
MUSE: A Music
Conducting Recognition System

Chase D. Carthen*
Richard Kelley

Cris Ruggieri
Sergiu M. Dascalu

Dept. of Computer Science and Engineering
University of Nevada
Reno, Nevada 89557

chase@nevada.unr.edu, organicjustice@gmail.com, cris.ruggieri@gmail.com
fred.harris@cse.unr.edu, dascalus@cse.unr.edu, richard.kelley@gmail.com

Justice Colby
Frederick C. Harris, Jr.

Abstract—In this paper, we introduce Music in a Universal
Sound Environment(MUSE), a system for gesture recognition in
the domain of musical conducting. Our system captures conduc-
tors’ musical gestures to drive a MIDI-based music generation
system allowing a human user to conduct a fully synthetic
orchestra. Moreover, our system also aims to further improve a
conductor’s technique in a fun and interactive environment. We
describe how our system facilitates learning through a intuitive
graphical interface, and describe how we utilized techniques from
machine learning and Conga, a finite state machine, to process
inputs from a low cost Leap Motion sensor in which estimates the
beats patterns that a conductor is suggesting through interpreting
hand motions. To explore other beat detection algorithms, we
also include a machine learning module that utilizes Hidden
Markov Models (HMM) in order to detect the beat patterns
of a conductor. An additional experiment was also conducted for
future expansion of the machine learning module with Recurrent
Neural Networks(rnn) and the results prove to be better than a
set of HMMs. MUSE allows users to control the tempo of a virtual
orchestra through basic conducting patterns used by conductors
in real time. Finally, we discuss a number of ways in which our
system can be used for educational and professional purposes.

Index Terms—pattern recognition, machine learning, music,
hidden markov models, education

1 INTRODUCTION

Although music is fundamentally an aural phenomenon,
much of the communication required for an ensemble to
produce music is visual in nature. In particular, musical
conductors use hand gestures to communicate with musicians.
Musical conductors only form of feedback for improving their
conducting is mainly received from a band and is very limited
without the aid of a band. Beginning conductors lack an
efficient way to practice conducting without a band present to
help them hone their skills and lack the skill of experienced
conductors that have worked many hours with bands. There
are currently many gesture recognition software that have been
built for the purpose of making music easier and enjoyable.

Recent advances in sensor technology are making such
gesture recognition feasible and economical; cameras such
as Microsoft’s Kinect and the Leap Motion Controller are
able to estimate the kinematics and dynamics of arms and

hands in real time, meaning that conductors’ gestures can
now be accurately and cheaply recorded by the computer.
There have been a few projects that have investigated and
implemented different methods of capturing conducting. These
methods have utilized the Leap Motion and Kinect in order
to control music with gestures in different ways. Projects
such as those from the developers WhiteVoid that utilizes a
single Leap Motion, baton, and speakers while allowing users
to control the tempo and individual instruments [1]. Another
project [2], utilizes the Kinect in order to capture conducting
gestures for manipulating tempo and the volume of individual
instruments. There have been some old systems in the past that
have been used outside of conducting but more for creating a
coordinated performance such as [3] where many cellphones
were synchronized for playing a symphony. These systems can
provide a way for experienced or new users to learn conducting
with feedback in a new way.

MUSE has been designed for beginning conductors to learn
and enjoy conducting. MUSE allows users to learn simple
conducting patterns and utilizes the Leap motion sensor’s API
[4], and algorithms such as: a finite state machine recognizer
called Conga [5] and HMMs. These algorithms allow MUSE
to effectively detect a user’s conducting basic conducting
patterns and control the tempo of a given song. An additional
experiment was also conducted with rnn to determine if it is
better than a HMM and to be later Incorporated into MUSE.
The rnn experiment is included since not many papers seem
experiment with using an rnn. MUSE provides a graphical user
interface (GUI) for users to control and select different songs
and even record previous performances of songs. Unlike other
previous conducting projects MUSE has been designed as an
architecture that is expandable.

In this paper we first describe the related work. Secondly,
we then outline the architecture of our system and some of
its functionality. We then give details on the algorithms used
to capture conducting by the system and their accuracy. In
the next section, We discuss our system’s applications more
throughly. Finally, we conclude with a discussion of further
applications and future work. Throughout the rest of this paper



we will refer to the Leap Motion as the Leap.

2 BACKGROUND

The task of building software catered to beginner conductors
requires an understanding of basic conducting patterns. As
mentioned earlier there have been other software designed
to recognize conducting with different degrees of complexity.
Some software simply captures the change in velocity and
alters the tempo, while other software may attempt to capture
a gesture formation in conjunction with the change in velocity.
MUSE is able to capture both the change in velocity and a
gesture pattern. The gesture patterns of conducting is described
in the Conducting Patterning and Ictus section.

2.1 Conducting Patterns and the Ictus

MUSE has been designed to recognize basic conducting
patterns that are taught to beginning conductors. Figure 1 gives
an example of these basic patterns. These conducting patterns
consist of ictus’s or where the beat occurs typically when
the conductor’s hand switches in a major direction. Figure 1
demonstrates three conducting patterns where the left most has
two ictus’s, the middle has three ictus’s, and the rightmost has
four ictus’s. Basic conducting patterns are typically used to
help beginning conductors to gain a grasp on keeping tempo
with a band and to lead into more complex conducting styles.

Fig. 1. Three basic conducting patterns that are taught are shown above. On
the left is a two beat pattern, in the middle is a right three beat, and on the
right is a four beat pattern. The beats or ictus’s are located at the ends of the
arrows. [6]

2.2 Sensors for Gesture Recognition

In order to perform gesture recognition, the first obvious
requirement is a system of sensors to record raw data from a
person’s motions. Previous systems for capturing gestures can
be broken into two broad approaches: camera- based systems
and controller based systems. A camera-based system utilizes
camera’s to capture a person’s hand or baton motions, while
a controller based system utilizes some kind of controller to
capture a user’s hand motion. Both types of recognition make
use of gesture recognition algorithms to detect the beats of a
conducting pattern.

An example of a controller used for gesture recognition,
in particular, is the controller for Nintendo’s Wii known as
the Wiimote. The Wiimote has been successfully used to
recognize a number of gestures with a fairly small training
set [7]. The Wiimote has accelerometers that make it possible
to keep track of orientation and makes use of a infrared sensor
bar to get position information. The WiiMote is a great tool
for creating a conducting application. Despite the WiiMote

and other controller based systems being useful for capturing
gestures for the use of conducting, they introduce a new
interaction that may seem foreign to a conductor.

There are primarily three types of camera based systems:
traditional intensity cameras, stereo camera systems, and depth
cameras. In this paper our system uses depth based system
camera like the Kinect. The Kinect has been used to build a
commercially-successful pose recognition system for humans
in indoor settings [8]. In this paper, we use a system similar
to the Kinect to track hand motions specifically.

There has been some work on gesture recognition in
conducting including work that was previously discussed in
the Introduction section. In particular, the Conga framework
[5] that uses finite state machines to recognize conducting,
dynamic time warping (DTW) which has been used in [9],
[10] to improve the overall accuracy of detecting conducting
patterns, and HMMs [11]. The systems in previous apporaches
with HMMs, DTW, and others are very accurate and have
95% or above accuracy. However, finite state machines such
as Conga are constructed by hand and manual construction
obviates the need to perform a lengthy training process, the use
of a non-statistical approach can lack the robustness required
to deal with noisy sensors and inexperienced conductors.
Despite the accuracy of these apporaches, our system uses the
Conga frame to recognize different conducting patterns and
extends the Conga framework by using HMMs to perform the
necessary sequence analysis to deal with noise. However, beats
are still captured by the Conga framework exclusively.

3 SYSTEM ARCHITECTURE AND FUNCTIONALITY

MUSE system architecture has been designed with a cul-
mination of multiple dependencies which are: QT to be used
as a Graphical User Interface (GUI)[12], rtmidi to handle
communication to other midi input and output devices[13],
libjdksmidi to parse midi files and handle midi events[14], the
Leap Motion API to capture motion information from the Leap
Motion device[4], Nick Gillian’s Gesture Recognition Toolkit
(GRT) to create a Hidden Markov HMM for recognizing con-
ducting gestures, implementing the Conga framework in C++
to capture a majority of conducting gestures, and OpenGL to
visualize the conductor’s hand [15], and zlib for compressing
records generated by user’s performances [16]. The rnn is
currently not part of MUSE and will be added later. These
dependencies have made it possible to build MUSE.

3.1 Overview of the Architecture

The overall picture of MUSE’s architecture can be seen in
Figure 2. MUSE can be broken done into four simple layers
being its presentation layer, midi processor layer, hardware
layer, and pattern recognition layer. The presentation layer
consists of the GUI and everything necessary to create a
virtual view of the user’s hand. The hardware layer of MUSE
is simply the Leap Motion itself and the Leap Motion API
required to use the Leap. The Pattern Recognition consists of
two different beat pattern recognizers being the Conga finite
state machine and the use of GRT to create a HMM. The Midi



Fig. 2. The system architecture is demonstrated in this figure. The system consists of a presentation layer that shows information to the user, a midi processor
for manipulating the musical output of the system, a pattern recognition layer where all code for detecting conducting patterns is placed. All interfaces within
MUSE demonstrated in this figure as well.

Processor layer handles processing midi files by controlling
midi playback speed in the case of changing conductor input
and has the capability of serializing and recording a user’s
hand motions for future playback. In the next following
sections the presentation layer and MIDI processor layer are
explained in detail. The pattern recognition layer is explained
later in Section 4.

3.1.1 Presentation Layer: The GUI of MUSE is designed in
a similar fashion to any music player in the sense that it allows
the user to select and play songs at their leisure. As the song
plays, the user may provide gestural input via a Leap Motion
controller to guide musical playback. Also, they can alter the
play-style or even the volume of the instruments which are
provided as controls in the GUI. MUSE has components for
choosing specific models of conducting and visualization as
well as opening MIDI files. A screen shot of MUSE’s GUI
can be seen in Figure 3 and the individual components of the
screen are detailed as follows:

• OpenGL Visualizer: The OpenGL visualizer displays the
motions of a user’s hand and allows the user to see what
the Leap is detecting. This interface is provided so that
the user may be able to determine what is the best area
to conduct over the Leap.

• Channel Manipulation: The channel manipulation which
is the sixteen slider bars next located next to the OpenGL
Visualizer. In this section of the GUI the user is able
to manipulate different 16 different midi channels of
MIDI files that are playing. Each channel correlates to a
different instrument that is playing on the MIDI file. The
volume sliders will also generate specific volumes based
on the configuration of each MIDI file that is opened.

The sliders operate and provide information in real-time
because the variables for volume are changing constantly.

• Tempo Manipulation: A tempo manipulation toggle al-
lows users to change the tempo of each song (for the song
to play faster or slower). When a MIDI file is loaded the
tempo within the midi file is automatically loaded and can
be changed with the plus and minus below the tempo next
to the OpenGL visualizer. It will also change in real-time
as a user moves their hand or conducting instrument over
the Leap depending on the velocities of their movements.

• Beat Pattern Detection Menu: Located above the tempo
selection and to the left of the OpenGL visualizer are the
options to choose a 2-pattern, 3-pattern, and 4-pattern.
Above these options are the displays for the desired beat
pattern and the current detected beat for that pattern. We
introduced this feature in order to make detecting beat
patterns easier and more accurate. We moving towards
a system where it expects certain beats patterns and to
grade the user.

• Note Manipulation Section: Located next to the next
below the channel manipulation is the note manipulation
section. This section is dedicated to manipulating differ-
ent play styles of the midi which we have denoted as
attack, staccato, legato, and marcato. Only one of these
states can be on at any given time. This functionality
was added as a precursor for detecting the type of play
attached to different types of conducting that are usually
captured in a conductors motion.

• Files Menu: The user interface has drop down menus
that will be utilized in order to open files, exit the
program, record conducting, and to provide information



Fig. 3. An example screenshot of MUSE that demonstrates MUSE’s GUI.

on the program itself. The recording functionality will be
explained later in Section 3.1.2.

• Musical Note Visualizer: Demonstrated below the below
the OpenGL Visualizer is small view of the musical note
visualizer that the user can see what notes are currently
playing. An example of the note visualizer output can be
seen in Figure 4.

3.1.2 Midi Processor Layer: The midi processor consists
of a midi sequencer, an rtmidi module, libjdksmidi module,
Guidolib module, and a JSON module. Each of these modules
has a unique independent/dependent responsibility to the midi
processor. The libjdks module is responsible for reading and
parsing a midi file for all midi events existent in the midi. The
sequencer is responsible for determining what midi events to
feed to the Rtmidi module for playback dependant upon input
given from the pattern recognition level. The rtmidi module
allows users to have the option to send midi signals to other
midi output devices that could be connected to other software
or synthesizers.

Also, MUSE allows a user to record their performance. This
requires the midi processor layer to keep track of all motion
created by the user made during the playback of a song. Every
frame of information that is acquired from the Leap is recorded
and timestamped. When a user has finally finished recording
a song and their gesture motions, the motions are serialized
into a JSON format with the necessary information. The JSON
string generated is then compressed with zlib and saved at a
location specified by the user. When a user goes to select this
recorded file again for playback, the user’s recording will be
played back in the same fashion as before. This functionality

Fig. 4. A close up of the Note Visualizer. The visualizer updates in real
time, according to the gestures of the user and displays notes of a selected
instrument to the user.

could be used a feed back to give the user insight on how well
they are doing with their conducting. We choose to serialize
our data as JSON in order to account for future expandability
for other user data that may be beneficial.

4 MACHINE LEARNING MODULE THEORY AND RESULTS

In this section the rnn and HMMs used for predicting beat
patterns are discussed as a part of the Pattern Recognition
layer. Both of these classifiers were strictly made to classify
the patterns themselves, but not the individual beats inside
of the pattern. Also the HMMs have so far only been im-
plemented for the machine learning module. The machine
learning module was built to automatically determine which
pattern is being detected without the user selecting a pres-
elected pattern. Right now MUSE primarily relies upon the



user’s selection and uses Conga to determine the change in
tempo based on Conga primarily.

Based on the details from the Conga paper [5], we have
implemented a finite state machine to be used with MUSE. We
have spent time analyzing the Leap’s output when someone is
conducting in order to figure out what is needed to capture
an ictus or down beat in a conducting pattern. Our finite state
machine keeps track of the x and y position, velocity, and
acceleration. Our finite state machine effectively looks for zero
crossings in the velocity and acceleration that denotes a major
change in direction, which is an ictus in conducting. A unique
finite state machine was created for a two beat pattern, three
beat pattern where the second beat is on the left, three beat
right pattern where the second beat is on the right, and four
beat pattern. These four patterns, that are recognized by Conga,
are used for MUSE and for training both the HMMs and rnn.

The HMMs in the Pattern Recognition layer uses any
velocity measurements received and computed by the Leap
Motion API as input. Inside the Pattern Recognition layer
of MUSE, the velocity measurements are preprocessed into
a discrete alphabet and then passed into a HMM for each
pattern supported by MUSE. There are four unique HMMs
representing each beat pattern supported by MUSE. Predicting
the beat pattern is then selected based on the model with the
greatest likelihood. This classification is not accepted as the
ground truth until the pattern is completed. Conga is used to
determine if a pattern has truly been completed. In order to
capture the ordering and complexity of beat patterns a left to
right Hidden Markov model structure was chosen to model the
data captured from the Leap. The left to right Hidden Markov
model was chosen because a beat pattern is a cyclic in nature.
An alternative model type is an ergodic HMM, which does
not model a beat pattern well because it does not have a strict
path for state sequences, which makes the ergodic model a
bad choice.

In creating the discrete alphabet for the HMM only the x
and y components of the velocity data are used.

The velocity vector captured from the Leap is encoded with
the following function:

D = bvec.roll + 1

2
c mod 16 (1)

Where vec.roll is the roll of the current velocity with respect
to the z axis, which can be computed by the Leap Motion API.
The roll was chosen for the decoding function because it points
in the direction that the hand is currently going. The above
formula in Equation 1 that uses Equation ?? was inspired
by another paper[17] and the equation encodes acceleration
vectors into 16 different quadrants to be passed into the HMMs
and rnn.

An rnn was built with keras[18] to test how well it would
work in comparison to the HMMs. The rnn’s architecture is
a single long short term memory (lstm) layer follow by a
regular feed-forward layer and the output is squashed with
a softmax layer. The rnn’s objective function is a categorical

TABLE I
COMPARISON OF THE RNN VERSUS THE HMMS ON THE CONGA LABELED

DATASET AND MANUALLY LABELED DATASET.

Conga Labeled Manually labeled
rnn 98.1% 87.3%
HMMs 78.9% 50.7%

cross entropy function. The rnn has four outputs were each
output indicates the most probable beat pattern.

The MUSE system utilizes data collected from the Leap
Motion API to train HMMs and a RNN. The Leap Motion
API provides data at rates of 100 FPS to 200 FPS enough to
predict conducting gestures. A dataset constructed from 140
data samples from six different people who conducted for 30
seconds was used to train both HMMs and the RNN. The
conga finite machine was used to label this dataset and it was
split into 80% training and 20% testing. Another dataset was
labeled manually by pressing every time a beat occurs from
one person with 40 datasets that were 10 seconds each. Table I
demonstrates the overall results of the rnn and HMMs over
both datasets. The rnn performs better than the HMMs on
both datasets with 98.1% on the Conga labeled and 87.3% on
the manually labeled dataset.

The difference in performance between the Conga and
Manually labeled datasets can be explained by the way the
two datasets were labelled. In processing both these datasets
the individual patterns in each recording were split apart and
labeled. For example, if one recording had four patterns within
it, then those four patterns would be broken done into four
individual sequences and labelled. In labeling the Conga finite
state machine will have some delay in determining the end
of a beat pattern and is limited by the design of the finite
state machine created for the pattern. In the manually labelled
dataset the end of a pattern is limited by the skill and delay of
the key press by the one labeling the dataset. The difference
in the results demonstrates that the end of patterns were very
different between the two datasets and actually impacts the
two classifiers.

5 DISCUSSION

MUSE has been designed for students and teachers to use
this system for learning basic conducting patterns. A lot of
the features have been tailored for constructing future games
and assignments for teachers and students. However, MUSE is
need of improvements overall, especially in more robust beat
detection algorithms and the inclusion of other sensors. A lot
of other projects have focused on building systems that are
able to effectively capture conducting accurately. Unlike these
systems, MUSE’s overarching goal is to capture the motions of
a conductor and provides users feedback in a scalable system.
MUSE has incorporated a way to save past performances
that is independent of other sensors that could allow for the
addition of new sensors.

MUSE has several different features that makes it easily
adaptable for teaching purposes and scalable for other sensors
that may be added further on. MUSE is capable of taking in



midi and producing output to different output sources. Users
are able to save and record performances, alter the playing
style of music, and choose different conducting patterns that
they wish to be recorded. Having the capability to select
different beat patterns allows for different conducting scenarios
to be constructed in the future. Having the ability to select
different beat styles allows for MUSE to have the extensibility
for algorithms that detect the style of conducting. Using midi
as an output source is more flexible then audio as it can be
controlled robustly. The user is also able to view how notes are
changing through time, effectively allowing a user to examine
a visual representation of the music. Despite these features,
MUSE has several improvements that could be made.

MUSE’s HMMs were created for the purposes of capturing
four basic conducting patterns. These algorithms are accurate
enough to perceive the conducting patterns and even give the
user feedback. The feedback from MUSE can be severely
impacted by any inaccuracies from the limited range and
sensitivity of the sensor. Despite these inaccuracies, the rnn
demonstrated in the previous may be beneficial for improving
the overall accuracy of MUSE’s current use of HMMs.

The rnn discussed in the previous section was found to
be more accurate that the hmms. There have been very few
experiments with music conducting and determining a beat
pattern. It was found that the rnn outperforms classifying
individual beat pattern segments. However, it has not been
added to MUSE yet. These results require further investigation
and a real time classifier needs to be made for different types
of rnns.

6 CONCLUSIONS AND FUTURE WORK

The MUSE application coalesces a variety of different tools
and concepts to provide a versatile set of functionality behind
an intuitive interface. Having incorporated a large amount of
research as to the conventions of conducting as well as the
needs of the music community, MUSE offers a solution to a
ubiquitous problem in a unique way. Through the inclusion
of a finite state machine beat recognizer using the Conga
framework, the application provides an accurate method to not
only keep track of a users conducting patterns but also record
their movements. There are some future plans to improve
the accuracy of the conducting recognition system by using
techniques such as DTW mentioned in the introduction and
the rnn. We also have plans to incorporate different sensors
such as the Kinect. Another goal is to implement the system
as a web application and to incorporate MUSE into a virtual
reality application, such as a six-sided cave or an Occulus
Rift. Besides tracking movements, the machine learning within
MUSE demonstrates the ability to be adaptable for other algo-
rithms. With a dynamic visualization component incorporated
into the GUI as well as a robust manipulation of sound output,
the technical back-end is well hidden to the user as they utilize
MUSE to its full potential.
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