes and increasing by 4 up to a total of 20
nodes; the number of nodes used for each form iteration were
4, 8, 12, 16, and 20.

To avoid the networking bottleneck when making FTP calls,
we utilized a specific round-robin scheduling scheme to choose
workers. The system was initialized so that the slots (number
of nodes requested) “are filled one per machine until all
machines have one slot filled, and then the next slot on each
machine is filled, until all requested slots are provided [10].”
However since there are 29 servers and the max number of
nodes we requested are 20 at any given time, we never ran
into a scenario with more than one node per server/box.

IX. RESULTS

The results were as expected. The sequential execution of
the data retrieval and parsing takes longer than reasonable
times. An average daily index contains over 1000 Form 4
documents. At the current execution speeds, a sequential
execution of the system takes around 9 hours to parse 1000
forms. This is unacceptable in the financial industries where
time is very critical factor when determining how to react
on the information attained; the benefit of any information is
inversely proportionate to the time. The longer the information
is out there, the less it is worth. Once the system was
parallelized the runtime drops drastically as shown in Table II.
For example, parsing 1000 forms with 4 CPUs resulted in a
completion time of around 2 hours and 30 minutes. Figure 4
visualizes this and can show that by simply adding in 4 nodes
will result in an acceptable data collection time (Figure 5
shows this data with normalized values).

Since the bottleneck of the system could be divided into
individual parts and executed independently of each other,

the speedup increased in conjunction with the number of
processors used. This resulted in a relatively constant speedup
for each node size regardless of the number of forms parsed.
For example using 4 processors the speedup stayed between
3.5X to 4X. This makes sense, because even though there
was no communication between the processors, they were
still vying for the same network resources, resulting in a lag.
Table III shows that values of speedup through all iterations,
as the number of forms parsed increases the speedup increases
as well. However, speedup of all nodes does not change
drastically. With 20 nodes speedup is about 20 when 1000
forms are parsed. Please refer to Figure 6 for the visualization
of the speedup values; it shows the gradual increase of speedup
for each number of nodes.

The key function of the system is to retrieve and extract
EDGAR data and store it into local database. The speed at
which the data is extracted is a very important metric to
determine whether the system is feasible for use in the real
world scenario. Currently our system (upon parallelization)
parses around 34 forms per minute using 20 nodes. Table IV
shows the values for each iteration performed, and these values
are visualized in Figure 7. Looking at the trends in the graph
it can be seen that the throughput follows the trend of speedup
exactly.

Table II
THE TABLE ABOVE SHOWS THE RUN TIMES OF THE PROGRAM

THROUGHOUT EACH PROCESSOR SIZE AT EACH ITERATION OF QUANTITY
OF PARSED FORM 4.

1 4 8 12 16 20

50 27.66 7.55 4.33 3.25 2.73 3.26
75 41.06 10.94 5.95 4.33 3.27 2.74
100 54.52 14.05 8.08 5.40 4.53 3.73
250 135.80 34.46 17.97 11.85 9.93 7.97
500 269.36 68.11 34.63 23.16 19.85 14.46
750 405.79 102.05 51.12 35.01 28.56 22.13
1000 541.09 135.54 68.16 45.77 37.15 28.75

Table III
THE TABLE ABOVE SHOWS THE SPEEDUP OF THE PROGRAM THROUGHOUT

EACH PROCESSOR SIZE AT EACH ITERATION OF QUANTITY OF PARSED
FORM 4.

1 4 8 12 16 20

50 1.00 3.66 6.38 8.50 10.11 8.46
75 1.00 3.75 6.89 9.46 12.53 14.97
100 1.00 3.87 6.74 10.09 12.02 14.58
250 1.00 3.94 7.55 11.45 13.67 17.01
500 1.00 3.95 7.77 11.62 13.56 18.61
750 1.00 3.97 7.93 11.58 14.20 18.33
1000 1.00 3.99 7.93 11.81 14.56 18.81

X. CONCLUSION AND FUTURE WORK

As stated in the problem, it is necessary with financial data
to receive the information as soon as possible in order to react



Figure 4. The total time in minutes to finish execution of each processor
size at each iteration of quantity of parsed Form 4.

Figure 5. This shows that same as Figure 4 with the data scaled to log 10
along the time axis to better show run time differences.

Figure 6. This figure shows the speedup of the program run time, throughout
each processor size at each iteration of quantity of parsed Form 4, with the
baseline being the sequential execution time (Sequential Run Time / Parallel
Run Time).

Figure 7. This figure shows the throughput of the Form 4 parsing, the system
throughput is calculated on forms parsed per minute.

to the changing markets. In order to do this a delay of 9 hours
would not be an acceptable time frame to get information from
a Form 4 document filed in the Edgar database. Parallelization
of the program successfully dropped that time delay down to

Table IV
THE TABLE ABOVE SHOWS THE THROUGHPUT OF THE PROGRAM

THROUGHOUT EACH PROCESSOR SIZE AT EACH ITERATION OF QUANTITY
OF PARSED FORM 4.

1 4 8 12 16 20

50 1.80 6.62 11.53 15.37 18.28 15.29
75 1.82 6.85 12.58 17.28 22.90 27.35
100 1.83 7.11 12.36 18.50 22.05 26.75
250 1.84 7.25 13.91 21.08 25.16 31.33
500 1.85 7.34 14.43 21.58 25.18 34.56
750 1.84 7.34 14.67 21.42 26.25 33.88
1000 1.84 7.37 14.67 21.84 26.91 34.77

Figure 8. Efficiency.

only 27 minutes. This time was achieved with running the
same algorithm on 20 processors at once, and since the nodes
all run the same logic there is no need for communication
between them.

Achieving a large speedup was the purpose of the paral-
lelization of the bottleneck within the program. That is to
say processing as many forms per minute as possible is most
beneficial when talking about the financial data. Since an
average daily size of Form 4 submissions is around 1000 and



these can be fully processed and stored in under 30 minutes
the parallel program accomplishes the goals set out to be done.

There is much work that can be done to make the system
a comprehensive tool to gather the data from EDGAR. Please
see the list below for future work:

• Add parsing class to parse all key forms such as 10-k,
10-Q, 8-K, 13-F, 13-H, etc.

• Add a View to the system that visualizes the data both
in a tabular and graphical manner.

• Add a package to the system that extracts historical data
so back testing can be performed to check the validity of
any trading strategies.

• Create a class that utilizes Map Reduce to parse complex
forms with XBRL formats.

• Write a RSS (Rich Site Summary) reader to update the
system live based on the up to date filing information.

Form 4 information offers great a great indicator of com-
pany’s direction, performance/profit wise. The system can be
utilized as stand alone for long term investments or it could be
used in conjunction with the historical data. For example the
system could be utilized to find insiders with a track record of
indicating the future behavior of a company. This can be done
by back testing their past insider trading actions and comparing
them to the historical movement of the company. If they have
a track record of making appropriate trades based on possible
future movements that specific insider’s actions can be tracked
to make investment decisions. The possible uses of the insider
trading are too many to list them all in this paper.

ACKNOWLEDGMENT

This material is based in part upon work supported by the
National Science Foundation under grant no. IIA-1301726.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] “What We Do.” SEC.gov. Web. 05 Apr. 2016.
[2] “In U.S., 54% Have Stock Market Investments, Lowest

Since 1999.” Gallup.com. N.p., n.d. Web. 14 Dec. 2015.
<http://www.gallup.com/poll/147206/stock-market-investments-lowest-
1999.aspx>.

[3] “Fast Answers.” SEC.gov. Securities and Exchange Commission, n.d.
Web. 2 Mar. 2016. <https://www.sec.gov/answers/form345.htm>. Forms
3, 4, 5

[4] D. Garca and . Norli, Crawling EDGAR, The Spanish Review of
Financial Economics, vol. 10, no. 1, pp. 110, Mar. 2012.

[5] D. A. Lyon, Multi-threaded data mining of EDGAR CIKs (Central Index
Keys) from ticker symbols, 2008 IEEE International Symposium on
Parallel and Distributed Processing, 2008.

[6] “Information for FTP Users.” Information for FTP Users.
Securities and Exchange Commission. Web. 5 Mar. 2016.
<https://www.sec.gov/edgar/searchedgar/ftpusers.htm>.

[7] “Apache Commons Net Overview.” Apache Commons
Net Overview. Apache, n.d. Web. 21 Mar. 2016.
<https://commons.apache.org/proper/commons-net/>.

[8] “The Java Tutorials.” The Java Tutorials. Oracle, n.d. Web. 27 Jan. 2016.
<https://docs.oracle.com/javase/tutorial/>.

[9] “EDGAR Ownership XML Technical Specification (Version 5.1).”
EDGAR Ownership XML Technical Specification (Version 5.1).
Securities and Exchange Commission, n.d. Web. 15 Mar. 2016.
<https://www.sec.gov/info/edgar/ownershipxmltechspec.htm>.

[10] “High Performance Computing (The Grid).” The Grid Specifications.
Web. 15 Mar. 2016. <http://www.unr.edu/it/research-resources/the-grid>.

[11] “Java Platform SE 8.” Java Platform SE 8. Oracle. Web. 17 Mar. 2016.
<http://docs.oracle.com/javase/8/docs/api/>.

[12] “Using EDGAR - Researching Public Companies.” In-
vestor.gov. Securities and Exchange Commission, n.d. Web.
1 Feb. 2016. <https://www.investor.gov/researching-managing-
investments/researching-investments/using-edgar-researching-public-
companies>.

[13] Gupta, Lokesh. “Java XML DOM Parser Example Tutorial.”
HowToDoInJava. N.p., 31 July 2014. Web. 10 Feb. 2016.
<http://howtodoinjava.com/xml/java-xml-dom-parser-example-
tutorial/>.

[14] “Welcome - Apache Ant.” Apache Ant. N.p., n.d. Web. 4 Apr. 2016.
<http://ant.apache.org/>.

[15] “About JDBC Resources and Connection Pools.” (Sun Java System
Application Server Platform Edition 8.2 Administration Guide). Oracle,
n.d. Web. 24 Feb. 2016. <https://docs.oracle.com/cd/E19830-01/819-
4712/ablii/index.html>.

[16] “MPI Documents.” MPI Documents. Web. 12 Mar. 2016.
<http://www.mpi-forum.org/docs/>.

[17] “Chapter 4 Tutorial.” MySQL. N.p., n.d. Web. 29 Jan. 2016.
<http://dev.mysql.com/doc/refman/5.7/en/tutorial.html>.


