
A Linear-Time Visualization Algorithm
for Drawing Planar Graphs Represented by Regions

Jeffery A. Stuart, Brian T. Westphal, Bei Yuan, and Frederick C. Harris, Jr.
Department of Computer Science, University of Nevada, Reno Nevada 89557, USA

Fred.Harris@cse.unr.edu

Abstract

Graphs can be represented using a variety of means,
the most common of which are adjacency matrices and
edge lists. For undirected graphs, one alternative to
these is to use a region-based representation. Compared
with adjacency matrices or edge lists, region lists are
significantly more difficult for humans to visualize.
Still, a region-based description of a graph can be a
powerful tool for certain types of problems that require
highly generalized graph descriptions. The algorithm
for region-based graph visualization outlined in this
paper, which focuses on the drawing of planar graphs,
is simple to understand, can be easily implemented
using only a minimal background in graph theory, and
executes in linear time. The algorithm has been im-
plemented in a graph drawing tool called CircleGraph,
which is also described in this paper.

Key Words: crossing number, region.

1 Introduction

In general, the notion “visualization” refers to the
process of mapping abstract data to a suitable graphical
representation that simplifies data interpretation by the
user. For many applications, especially where data
sets are very large, the problem of visualizing data can
be a numerically intensive task. New graph drawing
algorithms are needed in order for many complex data
sets to be successfully visualized.

Originating with the work of Tutte [16] and
Knuth [10], the amount of research on graph drawing
algorithms has grown tremendously, especially in the
last decade over which the number of high-resolution
graphical devices and graph drawing software tools
has steadily increased. Development APIs, such as
LEDA [13] and GraphBase [11], provide tools for
implementing graph-drawing algorithms and tools
such as EDGE [14] and DaVinci [17] concentrate on
visualization of specific classification of graphs.

Graph drawing algorithms commonly use the most
general graph attributes such as adjacency lists to gen-

erate drawings under various constraints. In many cases
however, the typically specified graph attributes are
insufficient for solving desired problems quickly. One of
the benefits of using a region-based approach towards
solving graph problems is that one can assume the
planarity of the resulting graph. That is, according to
Euler’s Formula [2], a connected graph G is guaranteed
to be planar if:

n−m + r = 2

where n, m, and r are the number of vertices, edges,
and regions.

Significant efforts have been made towards solving
the minimum crossing number (MCN) problem for
complete graphs Kn. In one of the most recent
solutions, non-planar graphs that contain crossings are
converted into planar graphs by regarding crossing
points as virtual vertices. For instance, an MCN
solution for K6, requires three crossings as a non-planar
graph, and therefore requires three virtual vertices as a
planar graph. K6 is a complete graph with six vertices,
shown in Figure 1.

1

2 3

4

5

6 V1

V2

V3

Figure 1: K6 with three virtual vertices (V1, V2, V3)

An increasing number of algorithms [8] rely on region
lists for graph representation. As scientific valida-
tion/verification of graphs is a driving force for the
visualization of region-represented graphs, providing



tools and algorithms by which graphs can be drawn is
essential. Though there are a good number of graph vi-
sualization algorithms and tools, most current methods
are difficult to implement. This paper presents a simple
algorithm, both to understand and to implement, for
drawing graphs. Also presented is an interactive tool,
used in conjunction with the algorithm, to draw graphs.

Many algorithms, dealing with NP-hard graph prob-
lems, create output graphs without assigning coordi-
nates for specifically positioning vertices. Without
visualization, one is left with the dilemma of either
creating resulting graphs by hand (which is impractical
for most cases) or taking the results on faith. In the
case of the MCN problem, graph visualization is used to
prove that the resulting data is correct. In other words,
actual graphs, which have the minimal crossing number,
can be presented. Errors, such as edge crossings, are
readily apparent by briefly glancing at a visualized
graph.

The rest of this paper is outlined as follows: Section 2
presents a review of the background literature for
graphs and graph drawing. Section 3 introduces and
discusses the Vertex Connection Scheme algorithm that
we developed for defining the graphical structure of a
graph. The results and effectiveness of the algorithm
as well as an introduction to our interactive graph
manipulation and visualization tool called CircleGraph
are discussed in Section 4. This is followed by the future
work and conclusion of this paper in Section 5.

2 Literature Review

2.1 Review of Graph Drawing

There are many types of graphs, each of which can be
drawn in a multitude of styles with various aesthetic
criteria and algorithms. Commonly defined graph
types include: complete, bipartite, acyclic, directed,
and undirected graphs, among others. In addition, one
may limit the dimensionality of a graph, typically to
2D (planar) or 3D (spherical) coordinates. A drawing
is planar, if there are no edge crossings. An orthogonal
drawing maps each edge into a chain of horizontal and
vertical segments [2]. A grid drawing is embedded
in a rectilinear grid such that the vertices and edges
have integer coordinates (a special case of orthogonal
drawing). In addition to selecting a particular type,
one drawing is considered better than other drawings
if it meets certain aesthetic criteria such as number of
crossings, size of drawing area, degree of the smallest
angle, and number/type of symmetries. There will
always be trade-offs for the output graph, since it
is often impossible to simultaneously optimize two
aesthetic criteria. For instance, Figure 2 is used to

demonstrate that if one wants ensure the minimum
crossings, one may sometimes have to sacrifice maximal
symmetries.

1

2 3

4

crossing

1

2 3

4

Figure 2: K4 with/without crossings

2.2 Previous Work in Graph Drawing

Research on graph drawing focuses on creating mod-
els, developing algorithms, and building systems for the
visualization of graphs and networks. This problem
is more general than one might imagine as common
applications include software engineering (class hier-
archies), database systems (ER-diagrams), and circuit
layout design.

Previous work in graph drawing is represented in [3,
4, 7, 15, 16]. Many of the experiments associated with
the presented algorithms show that the current state
of algorithm development is limited. In several cases,
due to algorithm complexity, only small graphs can be
constructed or the algorithms work in only a subset of
the expected cases.

Because drawing a graph according to a pre-specified
set of aesthetic criteria can be regarded as searching
for an optimal layout within a virtually limitless graph
layout space, many Genetic Algorithms have been
applied to graph drawing. For example, [1] and [6] use
Genetic Algorithms to draw undirected graphs and [12]
bipartite graphs. Genetic Algorithms however, suffer
from difficulty in achieving optimal configuration for
crossover and mutation rates, randomization, and often,
extensive processing requirements. Typically, results
can only be gathered for moderate sized graphs, most of
which may not be aesthetically pleasing. Furthermore,
adding aesthetic criteria often diminishes the ability
to find acceptable graph presentations while reducing
criteria results in unusable graphs.

Consequently, researchers have begun to develop
graph-drawing systems to allow direct interaction
with graph layouts. A well-known drawing system,
GraphEd [9], provided many experiments in evaluating
different drawing algorithms. The system includes a
set of parameterized layout algorithms that cover a
wide range of modern drawing algorithms. One of
the major issues with such systems however is one of



cross-platform compatibility. That is, most systems
are developed to run on a single operating system /
hardware configuration. This inevitably limits usage
in the diverse world of scientific research. Most of
these systems also require that graphs be input using
specific formatting requirements, adding an often
time-consuming process of conversion to ones work.

This paper demonstrates that it is possible to build
a graph-drawing system that uses a fast (linear-time),
automated process for approximating a final graph
drawing followed by minimal human interaction to
perfect the graph drawing in terms of human aesthetic
criteria.

3 Algorithm

Current graph drawing algorithms, besides rendering
disorganized graphs, tend to be complicated to under-
stand and difficult to implement. The algorithm pre-
sented in this paper, Vertex Connection Scheme (VCS),
is simple, and useful in producing aesthetically pleasing
graphs. VCS makes use of several key concepts, each
of which help to reduce the abstraction involved in
choosing coordinates for graph vertices. Layering is a
method used for organizing the vertices of a graph. All
vertices in VCS lie on the perimeter of a concentric
circle, where there is one concentric circle per layer (or
virtual layer).

To define the layers of a graph one must first choose
an outside region. The outside region used in this paper
is the largest region of a graph. In the case of ties,
the region whose sum of vertex degrees (the number
of edges in which the vertex is involved) is highest is
used. Alternative outer layers may be useful as well,
but it has been found that space usage can be optimized
by moving larger and higher-degree regions close to
the outside. Inner layers are defined by performing
a multi-source BFS starting from the outside layer.
Vertices that are connected (via an edge) to the vertices
of the outside layer are in layer 1; vertices that are
connected to the vertices in layer 1 are in layer 2,
and so on. After each vertex has been associated
with a layer, one must also orient the vertices on each
layer. The algorithm presented in this paper uses
an inductive method to determine the (clockwise or
counterclockwise) orientation of vertices.

Besides using standard layers as defined above, vir-
tual layers are also incorporated for convenience. A
virtual layer is an additional layer onto which vertices
from adjacent layers are moved for the purpose of
organizational convenience. Using virtual layers for
specific cases allows for simplification in the vertex
organization process. Upon calculating the vertex

layers, layer orientations, and virtual layers, one may
then begin defining absolute positions for vertices. The
results section describes an interactive tool used for
graph manipulation allowing one to specify the exact
appearance of the graph while helping to maintain the
constraints yielded by VCS.

Vertex Connection Scheme Structures: In order
to complete the Vertex Connection Scheme, one must
keep track of the following structures: region list,
adjacency matrix, adjacency list, layers and virtual
layers, the layer number associated with each vertex,
and for each vertex a list of regions containing the
vertex (which are referred to as the vertex-region
maps). Some of this data is redundant, however
this redundancy is used to achieve the linear-time
complexity of VCS.

Initialization: The VCS algorithm is given the re-
gion list. From the region list, one initializes the
adjacency matrix, adjacency list, vertex-region maps,
and the outside layer. The algorithms for building the
adjacency matrix and adjacency list can be found in [8]
and will not be discussed in this paper.

Layer Labeling: Layers are fundamental to VCS as
they describe the general order in which the vertices
are placed. Layers define a topological ordering of the
graph. This ordering is found using a multi-source
breadth-first search. The search starts simultaneously
with all the vertices in the outside layer (the outside
layer was found in the initialization phase). All the
vertices in the outside layer are labeled as being in
layer 0; all other vertices are unlabeled. For all newly
discovered vertices, any unlabeled neighbors are put
into a new layer. For example, all unlabeled neighbors
of layer x would become labeled as being in layer x +
1. This process continues until every vertex has been
discovered.

Layer Ordering: After the vertices are labeled with
a particular layer number they need to be correctly
ordered within their layer. Edmonds Rotational Em-
bedding Scheme [5] already imposes a cyclical ordering
on the outside layer, so no extra work needs to be done
for the outside layer. Edmonds Rotational Embedding
Scheme enforces a cyclical ordering on the neighbors of
every vertex.

Each layer’s vertices can be ordered based on the
order of the vertices in the previous layer. Since the
outside layer is automatically ordered, according to
the embedding scheme one can start with the layer
one-in from the outside. Before ordering a layer, two



data structures should be setup: nextLayer (which
represents the layer being ordered) and ict (which is
the inward connection table). nextLayer is initialized
as an empty list, ict as an empty table.

To order a layer, one traverses the vertices of the
previous layer. With the first layer to be ordered, for
example, this would be the vertices of the outside layer.
For each of these vertices v from the previous layer, one
finds and counts the number of vertices on the current
layer to which v connects. The counted vertices are
stored in ict.

If ict is empty, no more processing occurs for v. If
there is one element in ict, the element is appended on
nextLayer. If more than one element is in ict, one must
determine the cyclical ordering o of the previous layer’s
vertex (as described in section 3). One must remove
elements of o that are not in ict.

Using o, one can find v′s clockwise successor u.
Traversing o in reverse order, if one finds a vertex
w that connects v and u, then o should be rotated
(with wrap around) so that w is the last vertex
in the list. The elements of o are then appended
on nextLayer. Duplicate vertices sometimes appear
because of multiple options available in vertex ordering.
These extraneous vertices need to be removed after each
layer is completely ordered.

Determining the Cyclical Ordering of a Vertex’s
Neighbors: Figure 3 shows a region-based graph
with seven vertices. This graph is used to demonstrate,
through the following example, how one can determine
the cyclical order on the neighbors of a vertex. The
key to this algorithm is using the vertex-region map to
orient the neighbors of a vertex. For this example, we
have chosen an arbitrary vertex, 6, whose neighbors (2,
3, 5, and 7) will be oriented.

1

2 3

4 5

67

Figure 3: A graph with seven vertices

Figure 4a shows all the regions that contain our
example vertex 6. The first step of this algorithm is to
rotate each region so vertex 6 is the first vertex listed

(a) (b) (c) (d)

Figure 4: The regions (from Figure 3 arranged)

in the region. Figure 4b shows the list of manipulated
regions. The next step is to eliminate vertex 6 from each
region. The resulting region list is shown in Figure 4c.
The final step of this algorithm is to reorder the list
of regions. The first region is chosen arbitrarily. The
second region is chosen such that its first vertex is the
same as the first region’s last vertex. This procedure is
continued using the second and third regions, the third
and fourth regions, and so on until all regions have been
ordered. One should notice that the list of regions is
cyclical, being that the first vertex of the first region
is the same as the last vertex of the last region. The
region list generated by this algorithm for vertex 6 is
shown in Figure 4d.

4 Results

Thus far, the authors have been given region-based
data for solutions of all complete graphs from K5 to
K17. These have been successfully visualized using
the algorithm and tool (discussed below). Prior to
discussing the tool used to perform visualization, it may
be beneficial to view several examples. The following
examples are of the completed visualizations for a K15

graph. The progression shows the level of detail as one
zooms-in on the graph layers. Figure 5 shows the entire
graph for K15 and the graph can be zoomed in on to
show increasing levels of detail for the inner layers.

The results for K15, shown in Figure 5 is demonstra-
tive of the types of graphs generated by the algorithm
and tool. One can clearly notice the layering and how
useful it is in keeping the graph organized.

The Tool: Not all aspects of VCS-based graph draw-
ing are currently automated. As such, we have devel-
oped an interactive tool that allows one to perform the
non-automated portions of the graph drawing process.
From a region list, VCS is able to give the vertices
associated with each layer and the orientations of
the vertices on each layer. However, exact posi-
tioning within the layers is not yet automatically
determinable. CircleGraph is a program that allows
one to visualize and manipulate graphs in real-time.
The most important operations are that users can



Figure 5: Visualized K15 (all layers)

Figure 6: A screenshot of the CircleGraph program

resize and rotate layers and slide vertices within a
layer. Using only these two operations one can correctly
determine absolute positions of vertices for graphs.
Still, additional features allow the tool to be both more
powerful and more quickly used.

The features of CircleGraph revolve around visual-
izing graphs for the purposes of presenting work in
research documentation. As such, the list of features
is small but all are critical. Figure 6 is a screenshot of
the CircleGraph program. Figure 7 shows a complete
list of supported operations and features.

Besides being able to visualize and manipulate
graphs, for the purposes of research it is essential
to support output formats such as JPEG and
X-Y coordinate lists for scientific verification.
CircleGraph also supports options for zero or one
based vertex indices, enabling/disabling anti-aliasing,
enabling/disabling auto-zoom, and allowing for curved
lines or strictly drawing rectilinearly. In addition,
the CircleGraph program is implemented using Java
and as such is platform independent. This allows
for maximum flexibility in heterogeneous research
environments.

Strategies: Because not every aspect of the algo-
rithm is automated, we have developed the following
strategies to assist you in developing aesthetically
pleasing graphs using the CircleGraph interactive tool.

(1) Use “Auto-Rotate Layers” before manually adjust-
ing any layers or vertices, but some additional layer
rotation may help cleanup the graph.

(2) Expand each layer as much as possible (while
looking out for crossing edges), but keep in mind
that it is sometimes necessary to shrink a layer.

(3) Try to move vertices as little as possible, to help
maintain uniformity.

(4) Expand virtual layers as much as possible and place
vertices as closely as possible to connecting vertices
in surrounding layer.

(5) When two adjacent vertices are not next to each
other in layer orientation, move the vertices and
their neighbors to get them as close to π

2 radians
apart as possible.

(6) When it appears that one vertex on the same layer
as another vertex must be “underneath” an edge
from that other vertex, making the layer bigger will
help.

(7) Use the highlight crossing edges tool to verify your
graphs (this does not currently work when allowing
curved lines).

5 Future Work and Conclusions

Though our tool shows that one can display well-
organized, large graphs, some experiments have been
done to further clean up the results. Virtual layers,
layers that exist between layers, can be used in certain
circumstances to reduce the number of vertices per
layer, and to reduce the interactions between layers.
Another direction of research currently underway is
implementing a better method for removing duplicate
vertices in layers. As mentioned at the end of section 3,



Figure 7: Operations and features of Circlegraph

the results of our algorithm may include vertices multi-
ple times in a single region. The current method simply
removes duplicate instances of vertices after the first
instance. This may not be ideal as a few crossings,
which require human attention or interaction to fix, are
generated in some graphs, due to this issue.

The most important work that needs to be done
is to run the algorithm to visualize graphs of higher
orders. Visualizing graphs on the order of ten thousand
vertices or more should demonstrate the scalability of
this algorithm. To perform such visualizations however,
more data needs to be collected from region based graph
algorithms.

References

[1] J. Branke, F. Bucher, and H. Schmeck. Using
genetic algorithms for drawing undirected graphs.
Technical Report 347, D-76128 Karlsruhe, Ger-
many, 1996.

[2] G. Chartrand and L. Lesniak. Graphs and
Digraphs. Chapman & Hall/CRC, Boca Raton,
FL, 3rd. edition, 1996.

[3] N. Chiba, K. Onoguchi, and T. Nishizeki. Drawing
planar graphs nicely. Acta Inform., 22:187–201,
1985.

[4] M. Chrobak and T. Payne. A linear-time algorithm
for drawing planar graphs. Information Processing
Letters, 54:241–246, 1995.

[5] J. Edmonds. A combinatorial representation for
polyhedral surfaces. Notices Amer. Math. Soc.,
7:646, 1960.

[6] T. Eloranta and E. Makinen. Timga - a genetic
algorithm for drawing undirected graphs, 1996.

[7] H. de Fraysseix, J. Pach, and R. Pollack. Small sets
supporting fary embeddings of planar graphs. In In

Proc. 20th Annu. ACM Sympos. Theory Comput.,
pages 426–433, 1988.

[8] J. R. Fredrickson, B. Yuan, and F. C. Harris, Jr.
A time-saving region restriction for calculating the
crossing number of kn. Submitted, May 2004.

[9] M. Himsolt. Graphed: A graphical platform for
the implementation of graph algorithms. Lecture
Notes in Computer Science, pages 182–193, 1995.

[10] D. E. Knuth. Computer drawn flowcharts.
Commun. ACM, 6, 1963.

[11] D. E. Knuth. The Stanford GraphBase: A
Platform for Combinatorial Algorithms. New York:
ACM Press, 1993.

[12] E. Makinen and M. Sieranta. Genetic algorithms
for drawing bipartite graphs. Technical report,
Dept. of Computer Science, University of Tampere,
Finland, 1994. Report A-1994-1.

[13] S. N̊aher. LEDA Manual. Max-Planck Institute
für Informatik, Saarbrücken, 1993.

[14] F. Newberry Paulisch. The design of an extendible
graph editor. LNCS, 704, 1993.

[15] R. Read. New methods for drawing a planar graph
given the cyclic order of the edges at each vertex.
Congr. Number., 56:31–44, 1987.

[16] W. T. Tutte. How to draw a graph. In Proceedings
of London Maths Society, volume 3, 1963.

[17] M. Werner and M. Frŏhlich. The interactive graph
visualization system davince v1.2. Tech Report,
Universităt Bremen, 1993.


