
Budget and User Feedback Control Strategy-based
PRMS Scenario Web Application

Rui Wu Jose Painumkal Sergiu M. Dascalu Frederick C. Harris, Jr
Department of Computer Science and Engineering

University of Nevada, Reno
Reno, NV, USA

{rui, dascalus, fred.harris}@cse.unr.edu and josepainumkal@nevada.unr.edu

Abstract—The Precipitation-Runoff Modeling System (PRMS)
is used to study and simulate hydrological environment systems.
It is common for an environmental scientist to execute hundreds
of PRMS model runs to learn different scenarios in a study field.
If the study case is complex, this procedure can be very time-
consuming. Also, it is very hard to create different scenarios
without an efficient method. In this paper, we propose a PRMS
scenario web application. It can execute multiple model runs in
parallel and automatically rent extra servers based on needs.
The control strategy introduced in the paper guarantees that
the expense is within the planned budget and can remind a
system manager if the quantified user feedback score crosses the
predefined threshold. The application has user-friendly interfaces
and any user can create and execute different PRMS model
scenarios by simply clicking buttons. The application can support
other environmental models besides PRMS by filling the blueprint
file.

Keywords—PRMS. Budget Control, User Feedback, Web Appli-
cation.

I. INTRODUCTION

The U.S. Geological Survey developed the Precipitation-
Runoff Modeling System (PRMS) in the 1980s [8, 9, 10].
The model is widely used in hydrological research. PRMS can
consume a very long time to finish a model run with a regular
personal computer, especially if a user chooses to generate a
PRMS animation file. This problem becomes worse if a user
builds a different scenario and start multiple PRMS model
runs. There are some similar works already done. However,
most of them do not consider how to change a server size
based on the needs. Another problem is that PRMS is executed
only in a terminal without friendly user interfaces and all the
input data is stored with the text files. A new user can spend a
very long time to study how to start a model run and modify
the input parameters.

To solve these problems, we built a web-based PRMS
scenario tool. It executes PRMS models in parallel, changes
service size based on budget, takes into account user opinions,
and provides user-friendly interfaces. The tool contains two
parts: server and client. The server contains multiple Docker
workers [4] to finish the PRMS model run requests. These
workers contain execution files and are independent. Usually,
a server has better hardware than a normal personal computer.
Therefore, the performance is guaranteed. If there are many
PRMS model run requests and more than the owned server
capability, the server can automatically rent machines to in-
crease the server power. It can also quantify the user feedback

and warn the system manager if users are not satisfied with the
system. The client provides user-friendly interfaces. A user can
execute model runs, check modifications, and create different
scenarios by clicking mouse buttons.

Our proposed method controls the system from the budget
and user feedback. Budget to set up a server is crucial. Unlike
industry companies, the academia always has limited funding
and the budget should be controlled by the plan. User feedback
can be used to test if the users are satisfied. However, if there
is a huge amount of the user feedback it can be hard to process
them. In our opinion, the user feedback should be quantified
and this can simplify the analysis procedure. The prototype
system is set up and running in [16].

In the rest of the paper, Section II introduces some related
work; Section III shows the system design and how the
components are connected; Section IV presents how the system
changes its size automatically based on the budget and quantify
the user opinion; Section V explains how to create a PRMS
scenario and other services.

II. RELATED WORK

There are numerous studies conducted in the field of
dynamic provisioning of computing resources in a cloud envi-
ronment. Some of the successful works are briefly discussed
in this section.

Rodrigo et al. [1] proposed an adaptive provisioning of
computing resources based on workload information and ana-
lytical performance to offer end users the guaranteed Quality
of Services (QoS). The QoS targets were application specific
and were based on requests service time, the rejection rate of
requests and utilization of available resources. The proposed
model could estimate the number of VM instances that are to
be allocated for each application by analyzing the observed
system performance and the predicted load information. The
efficiency of the proposed provisioning approach was tested
using application-specific workloads, and the model could
dynamically provision resources to meet the predefined QoS
targets by analyzing the variations in the workload intensity.
However, the approach offers no control over the expenses as
it does not consider budget constraints and user feedback while
provisioning resources to ensure guaranteed QoS.

Qian Zhu et al. [18] proposed a dynamic resource pro-
visioning algorithm based on feedback control and budget
constraints to allocate computational resources. The goal of the
study was to maximize the application QoS by meeting both

time and budget constraints. The CPU cycles and memory were
dynamically provisioned between multiple virtual machines
inside a cluster to meet the application QoS targets. The
proposed approach worked better than the static scheduling
methods and conserving strategies on resource provisioning.
The flaw with this approach was that it requires the reconfig-
uration of computing resources within the machine instances,
which is not well recommended in the current cloud envi-
ronment where resources could be efficiently managed by the
addition and removal of virtual machines from the cloud host
providers. Moreover, the dynamic allocation of resources based
on CPU cycle and memory usage could go inaccurate more
often, as the parameters cannot truly indicate the need for
more resources. There are chances that, the virtual machine
is just busy with some low-CPU or low network jobs. In
this paper, we propose an innovative server-usage optimization
approach to facilitate on-demand provisioning of computing
resources to ensure reduced waiting time for jobs consistently
over a predefined period of time within the allocated budget
constraints. The proposed approach uses a modified queuing
model to provide estimations on waiting time and queue length
based on the budget amount which is very relevant as it helps
the admin in making budget decisions more easily. The user
feedbacks are continuously monitored in the system and auto
alert emails are generated to notify the admin of experiencing
severe performance issues.

There have been many types of research going on in the
field of environmental modeling by different interdisciplinary
research groups. Consortium of Universities for the Advance-
ment of Hydrologic Science, Inc (CUASHI) [2] is a research
organization comprising the universities in America to develop
services and infrastructure for understanding and exploring
the mysteries related to water science. Hydroshare [14] is
one of their projects aimed at providing cyberinfrastructure
to facilitate an online collaborative environment for sharing
hydrological models and data. Hydroshare offers various web
apps to share, visualize, analyze and run hydrological models.
The goal of Hydroshare is to enhance the collaboration in the
research community by helping in the discovery and access
of data models published by other researchers. Geographic
Storage, Transformation and Retrieval Engine (GSToRE) [15]
is a data management framework to support the storage, man-
agement, discovery and sharing of scientific and geographic
data. It was developed at Earth Data Analysis Center, the
University of New Mexico with a goal to offer a flexible
and scalable data management platform for scientific research.
GSToRE offers a REST API to facilitate the storage, retrieval,
and removal of geospatial data and associated meta-data.

III. SYSTEM DESIGN

The system mainly has three services: PRMS scenario tool,
Data conversion, and authentication. The system is designed
as Figure 1 shows.

A. Queue Master

To arrange resources reasonably and in order, our system
has a queue component. All the user requests are handled by a
docker container named "Queue Master" (see Figure 1). This
container classifies the requests into different groups based
on the required service types, Then different requests go into

Figure 1. Architecture Design.The system contains queue master, queues,
server master, servers, rule master, and feedback collector.

Figure 2. Server Master. The server master is in charge of all the host
machines. It inspects all the host machine information, such as CPU and
memory usage.

different queues. For example, if a user wants to run a PRMS
scenario, the request is handled by the PRMS scenario service.
Therefore, it will enter the corresponding queue. The system
can offer an estimated waiting time based on a proposed
method introduced in this thesis and the user can choose which
queue based on their needs.

B. Server Master

The server master is used to inspect all the host machines
health information, such as server failures and budget infor-
mation. For example, the CPU, memory, and network usage
percentages. It can automatically rent another host machine
based on the control strategy. The rent host machine event
can be triggered based on the rules stored in Rule Manager
container.

In each host machine, there are worker containers [4].
These worker containers are arranged into different groups
based on the service. For example, Container 1, Container
4, Container 7, and Container 10 are in the same group in
Figure 2. All the workers in this group are created with the
same Docker image and they know how to finish the job
based on the input files. For example, the users can run PRMS
scenarios in the system. They need to upload input files to start
a model run. The workers in PRMS service group obtain the
input files from the database based on the job ID and store the
model output files into the database after the job is finished.

To connect different docker containers in different host

machines, we set up a key-value store node. If docker con-
tainers are on the same host machine they can ping each
other directly without any further operations. However, docker
containers cannot ping each other if they are on different host
machines. The key-value store node is used to store different
host machine IPs, networks, and endpoints. After the node is
setup, different host machines can view each other. Then, it is
easy to create a docker overlay network across different host
machines.

For each group, there should be a task manager node and
a feedback collector. The task manager node is used to create
worker containers in different host machines and delete the
worker container after the job is finished. We did not use
any orchestration tool, such as Docker swarm [5] and Apache
Mesos [11], because it is not possible to stop a container in
a certain machine with these tools based on our knowledge.
These tools can change the server size based on some events,
such as CPU and memory usage percentages. However, it is
at a high level (server as a whole). Based on our experiences,
only the worker container itself knows what happens inside. It
is not reasonable to shrink the server size based on CPU usage
or time. Sometimes, the CPU usage is low and the container
is busy. For example, file transportation jobs mainly use I/O
bandwidth instead of CPU or memory. In our opinion, we
can stop the container, only when the container finishes the
last line of the script. Therefore, each worker in our prototype
system sends a termination request to the task manager after
it finishes the job and then the task manager will stop the
container. For a large cluster, it is possible that many containers
report termination events to the server master container at the
same time. It can cause problems if the network bandwidth is
not big enough. There are two solutions for this problem: 1)
more than one server master containers are set up in the system
to process the reports. Each master container is only in charge
a group of containers and this method reduces the burden. 2)
Jittering APIs can be applied. Each container does not send the
termination information to the server master through the API
directly after the container finish the job. The worker container
waits a random time and then send the information. This avoids
too much information occupies the network at the same time.

The relationships between the server master node, host
machines, and worker container are displayed in Figure 2.

C. Servers

Servers are physical machines in the system. These ma-
chines are set into different groups based on the needs of
different services. For example, there are more PRMS scenario
requests than other requests. Therefore, more machines are in
PRMS scenario group than other service groups. The server
master runs docker configuration files to download docker
images and setup services in different machines. The server
master may rent more machines automatically based on the
rules stored in the rule manager.

D. Feedback Collector

The user feedback is very important for the project manager
to set up reasonable rules. The survey is used to collect the
user feedback in our prototype system. The system can turn
the survey results into a feedback score and change the server

size automatically or offer suggestions to the project manager
based on the feedback score.

The feedback collector can send a survey invitation to
the user after he/she uses the service. Each question has
different weights and the options of different questions have
different points. The project manager can setup a threshold for
each question. If the point passes the threshold, it means the
project manager needs to do something. Here is an example:
the project manager wants to know the user’s opinion about
the service performance. Therefore, he puts two questions in
the survey: 1) What’s your opinion about the waiting time?
(question weight 0.8) Options: A. Too long (2 points) B. Long
(1 point) C. Not Sure (0 point) D. Short (-1 point) E. Very
short (-2 points) 2) Do you want to pay more to have a faster
service? (question weight 1.2) Options: A. Strongly Agree (2
points) B. Agree (1 point) C. Not Sure (0 point) D. Disagree
(-1 point) E. Strongly disagree (-2 points). If a user chooses
A for the first question and D for the second question, then it
contributes 0.8*2+1.2*(-1)=0.4 to the global feedback score.
If the global feedback score passes the threshold it means the
users believe the server is slow and they want to pay more for
a faster service. Therefore, the project manager may need to
allow the server master to rent more machines from the third
party companies.

Each service has a feedback collector. The feedback col-
lector contains a survey predefined by the project manager.
Based on the feedback score, the feedback collector can affect
rules stored in the rule manager.

E. Rule Manager

Queue master and server master follow rules stored in
the rule manager. The rules are applied to these two masters
through RESTful APIs. When the project managers want to
add a new rule, they may also need to modify RESTful APIs
in the queue master and server master. This is because the
RESTful APIs may not include the functions required in the
rules. For example, there is a rule requiring average job waiting
time in Service 1 queue should be 10 seconds. However, the
queue master does not have a RESTful API to change the
average job waiting time. Then, the project managers should
work on the API first.

IV. CONTROL STRATEGY

The control strategy is stored in the rule manager of the
prototype system (introduced in Section III-E). The strategy
includes how the service requests are handled in a queue
and how to manage the server based on user feedback. This
section introduces brief ideas. More details on the algorithm
and validation can be found in our previous work [17].

The M/M/1/1/∞/∞ [7] queuing model was modified and
used in the proposed self-managed elastic scale hybrid server
to estimate the queue length and job waiting time in the mod-
elling environment. The modified queuing model includes the
allocated budget amount (B), budget period (Tb), cost of rented
instances ($P/hour), the average time for the job execution in
rented instance (Trent) and the average job execution time in
owned instance (Town). The maximum of number of jobs that
can be processed with owned servers would be (N0 * Tb)/Town,
where N0 is the number of owned severs in the hybrid cluster.

B/ (P * Trent) would be the total number of jobs that can be
processed with rented servers for the allocated budget amount
B. Hence, the total number of jobs processed by the hybrid
cluster during the budget period Tb would be the sum of (N0 *
Tb)/Town and B/ (P * Trent). On incorporating the above details
into the queuing model, the expected average queue length
(LH) and the expected average wait time of job (TH) in the
queue would be estimated as follows:

LH =
λ2

(
N0

T own
+ B

P∗T rent
)2 − λ(N0

T own
+ B

P∗T rent
)

(1)

TH =
λ

(
N0

T own
+ B

P∗T rent
)2 − λ(N0

T own
+ B

P∗T rent
)

(2)

Algorithm 1: Create Rent Worker
1 function rented_worker_creation (RW,UR,N, T int);

Input : RW denotes number of rented workers; UR
denotes unused rentals; N denotes maximum
number of models processed with rented
workers for the input budget; Tint denotes the
time interval

2 if RW < N then
3 if Jobs in queue then
4 Create Worker;
5 RW = RW + 1;
6 while UR > 0 AND RW < N AND Jobs in

queue do
7 Create Worker;
8 RW = RW + 1;
9 UR = UR - 1;

10 end
11 Sleep Tint and go to line 2
12 else
13 UR = UR + 1;
14 end
15 else
16 No more rented workers available;
17 end

Algorithm 1 illustrates the logic for the creation of new
rented workers in the proposed system. On inputting the budget
amount (B) and the cost of rented instances ($P/hr), the system
estimates the total available rented time (T) from the cloud
provider. The average execution time of the job (Trent) is
already available in the system from previous job execution
details. Then the total number of jobs that could be processed
with rented workers is N = T/ Trent. The counter variable RW
(Rented Workers) would keep track of the total number of jobs
rented. To utilize the rented resources judiciously, the usage
of rented workers is distributed uniformly across the budget
time period Tb. To achieve this, the manager should rent a
job at every time interval, Tint = (Tb * Trent * P)/B, if the
owned servers are not available at Tint to process the job. At
every Tint interval, the system would inspect whether there
is a necessity for new workers. At Tint, if owned workers are
not available (i.e. there are jobs waiting in the queue), then the

system will create a new worker in one of the rented machines
in the worker pool and increments the counter variable RW by
one. If at Tint, an owned worker is available, then the system
would record such occasions on to a counter variable UR
(Unused Rentals), so that later, if a job comes in and the owned
workers are not available, the system could immediately create
a new worker to handle the job instead of waiting for the next
Tint interval.The project manager can increase or decrease the
budget amount in the middle of the execution and the system
updates N accordingly with the changes in the budget amount.
The execution time of the job varies with the workload on
the host machine. The value of N is constantly updated on
completion of each job based on the actual running time each
job has taken for its execution. This process will be repeated
until the number of jobs rented equals N, i.e. the maximum
number of jobs that could be processed with rented containers
for the given budget. More details about the budget control
strategy can be found in our previous work [12].

The system also includes a dashboard where the user can
view the details of the finished jobs in real time. On finishing
a model simulation job, the dashboard will display the details
of the job such as the task id, the cost for the job execution,
run-time of the job, waiting time in the queue, the name of the
worker that processed the job and the category to which the
worker belongs (owned or rented). The dashboard also shows
the total number of jobs finished, the number of jobs processed
with rented and owned workers, and also the remaining amount
available to spend.

The prototype has a feedback survey form, where the user
can provide feedbacks on the performance of the service. The
manager can also view the results of the feedback survey from
the users in Survey Results page. The page displays separate
bar graphs for each question in the survey questionnaire. The
bar graphs show the total votes obtained for each option of the
question. This will help the manager to easily understand how
efficiently the system can serve its users and help in taking
decisions on increasing or decreasing the budget amount.

V. PRMS SCENARIO TOOL

PRMS Model Scenario component enables researchers to
modify existing model simulations and re-run models with
modified input files to analyze user-defined model scenarios.
It also provides data conversion service. This allows a user
to modify model input and output files format. The user does
not need to be required any programming skills to use our
model modification component. The user interface is intuitive
and user-friendly so that the user can perform the model
modification activities through simple mouse clicks.

To create a user-defined simulation scenario, the user has
to choose one of the existing model simulations or a default
simulation for modification. Then, the user determines to
modify which parameters to get the desired model scenario.
For example, the user can change the vegetation types of the
study area from "forest" into "bare ground" to study what can
happen if people cut too many trees in the field. Once the
parameters are decided, the user needs to specify Hydrologic
Response Units (HRUs) of the study area that should be
changed. Then, the system knows where and what to modify.

Figure 3. Screenshot of the model modification component in PRMS
Scenarios Tool

A. HRU Selection Methods

PRMS divides the model area into discrete HRUs, where
each HRU is composed either of land, lake, swale or other
types. The PRMS modification component offers two different
ways to select the HRUs for parameter modification. They
are parameter selection and manual selection. In parameter
selection, the HRUs can be selected based on its parameter
values and in the manual selection, the user can manually
choose the desired HRUs from a 2D HRU grid map. After
finishing the modification of HRUs, the user can re-run the
model with the modified inputs. Figure 3 shows a screenshot of
the model modification component in PRMS Scenarios Tool.
The modification component of PRMS scenarios tool has a
tabbed interface, where the user can choose the desired HRU
selection method by clicking on the corresponding tab.

1) Manual Selection: Using manual selection, the user
could select the HRU cells directly on the 2D grid map through
simple drag & drop mouse click operation. To select an HRU,
place the mouse cursor over the desired HRU cell on the 2D
grip map and then perform a left click. To select multiple
HRUs, left click on the HRU cell, drag along the desired
direction, and then release the mouse button. The chosen
HRUs will be then highlighted with yellow color. On clicking
‘Apply to Grid’ button, the underlying HRU grid map will
get updated with the new value for the selected HRUs. on
clicking ‘Save To File’ button, the chosen parameter value of
the selected HRUs would be updated with the new value in the
underlying model input file. Figure 4 shows a screenshot of
model modification using manual selection, where the user is
changing the vegetation type of selected HRUs to shrubs (Type
2) and grass (Type 1) and trees (Type 3). The model modifi-
cation component of PRMS Scenarios Tool is very convenient
and intuitive. It allows users to modify different parameters
at the same time and avoids the unnecessary rerunning of
the model. The tool also gives instant alerts while making a
modification to the parameters. On selecting the parameter, an
alert box would be displayed with the details of the chosen
parameter. The displayed details include the name of the
parameter, description, and the allowed minimum/maximum
value for the parameter. This alert mechanism is very helpful
and effective, as it warns the user on inputting wrong value for
the modifying parameter and thereby saves the time and effort
of the researchers while performing scenario-based studies.

2) Parameter Selection: Using parameter selection, the
user can specify the parameter constraints for the HRUs to be
filtered out from HRU set. To define a parameter constraint,
the user needs to specify the name of the parameter, the
operator (greater than, less than or between), and the parameter

Figure 4. Model modification using manual selection. Modified the vegetation
type of chosen HRUs to bare soil (0), shrubs(2), grasses(1), trees(3) &
coniferous (4)

value. For example, Figure 5 displays the scenario where the
user wants to change the vegetation type to trees (Type 3)
for HRUs whose elevation is between 2000 and 4000 and
whose vegetation type is grass (Type 1). Here, the parameter
to be modified would be ‘cov_type’ (i.e. vegetation), and the
modified value is ‘3’. To define the parameter constraint that
elevation should be between 2000 and 4000, the user needs
to choose the parameter name as ‘hru_elev’ (i.e. elevation),
the operator as ‘between’, and then input the values 2000
and 4000. Multiple parameter constraints can be defined to
fine-tune the selection of HRUs. ‘Add’ button can be used to
add more parameter constraints and ‘Delete’ button can be
used to remove an unwanted parameter constraint from the
HRU selection process. Here, to define the second parameter
constraint that the vegetation type should be grass, choose
‘cov_type’ as the parameter name, the condition should be
‘equal’ and the value should be given as ‘1’. On clicking
‘Submit’ button, the system would filter out HRU’s that
satisfies all the given parameter constraints and then update the
parameter which is to be modified with the new given value.
The modifications could be visualized in real time on a 2D
HRU grid map. On the HRU grid map, the color intensity of the
HRU cells varies with the values of the parameter. The higher
and lower values of the parameter are represented using dark
and light colors respectively. The final modified 2D grid map
is overlapped on a Google map. Google Map gives the user
geological information, which can be used to verify the data
veracity. The user can add/remove the 2D grid map overlay
and change the 2D grid map transparency by clicking on the
respective buttons.

B. Other Services

1) Data Convertor: In the PRMS Scenario tool, data is
stored in NetCDF format. NetCDF is a self-describing and
machine-independent data format [3]. It is widely used in
climate data research. However, this file formats may not be
supported by other tools used by a modeler. Therefore, the
scenario tool contains a data convertor. It can convert NetCDF
file into text and text file into NetCDF file. More details are
introduced in this paper [13].

2) Authentication: The system offers the one-time authen-
tication service. This means a user only needs to login once
and the user can use all the services in the system. This is

Figure 5. Model modification using parameter selection of the HRUs

done by using JWT (JSON Web Token). It is safer Because the
system uses JWT instead of passing the user’s username and
password. More details can be found in our previous work [6].

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a PRMS scenario web ap-
plication and a budget and user feedback control framework. It
allows a modeler to create different scenarios and execute them
in parallel. The application’s server can rent extra machines to
increase its computing power automatically based on needs and
warn the system manger based on the quantified user feedback.
The budget control strategy can also make sure the renting cost
is within the plan. It is easy to extend the system with other
models and control rules because of the proposed design.

In the future, we want to extend the tools with more
environmental models and also add payment component. We
also would like to improve the proposed queuing model by
considering a server starting time. This can be a challenge
because usually the server starting time is not fixed and can
be very long. Last but not least, the proposed tools should be
validated by different programs besides environmental models.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science Foundation under grant numbers IIA-1329469
and IIA-1301726. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES

[1] Rodrigo N. Calheiros, Rajiv Ranjan, and Rajkumar
Buyya. “Virtual Machine Provisioning Based on An-
alytical Performance and QoS in Cloud Computing
Environments”. In: Proceedings of the 2011 Interna-
tional Conference on Parallel Processing. ICPP ’11.
Washington, DC, USA: IEEE Computer Society, 2011,
pp. 295–304.

[2] In Consortium of Universities for the Advancement of
Hydrologic Science. CUASHI. Accessed on 18 July
2017. URL: https://www.cuahsi.org/.

[3] Open Geospatial Consortium. “OGC network Common
Data Form (netCDF) standards suite.” In: (2014).

[4] Docker. Docker SDK for Python. Accessed on 18 July
2017. URL: https://docker-py.readthedocs.io/.

[5] Docker. Docker Swarm | Docker. Accessed on 18 July
2017. URL: https://www.docker.com/products/docker-
swarm.

[6] M. M. Hossain et al. “Web-Service Framework For
Environmental Models.” In: Seventh International Con-
ference on Internet Technologies Applications (ITA).
IEEE. 2017.

[7] Samuel Karlin and James McGregor. “Many server
queueing processes with Poisson input and exponential
service times”. In: Pacific J. Math 8.1 (1958), pp. 87–
118.

[8] G. H. Leavesley et al. “Precipitaion-Runoff Modeling
System:User’s manual.” In: Water-Resources Investiga-
tions Report. (1983), pp. 83–4238.

[9] R. G. Markstrom S. L.and Niswonger et al. “GSFLOW
— Coupled Ground-Water and Surface-Water Flow
Model Based on the Integration of the Precipitation-
Runoff Modeling System (PRMS) and the Modular
Ground-Water Flow Model”. In: Water-Resources Inves-
tigations Report. (2005).

[10] S. L. Markstrom et al. the Precipitation-Runoff
Modeling System. Version 4. U.S. Geological Sur-
vey Techniques and Methods, Book 6, Chap. B7,
http://doi.org/http://dx.doi.org/10.3133/tm6B7. Claren-
don Press, 2015, p. 158.

[11] Apache Mesos. Apache Mesos. Accessed on 18 July
20177. URL: http://mesos.apache.org/.

[12] T. J. Painumkal et al. “Self-managed Elastic Scale Hy-
brid Server Using Budget Input and User Feedback.” In:
12th International Workshop on Feedback Computing.
2017.

[13] L. Palathingal et al. “Data Processing Toolset for the
Virtual Watershed.” In: 2016 International Conference
on Collaboration Technologies and Systems (CTS).
IEEE. 2016, pp. 281–287.

[14] D. G. Tarboton et al. “HydroShare: An online, collab-
orative environment for the sharing of hydrologic data
and models (Invited)”. In: AGU Fall Meeting Abstracts
(Dec. 2013).

[15] Jonathan Wheeler and Karl Benedict. “Functional Re-
quirements Specification for Archival Asset Manage-
ment: Identification and Integration of Essential Prop-
erties of Services-Oriented Architecture Products”. In:
Journal of Map & Geography Libraries 11.2 (2015),
pp. 155–179. DOI: 10.1080/15420353.2015.1035474.
eprint: http : / / dx . doi . org / 10 . 1080 / 15420353 . 2015 .
1035474. URL: http: / /dx.doi .org/10.1080/15420353.
2015.1035474.

[16] R Wu. Virtual Watershed Platform. Accessed on 18 May
2017. URL: https://virtualwatershed.org/.

[17] R Wu et al. “Self-managed Elastic Scale Hybrid Server
Using Budget Input and User Feedback”. In: 12th FC:
Workshop on Feedback Computing. ICAC 2017. Colum-
bus, Ohio, USA, 2017.

[18] Qian Zhu and Gagan Agrawal. “Resource provision-
ing with budget constraints for adaptive applications
in cloud environments”. In: Proceedings of the 19th
ACM International Symposium on High Performance
Distributed Computing. ACM. 2010, pp. 304–307.

https://www.cuahsi.org/
https://docker-py.readthedocs.io/
https://www.docker.com/products/docker-swarm
https://www.docker.com/products/docker-swarm
http://mesos.apache.org/
https://doi.org/10.1080/15420353.2015.1035474
http://dx.doi.org/10.1080/15420353.2015.1035474
http://dx.doi.org/10.1080/15420353.2015.1035474
http://dx.doi.org/10.1080/15420353.2015.1035474
http://dx.doi.org/10.1080/15420353.2015.1035474
https://virtualwatershed.org/

	Introduction
	Related Work
	System Design
	Queue Master
	Server Master
	Servers
	Feedback Collector
	Rule Manager

	Control Strategy
	PRMS Scenario Tool
	HRU Selection Methods
	Manual Selection
	Parameter Selection

	Other Services
	Data Convertor
	Authentication

	Conclusion and Future Work

